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Abstract 
 
In an effort to supplement the available satelite-based 
positioning technology and extend such high level 
positioning capability to GPS-denied environments, a 
method of vision-based positioning with the use of single 
camera and newly defined 3D maps is proposed.  Besides, 
only natural landmarks are required in the proposed 
method. Absolute position and orientation information 
can be provided in six degree of freedom. Our work here 
is to address the accuracy and reliability concerns of such 
a vision-based navigation system. The main contribution 
will be the newly defined 3D map and the adoption of 
photogrammetric 6DOF pose estimation method to 
improve positioning accuracy. Dilution of Precisions 
(DOPs) are introduced to evaluate positioning precision 
within the vision-based positioning domain.  Quality 
control strategies are also applied to detect outliers in the 
observation and strengthen system reliability 
 
Keywords:  vision-based positioning; single camera; 
3D map; accuracy; reliability  
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1. Introduction 
 
Navigation and localization services have seen much 
progress in recent years. Yet most of them depend on 
traditional satellite-based positioning techniques and 
therefore can only be provided in outdoor environments 
(with direct GNSS visibility). In an effort to strengthen 
and extend the positioning capabilities to provide a more 
robust navigation solution, much work has been done. 
One of the primary concerns is to find alternative 
positioning techniques that could provide localization 
and navigation services both accurate and reliable in a 
GPS-denied environment. Among a great variety of  
studies (e.g. Priyantha et al., 2000; Want et al., 1992 
Kalkusch et al., 2002), vision-based positioning is 
believed to be the most promising but challenging 
technology so far. The common approach has been using 
the images captured by its on-board vision sensor to 
match against the expectation (prior knowledge of the 

navigation environment) so as to determine the position 
and possibly the orientation of a vision system. 
 
To our knowledge, most of the work has come from the 
mobile robot community. Depending on the exploitation 
of one or more cameras, either map-based or mapless 
navigation is performed (Bonin-Font et al., 2008). Much 
emphasis has been placed on enabling a robot to safely 
and effectively navigate in an indoor environment with a 
high level of autonomy. However, as long as the 
navigation performs without failure (hitting any obstacle 
or unable to reach its destination), self-localization (or 
positioning) process is considered as satisfactory. The 
accuracy and reliability aspects of positioning have 
hardly been paid much attention, or fully investigated. 
This is especially true with regard to monocular vision 
approaches. Ohno et al. (1996) used the differences 
between the currently collected images and the pre-
recorded image sequence to continuously estimate the 
robot’s position and orientation shifts. While the 
orientation change can be obtained with relatively high 
accuracy, position change may not be accurately 
estimated. Another limitation with this approach is that it 
is based on the assumption that the correspondence 
between the current image and the reference image has 
always been found correctly, leaving mismatches a 
severe danger jeopardizing the reliability of the whole 
system. One year later, Ohya et al. (1997) utilized the 
matching of edges from the currently obtained images 
and the 3D edge model to achieve self-localization. A 
step further from the previous attempt is that they used a 
predetermined threshold to prevent the position error 
from going outrages, yet with the help of a dead-
reckoning method. Visual input alone fails to provide 
accurate positioning results. Rivlin et al. (2003) 
proposed a new algorithm for image-based robot 
navigation applications. At the core of this idea is to 
generate the translation and rotation shifts in a robot 
movement by matching the target image with the images 
taken in real time. While this idea makes a good point, 
another contribution of their approach is that RANSAC 
paradigm is used to deal with outliers caused by 
mismatches. However, it is not without its limitations. 
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The algorithm is only able to provide three degrees of 
freedom. In several cases not enough correct matches 
can be found to compute the position shift. The 
limitation in the degrees of freedom can also be found in 
other approaches (Kitanov et al., 2007). Mathematical 
models have been developed to improve the accuracy 
and reliability of the system by fusing odometry 
information. A recent study by Hayashi and Kinoshita 
(2009) developed an indoor navigation system based 
mainly on visual input from a monocular camera and a 
2D space map. Self-localization was achieved by 
calculating the relative position of the robot itself and 
straight lines recognized on both sides of the corridor, 
and this work didn’t give explicit information on the 
accuracy or reliability that such method can get. It can be 
seen that available approaches are still far from mature 
to provide a robust indoor positioning and navigation 
solution, in a sense that a full degree of freedom should 
be provided with a high level of accuracy and reliability.  
 
In an effort to move toward this direction, a method of 
vision-based positioning for localization and navigation 
purposes with the use of single camera and the newly 
defined 3D maps is proposed in this paper. The idea is to 
use classic photogrammetric mapping and positioning 
method in a newly devised approach to improve the 
positioning accuracy for vision-based navigation systems. 
The main contribution will be the newly defined 3D map 
and the adoption of photogrammetric 6DOF pose 
estimation method for positioning. In order to find the 
optimal design of this approach, great emphasis is placed 
on the evaluation of different factors that influence the 
final positioning precision and system reliability. DOP 
values are introduced to evaluate positioning precision 
within the vision-based positioning domain.  Quality 
control strategies are also applied to detect outliers in the 
observation and strengthen system reliability. Besides, 
only natural landmarks are required to provide absolute 
position and orientation information. 
 
In the next section, the methodology of our approach is 
introduced. In the third section, the map development 
procedure is discussed in detail. In the forth section the 
use of photogrammetric 6DOF pose estimation method 
for positioning and navigation is explained and justified. 
The fifth section introduces the use of DOP values, 
including basic principles and the equations derivation of 
the approach. The following section discusses the 
principles used for outlier detection in the system 
module. A numerical investigation is described and 
analyzed before the conclusion and future work are 
discussed. 
 
2. Vision-based Positioning using a Single Camera 

and 3D maps 
 

A method of vision-based positioning is proposed in this 
study with much effort to address the accuracy and 
reliability concerns of an indoor navigation system. By 
using specially built 3D maps of the navigational 
environment, positioning is performed based on 
photogrammetric method. Rather than using complete 
3D models of the environment, we adopt a collection of 
geo-referenced images as 3D maps. Images taken by the 
navigation system in real time are matched with the 3D 
maps. The three dimensional coordinates of those 
matched and identified feature points are therefore 
transferred from the 3D maps to the current image, thus 
can be used as reference control points for pose 
estimation. We name them as pseudo ground control 
points (PGCPs). In the next phase, these control points 
are used to solve the camera positions and orientation 
using Photogrammetric 6DOF Pose Estimation method, 
which is also known as space resection. During this 
process, outliers from the uncertain input may affect the 
positioning accuracy, reliability or even lead to a 
positioning failure. An outlier detection module is 
developed to tackle this problem. With outliers being 
rejected, final positioning accuracy is investigated in 
order to find the optimal design of this approach. 
 
 The methodology involved here mainly consists of two 
parts. In the first step the 3D map is constructed using 
the geo-referenced images of the target environment. 
The next step is to use the 3D map built in the previous 
step to do positioning. The selected solution is a system 
with a single camera mounted on a ground vehicle. At 
each measuring point, an image of the environment is 
taken. Next, the image is processed to calculate the 
relative position of the camera to the known environment 
using a photogrammetric procedure, which forms the 
core of the positioning function. The data flow is shown 
in Figure 1.  

 

 
Figure 1: Data flow of the system methodology 
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3. Developments of the 3D Maps 
 
Image-based navigation is a relatively new topic in the 
research domain. Two typical techniques are used: 
optical flow-based solutions and appreance-based 
matching (Desouza and Kak, 2002).  The first approach 
estimate the motion based on the analysis of a sequence 
of images. The second group are based on the matching 
of current view with stored images. Both methods are 
aiming at determining the position and orientation of the 
imaging sensor, which is assumed to have a known 
position and orientation relative (e.g., lever arm) to the 
platform that is carrying it (Hofman-Wellenhof et al., 
2003).  
 
The main difference between our approach to the 
available image-based navigation methods lies in the fact 
that the images used here are geo-referenced, which 
means they themselves can give absolute position 
information (local or global) in 3D, functioning like a 
sensor (e.g., GPS), and at the same time can be used as a 
map for any indoor localization services. Early work on 
the 3D maps was done by Olesk and Wang (2009). 
 
A 3D map is defined as a sum of geo-referenced feature 
points with three dimensional (3D) local or global 
coordinates that are overlapped on images of the 
environment. Users of the 3D map will have the benefits 
of geo-referencing with 3D coordinates as well as 
realistic visualization. One basic function of the 3D map 
is for positioning and navigation. Whenever a new image 
is taken, it can be matched with the images stored in the 
3D map database and therefore enables the user to locate 
its position.  
 

 
Figure 2: 3D map development 

 
The construction of the 3D maps using geo-referenced 
images should be conducted with several steps. The first 
step is image data collection. With vision sensors 
mounted on a vehicle/robot, the vehicle will be guided 
around the navigation environment to collect image data. 
In the second step, dense matching of image elements 
over two or more images is performed to capture the 3D 
geometric information, establishing the correspondences 
between two or more images to achieve 3D information 

of objects in space. Suitable matching method will be 
adopted. Currently Lowe‘s SIFT (1999) method is used 
to extract feature points and create tie points. 
 
In the third step, most importantly, geo-referencing of 
the images is performed. Currently, indirect geo-
referencing, i.e. aerial triangulation method is used. 
After setting up and linking ground control points to the 
3D environment, a bundle adjustment is utilized, and 
thus both the 3D environment and image position, 
orientations are obtained.  After this, quality control for 
3D mapping will be conducted in order to avoid the risk 
of giving useless point coordinates: during the mapping 
process, the effects of unmodelled errors need to be 
taken into consideration. Gross errors should be detected 
and eliminated using reliability theory for use in the 
bundle adjustment. The whole process is illustrated in 
Figure 2.  
 
4. Position and Orientation Determination 
 
Photogrammetry is a classical technique to provide 
accurate position information. However, previous 
photogrammetric solutions for navigation normally 
based on two or more synchronized and oriented 
cameras to extract depth information (Luhmann, 2009). 
Single camera approaches have mostly been limited to 
the SFM (structure from motion) technique, which 
suffers from the problem of analyzing a complete image 
sequence (thus hard to process on-line and give absolute 
position in real time).  
 
One method to measure position and orientation is to use 
a single visual sensor (e.g. camera) that mounted on the 
robot. The sensor looks into the navigational 
environment, where reference points (features) are 
placed and being recognized. Given a set of 
correspondences between known 3D reference points 
and their 2D positions in images, camera position and 
orientation can be determined (Ryberg et al., 2006). 
Then any object appeared in the view can also be 
estimated in 6DOF. It is known as pose estimation in 
computer vision and also called space resection in 
photogrammetry, which can provide highly accurate 
position and orientation information in 6DOF. Currently 
however, it has hardly been used in ground vehicle 
positioning and navigation. Mostly they are used in 
applications such as robot calibration, wheel 
measurement and car safety testing, where a stable 
reference system can be provided. The biggest problem 
with the method for navigation purposes lies in the fact 
that a reference field with the pre-designed GCPs should 
be available during the positioning process. This limits 
the positioning space to a small area, making it hard to 
cover long distances or be applied to non-stable/dynamic 
applications such as real-time positioning. In our 
research, this problem has been solved. Images taken in 
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real time can be matched with geo-referenced images 
map and all the matched points can be used as PGCPs 
for positioning.  
 
The fundamental function model for photogrammetric 
6DOF pose estimation (space resection) is called 
collinearity equations, which represent the geometry 
between projection centre, the world coordinates of an 
object and its image coordinates, illustrated as follows: 
 
          𝑥 − 𝑥0 = −𝑓 𝑎1(𝑋−𝑋𝑠)+𝑏1(𝑌−𝑌𝑠)+𝑐1(𝑍−𝑍𝑠)

𝑎3(𝑋−𝑋𝑠)+𝑏3(𝑌−𝑌𝑠)+𝑐3(𝑍−𝑍𝑠)
                                     

                                                                                     (1) 
          𝑦 − 𝑦0 = −𝑓 𝑎2(𝑋−𝑋𝑠)+𝑏2(𝑌−𝑌𝑠)+𝑐2(𝑍−𝑍𝑠)

𝑎3(𝑋−𝑋𝑠)+𝑏3(𝑌−𝑌𝑠)+𝑐3(𝑍−𝑍𝑠)
                         

 
where x, y are the image coordinates of the object, X, Y, 
Z are the coordinates of the object in object frame and 
Xs, Ys, Zs are the coordinates of camera’s perspective 
centre in the object frame. (x0 ,  y0 ,  f) are the camera 
interior parameters and (ai, bi, ci) are the elements of the 
rotation matrix between the image and the object 
coordinate system. In the case of a single camera, Eq.(1) 
includes six unknown parameters (Xs, Ys, Zs; ω, φ, κ), 
in which ω, φ , κ are rotation angles around X, Y and Z 
axis respectively (or roll, pitch and yaw angles). The six 
unknowns define the 6 degrees of freedom for the vision 
sensor with respect to the world coordinate system. 
Another resection on locator points can be performed in 
the same sense if an unknown object appeares in the 
view and its position needs to be estimated.  
 
The best known method for space resection is based on a 
least squares solution of linearised collinearity equations. 
It provides the highest level of accuracy with the 
presence of redundant measurements, which makes it 
suitable for our solution with respect to the emphasis on 
accuracy.    
 
5. Accuracy Measures for Vision-based Position 

and Orientation Determination 
 
The applicability of one camera solutions depends 
strongly on the design of the reference and locator point 
field. Primarily the accuracy of 6DOF parameters is a 
function of point distribution and relative positions 
between the reference objects and the camera (Luhmann, 
2009). In our case, relative position changes at different 
location, therefore the accuracy of positioning largely 
depends on the geometry of pseudo ground control 
points chosen for positioning. In order to improve 
position accuracy and optimize the system design, the 
influence of geometry change of PGCPs on the precision 
of position result need to be evaluated. We introduce 
DOP (Dilution of Precision) values. They not only 
enable us to observe the overall effect of geometry 
change on position and attitude precision,  but also gain 
insight into the way each parameters in 6DOF is affected.  

One requirement for the use of DOP is that least squares 
adjustment is used to estimate the final result. The least 
squares models are listed as follows: 

                        𝑏 + 𝑣 = 𝐴𝑥                                       (2)                            
                        𝐷 = 𝜎 02𝑄                                          (3)   

                          
in which Eq.(2) denotes the function model, Eq.(3) the 
stochastic model and  σ0

 

  the priory standard deviation. 
Using this model, the covariance matrix for the 
estimated parameters can be obtained using Eq.(4) as: 

𝐶𝑥 = 𝜎 02(𝐴𝑇𝑃𝐴)−1                             (4) 
 
To evaluate the impact of geometry only, the covariance 
of x will be simplified to:  

                          𝐶𝑥 = 𝜎 02(𝐴𝑇𝐴)−1                             (5) 
 
in which the part (ATA)−1contains DOP factors in its 
diagonal elements. The standard deviation of each 
component estimated is simply the standard deviation of 
the inputs (σ0

 

) multiplied times the DOP factor. In fact, 
the elements in the trace of the matrix  (ATA)−1  are 
functions of the geometry only, which makes it 
especially suitable to evaluate the effect of geometry 
change of control points on the final positioning 
accuracy. In the GPS community, DOP values are used 
to represent the effect of satellite geometric distribution 
on the accuracy of a navigation solution.  

In the least squares adjustment for photogrammetric 
6DOF pose estimation, for each observation (image 
measurement), the observation vector, design matrix and 
unknown vector are listed as follows: 
 

                                  𝑏 = �𝑥 −
(𝑥)

𝑦 − (𝑦)�                                     (6) 

 

              𝐴 = �

𝜕𝑥
𝜕𝑋𝑠

𝜕𝑥
𝜕𝑌𝑠

    𝜕𝑥
𝜕𝑍𝑠

   𝜕𝑥
𝜕𝜔

    𝜕𝑥
𝜕𝜑

    𝜕𝑥
𝜕𝜅

𝜕𝑦
𝜕𝑋𝑠

𝜕𝑦
𝜕𝑌𝑠

    𝜕𝑦
𝜕𝑍𝑠

   𝜕𝑦
𝜕𝜔

    𝜕𝑦
𝜕𝜑

    𝜕𝑦
𝜕𝜅

�                    P (7) 

 

 𝑥 = [𝑑𝑋𝑠   𝑑𝑌𝑠    𝑑𝑍𝑠   𝑑𝜔   𝑑𝜑   𝑑𝜅]𝑇               (8) 
 
If n observations are made, the complete design matrix 
will be: 
                         𝐴 = [𝐴1   𝐴2   𝐴3    ⋯    𝐴𝑛]𝑇                     (9) 

 
Next the diagonal of the matrix (𝐴𝑇𝐴)−1 is calculated as: 
 

   (𝐴𝑇𝐴)−1 =

⎝

⎜
⎜
⎜
⎛

𝐺𝑥2

𝐺𝑦2

𝐺𝑧2

𝐺𝜔2

𝐺𝜑2

𝐺𝜅2⎠

⎟
⎟
⎟
⎞

        (10) 
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Then we give DOP values for 6DOF, which are 
calculated as follows: 
 

𝑋𝐷𝑂𝑃 = 𝐺𝑥       𝑌𝐷𝑂𝑃 = 𝐺𝑦 

 
    𝑍𝐷𝑂𝑃 = 𝐺𝑧       (11) 

 

 𝑃𝐷𝑂𝑃 = �𝐺𝑥2 + 𝐺𝑦2 + 𝐺𝑧2                                   (12) 

    𝜔𝐷𝑂𝑃 = 𝐺𝜔     𝜑𝐷𝑂𝑃 = 𝐺𝜑  

 
   𝜅𝐷𝑂𝑃 = 𝐺𝜅       (13) 

 
      𝐴𝐷𝑂𝑃 = �𝐺𝜔2 + 𝐺φ2 + 𝐺𝜅2                                  (14) 

in which the PDOP represents the Position DOP while 
the ADOP represents Orientation (Attitude) DOP. 
 
6. Outlier Detection 
 
It is well known that vision sensor has a very high input 
data rate, and is inherently fragile against big errors (or 
called observation outliers, or faults). However, FDI 
(fault detection and identification) has hardly been 
solved in the vision–based navigation domain. Outliers 
in our system mainly refer to gross errors coming from 
image coordinate measurements or PGCP coordinates. 
The latter occasion may be caused by mismatches, 
erroneous photogrammetric point determination during 
the process of 3D map production or in the survey of 
GCPs before forming the 3D map.  
 
A classical approach to detect the outliers in geodetic 
observations is taken in this research. A number of 
contributions have been made in this area (e.g., Baarda, 
1966; Baarda, 1968; Kavouras, 1982; Teunissen, 1990; 
Wang and Chen, 1994; 1999; Hewistion et al., 2004; 
Hewitson and Wang, 2006). The outlier detection mainly 
consists of two steps: global model test and data 
snooping.  In the first step, global model test is carried 
out to check whether outlier(s) exist in the observations. 
It is applied on the posterior variance factor ŝ02, assuming 
the statistic  ŝ02 σ02⁄  follows the F r, ∞ -distribution. Given 
(1-α) confidence interval for the ratio, one tail test is 
recommended. If the ratio exceeds F (f, ∞; 1 -α), the 
global test fails, indicating the existence of an outlier 
(each time only one outlier is assumned). In the next step, 
data snooping is performed to identify the most likely 
observation contaminated by the outlier. The main idea 
is to consider the outlier as the mean shift of 
mathematical expectation of the corresponding 
observation. The test statistic is as follows: 
 

            𝑊𝑖 =
∇𝑆𝑖
�𝐷∇𝑆𝑖

= −
𝑒𝑖𝑇𝑃𝑣

𝜎0�𝑒𝑖𝑇𝑃𝑄𝑣𝑃𝑒𝑖
                      (15) 

 
in which ∇Si is the outlier in the ith observation, D∇Si 
denotes its variance, P the weight matrix, Qv the 

cofactor matrix of residuals and 𝑒𝑖  a vector of zeros with 
the i-th element equal to 1. Wi will follow N (0, 1) 
distribution if no outlier exists. The largest magnitude of 
the value |Wi

 

              |𝑊𝑖| > 𝑁�0,1; 1 −
𝛼
2
�                                      (16) 

| corresponds to the outlier. Given the 
confidence interval (1-α), if  

 
then an outlier is identified. 
 
Yet, there still can be more than one outlier in the dataset. 
The above precdure can be repeated to deal with 
multiple outliers, more discussions on this topic can be 
found in Knight et al. (2010). But in this study, it is 
assumed there is no more than one outlier. Given the 
power of the test β, which represents the probability of 
identifying a defective value as outlier, the lower bound 
value for non-centrality parameter δ0 can be calculated. 
Using an inverse procedure of Eq.(15), the lower bound 
of detectable outlier ∇0

 

            ∇0𝑆𝑖 =
𝜎0 𝛿0

�𝑒𝑖
𝑇𝑃𝑄𝑣𝑃𝑒𝑖

                                      (17) 

Si, or namely the minimal 
detectable bias (MDB) can be calculated.  

 
With a diagonal weight matrix P, Eq.(17) is simplified 
into: 

             ∇0𝑆𝑖 =
𝛿0

�𝑟𝑖
𝜎𝑙𝑖                                                (18) 

 

A further step is to calculate the controllability δ’0,i

 

, 
which serves as a measure of internal reliability of an 
adjustment system.  

 
 
With several observations in the same system, the 
average of controllability values is calculated to give an 
overall level of internal reliability, with a smaller value 
indicating a stronger reliability. 
 
7. Experiments 
 
To test the methodology of the proposed system, various 
experiments were carried out. A calibrated CCD camera 
(Canon EOS4500) was used in the experiment. The focal 
lens is 24.7mm. The experiments were performed in the 
school’s hallway. In the system developed for our initial 
test, a local object frame was adopted, where an 
orthogonal right-handed axis set was used with the Z 
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axis pointing downward. Meanwhile, the camera frame 
in use is illustrated in Figure 3. 
 

 
Four major experiments were carried out in this research. 
Experiment 7.1 was for the image geo-referencing to 
construct the 3D maps. Experiment 7.2 was considered 
to illustrate the matching process between real time 
images with the 3D maps. Experiment 7.3 was designed 
to test the outlier detection module of the positioning 
system.  Experiment 7.4 was for the evaluation of the 
impact from the PGCPs on the final positioning accuracy. 
 
7.1   Image geo-referencing to construct the 3D maps 
A prototype is built at this stage of research using 
indirect geo-referencing, i.e. aerial triangulation method. 
After setting up the ground control points, a bundle 
adjustment is performed to estimate 3D object 
coordinates, image orientation parameters together with 
related statistical information about accuracy and 
reliability. The approximate values served as initial 
values for the unknowns in the bundle adjustment were 
generated using the combined intersection and resection 
method. The data flow of the system is shown in Fig 4. 
 
In this initial test, three images (with overlapped area) 
were used and each one had a few distributed control 
points (more than 4) and some new (tie) points. The aim 
was to test the scenario of the newly defined 3D map and 
possible accuracy this technology could obtain. It is 
shown in Fig 5. 

 

 
 

 
 
Two tests were performed with different intensities of 
ground control points. Three check points were used to 
enable a rigorous evaluation of the true accuracy of the 
geo-referenced map. The photogrammetric determined 
points were compared with reference values measured 
by a total station. The results are shown in Tables 1 & 2. 
The RMSE is the root of the mean squared error between 
the photogrammetrically measured ground coordinates 
and the surveyed ground coordinates. The Maximum 
Residual is the maximal difference between the 
photogrammetrically measured ground coordinates and 
the surveyed ground coordinates among all the check 
points. 
 
It can be observed that there is no significant difference 
in accuracy between axis (X, Y and Z), thoughY, the 
viewing direction is relatively less accurate due to the 
nature of photogrammetric determination. The maximum 
deviation found is around 0.01m, which is acceptable. 
 
7.2 Matching with the 3D maps 
Lowe ‘s SIFT (1999) algorithm was chosen to match the 
real time image with the 3D maps as its feature 
descriptor is invariant to scale, orientation, distortion and 
partially invariant to illumination changes. Initially, it 
was introduced to detect and describe image features for 
object recognition applications. We believe it is a 
suitable choice for our system in that when the vision 

Table 1:3D Coordinates of Check Points 

 
  Table 2: Accuracy of the 3D Map 

 

 
Fig.5 Three images for the test 

 
Figure 4: Data flow of the prototype 

 

 
Figure. 3: Camera coordinate system 
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system moves in the navigation environment, features 
(landmarks) are observed with various viewpoints and 
may under different illumination. The SIFT algorithm 
will perform more reliable matching compared with 
other algorithms available. 
 
In the first step, the SIFT features were extracted from a 
set of reference images and stored in a database.  
Basically, they are the so-called keypoints located at the 
maxima and minima of the difference-of Gaussian 
function. We extracted the SIFT features from both the 
3D map database and real time image. As shown in 
Figure 6, 1195 keypoints were found in this image from 
database. They are displayed as vectors indicating scale, 
orientation and location. 
 
In the next step, matching was performed based on the 
feature extracted. A new image was matched by 
individually comparing each feature from the new image 
to this previews database and finding the candidate 
matching features based on Euclidean distance of their 
feature vectors (Lowe, 2004).  In fact, the best candidate 
is the nearest neighbor from the reference descriptor 
vector. The determination of whether it is a correct 
match depends on a probability measured by taking the 
ratio of distance from the closest neighbor to the distance 
of the second closest. Here we set the ratio to 0.6. Figure 
7 illustrates one matching pair between the image taken 
in real time and the database image, in which 67 
matched keypoints were produced. It should be noted 
that a number of mismatches were also generated during 
the process, which need to be dealt with at a later stage 
(outlier detection module). 

 

7.3 Outlier detection for positioning 
Outliers mainly come from the two uncertain inputs of 
position estimation function: the 2D image coordinates 
and the 3D object coordinates of the PGCPs. The latter 
occasion may be caused by mismatches, erroneous 
photogrammetric point determination in the 3D map 
developments and/or the control point surveys.  
 

 
Figure 8: MDB for image observations 

 

 
Figure 9:  MDB for PGCP observations 

 
This experiment mainly focused on the design and 
testing of outlier detection module in dealing with 
erroneous inputs of the positioning function. The 
procedure was simulated using outliers intentionally 
inserted into a clean dataset. The image measurement 
noise level (priory standard deviation) was set to 
0.000014 when the PGCP set to 0.00095. The posterior 
standard deviation of unit weight has been calculated to 
be 0.000014. Using the one tail global test, F (20, ∞; 
0.95) approximately equals 1.57. F-ratio value was 
1.045675, smaller than 1.57 so the global test passed 
with the clean data set.  Figures 8 and 9 show the 
Minimal Detectable Bias (MDB) of each observation in 
the two groups of observations: the image observations 
and the PGCP coordinate observations. Observation 
No.1 to No.26 are the image observations while No.27 to 
No. 65 are 3D coordinates of the PGCPs. It can be seen 

 
Figure 6: Extraction of SIFT feature points 

 
Figure 7: Matching 
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that these two groups of observations have different 
levels of MDBs, and the observations within each group 
do have close MDB values. 
 
In order to simulate the impact of outliers in the image 
coordinates, outliers with different magnitudes were 
inserted intentionally into the dataset. The results were 
shown in Table 3 with an increasing magnitude of 
outliers inserted in the same image observation 
(Observation No. 3, x value of Point 2). 
 

Table  3. Outler Detection for Image Measurements 

 
 
Firstly, by using the W-statistic to locate an outlier, it 
was noticed that two other observations (No.30 & 31) 
together with observation No. 3 all produced big W 
values. It is noted that observation No.3 is image 
coordinate of PGCP Point 2-x, when No. 30 and No. 31 
correspond to the X, Y value in the object space of the 
same point (Point 2). The three observations can be 
highly correlated. By studying the correlation 
coefficients between the W-statistics for observation 
pairs of No.3 and No.30, No.3 and No. 31, it was noted 
that the coefficient values are all close to 1 or -1, which 
proves the correlation is extremely strong. Secondly, it 
was observed that when the magnitude of outlier grows, 
the probability of data-snooping method successfully 
identifying an outlier increases. According to the result, 
when the magnitude is greater than 0.8, outlier is always 
correctly identified by data-snooping. When it is smaller 
than 0.8, the chance decreases. Therefore, a new outlier 
separability test will be developed for the module. 
 

Table 4: Outlier Detection for 3D PGCP 

 
 
More tests were carried with outliers in the 3D 
coordinates of the PGCPs. The results are shown in 

Table 4 with observation No.32 containing an outlier. 
The high correlation was found between image 
coordinates and the 3D coordinates of the same point. 
According to the results, the same conclusion can be 
drawn: when the magnitude of outlier grows, the 
probability of data-snooping method successfully 
identifying an outlier increases. 
 
7.4 Geometry and Reliability Analysis  
Two experiments were carried out in this section, aiming 
at finding the optimized solution for the selection of 
pseudo ground control points during positioning process. 
This was done by investigating the factors (mainly the 
geometry of pseudo control points) that influence the 
position accuracy. 
 
7.4.1 Variations of the Number of PGCPs 
To reveal the overall relationship between the number of 
PGCPs and the reliability of the system and precision of 
positioning, a group of tests were performed on a 
number of images, each tested with 15, 13,11,9,7,5,4 
PGCPs respectively. One image with its results was used 
to show the common phenomena.  
 

Table 5: Positioning Result in 6DOF 

 

Table 5 shows the positioning result with the use of this 
image. It can be seen that the estimation results of the 
external parameters (6DOF) tend to remain relatively 
stable with an increased number of PGCPs. The DOP 
values and the average of controllability values for each 
set up (e.g. 9 PGCPs) were also calculated. Figure 10 
shows the variation trend of DOP values with the 
increase of PGCPs. Figure 11 show the average of 
internal controllability values with the increase of 
PGCPs. The three figures have further proved that the 
whole system is unstable with less than 13 PGCPs. The 
rest part of the three figures all shows a decreasing trend 
of the test values (DOP values and average of internal 
control values), which means with the increase of the 
number of PGCPs, the precision of positioning is 
increasing and the internal reliability of the system has 
been improved.  According to the figures, it can also be 
observed that the increase in PGCP number has more 

 
Figure 11: Internal reliability 
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impact on the precision in Z compared with the precision 
in X and Y.  

 
 

 
 
Therefore it is concluded that PGCPs should be selected 
as many as possible to enable an acceptable positioning 
capability.  When the PGCPs obtained for a particular 
image are not sufficient to provide a stable and relatively 
precise positioning results, that image for positioning 
should be rejected. A second image needs to be taken 
and matched with the 3D maps for positioning. 
 
7.4.2 Distribution of the PGCPs 
In order to investigate how the distribution of pseudo 
ground control points affect the positioning precision 

and reliability of the system, two groups of tests were 
further performed on each of the real time images. 
 
For the first group, we chose two sets of PGCPs, with 
one set scattered around the image and the other set 
centered on a small region located on the image centre. 
Table 6 shows the result of one image, 7 PGCPs were 
used for each set of this case. The estimation results of 
position and orientation parameters (6DOF) are close to 
the best results obtained previously with 15 PGCPs, 
which means the positioning function run successfully 
and the result is acceptable with both settings. It can be  
easily observed from DOP values that the precision of 
positioning is much higher with the scattered PGCPs 
than with the centred distribution. The internal reliability 
of the system has not changed much.  
 

 
The second one aims at investigating how the geometry 
change of PGCPs, especially from planar to non-planar 
will affect the positioning precision and system internal 
reliability. The tests were designed in the way that all 
three sets had 8 points in common and lay on the same 
plane. Only one point out of 9 located at different places, 
with the first test had the point on the same plane, the 
second test had the point located on a different plane and 
third test had the point located on the same second plane 
but with bigger deviation from the optical axis. The 
change of DOP values is shown in Figure 12. 
 
It can be observed that a non-planar configuration of 
PGCPs increases the precision of the positioning result. 
It shows that the effect becomes more significant with 
the increasing offset from the optical axis. From Figure 
12, it can also be observed that the precision in Z is 
again more affected than that of X and Y, and Omega 
again being the least affected among the three angle 
values. It is also noted from the result that internal 
reliability deteriorates (the average of controllability 
value grows). This is mainly because the points on the 
different planes contribute to the geometry largely, thus 
making it hard to be controlled. It will be difficult to 

Table 6. Positioning  Result with  Scattered and 
Centred Distribution

 

 
Figure 11: Internal reliability 

 
Figure 10: DOP values for  position and orientation 
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detect any outlier in this observation. In order to improve 
the precision of positioning and at the same time do not 
sacrifice system reliability, PGCPs on different planes 
should be selected evenly. 
 

 
 
8. Concluding Remarks 
 
This paper has investigated a method of vision-based 
positioning using a single camera and newly defined 3D 
maps. The aim is to develop an alternative positioning 
technique that can supplement satelite-based positioning 
in GPS-denied environment so as to achieve ubiquitous 
positioning when the accuracy and reliability of the 
positioning system can be maintained. Possible ways to 
improve the positioning accuracy and system reliability 
are discussed based on various experiments. Such 
techniques will have practical values in several 
application domains such as mobile robot navigation, 
emergency services, transportation, security and visitor 
guiding in an indoor environment. 
 
One limitation is that the outlier detection module is not 
robust enough in dealing with multiple outliers as well as 
the separation of correlated observation containing 
outliers. This problem will be investigated further. 
 
Future study is to further develop the 3D map defined 
and investigate the integration of vision with other 
sensors in order to provide a robust poisoning and 

navigation solution. The ultimate goal of the study is to 
develop alternative positioning technique that fill in the 
gap between outdoor and indoor localization and 
navigation services with respect to both accuracy and 
reliability concerns. 
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