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Abstract 
 
Modern smartphones contain a number of sensors that can 
be used for navigation when GPS signals are unavailable.  
Low cost MEMS gyros and accelerometers are 
increasingly becoming available in modern devices, 
however when used for positioning, they typically result 
in large errors after very short periods of time.  This paper 
investigates using measurements from a computer vision 
algorithm that uses successive frames from a camera 
approximately looking at the ground to compute the 
translation between frames.  The measurements can be 
used to control the drift of inertial sensor measurements 
when measurements from GPS are not available.  The 
concept is convenient since it uses sensors already 
available on smartphones and pedestrians will naturally 
hold the smartphone in the required position when using 
it for navigation.  This paper demonstrates that computer 
vision measurements can significantly reduce the drift of 
inertial-only positioning for pedestrian navigation in areas 
where GPS is unavailable.  Issues such as computational 
requirements and operation in low light areas are also 
discussed. 
 
Keywords: inertial, computer vision, integration, GPS, 
indoor, navigation 
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1. Introduction 
 
Indoor pedestrian navigation is a difficult problem due the 
unavailability of accurate Global Navigation Satellite 
System (GNSS) signals.  Furthermore, it is desirable an 
indoor positioning system should require no additional 
infrastructure due to the cost and expense of installation 
and maintenance.  Other issues for indoor navigation 
include the strong requirement for using low cost sensors, 
therefore it is desirable that we can make use of the 
sensors that are already available on modern smartphones.  
Such sensors include GPS, Wi-Fi, Bluetooth, mobile 
phone network, microphones, gyros, accelerometers, 
magnetometers, light sensors and cameras, all of which 
make measurements that may be useful for navigation. 

Low cost MEMS gyros and accelerometers are frequently 
considered as a potential solution for indoor navigation.  
However, the reality is that such sensors are only 
sufficient to provide positioning for very short periods of 
time (typically a few seconds) because of sensor errors 
such as biases and scale factor errors that are not 
necessarily constant over time and difficult to separate 
from the true navigation signal (Hide, 2003).  However, if 
external measurements are available, these can be used to 
restrict the drift.  Low cost MEMS sensors have recently 
been demonstrated to provide useful levels of performance 
through innovative ideas such as mounting an Inertial 
Measurement Unit (IMU) on a user's foot and using zero 
velocity updates every time a user takes a step such as in 
Foxlin (2005).  This frequent application of accurate 
velocity measurements has demonstrated that even low 
cost sensors can provide potentially useful position.  Using 
this algorithm, the main issue that influences position 
accuracy is yaw accuracy, which is based on the quality of 
gyro used and accuracy of any aiding sensors used such as 
magnetometers (Abdulrahim, 2010). 
 
One source of external measurements to aid a low cost 
IMU comes from the computer vision community.  
Cameras can be used to provide measurements such as 
translation and rotation between frames by tracking 
features in successive images.  This paper looks at the use 
of aiding measurements from a camera attached to an IMU 
where the user is walking with the device held out in front 
of them with the camera pointing approximately towards 
the ground.  This is a typical use of smartphones where the 
user is reading navigation information from the display.  
The camera therefore has a view of the ground beneath, 
and immediately in front of the user.  Sequential images 
can then be used to compute the 3-dimensional body 
frame translation direction of the camera as well as 3-d 
rotation.  The images can be captured at a relatively low 
rate (a few per second) provided sufficient common 
features exist between successive frames.  From a single 
camera alone, the body-frame translation can only be 
computed up-to an unknown scale factor, however if the 
height of the camera above the ground is known, the 
absolute velocity of the camera can be computed.  This 
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measurement is used to correct the drift of the IMU-
derived position. 
 
This paper investigates the use of computer vision derived 
velocity measurements to frequently correct the drift of a 
low cost IMU.  The computer vision algorithm provides a 
3-d camera frame translation which, when scaled by the 
height of the camera above the ground, provides a 3-d 
camera frame velocity measurement which is very closely 
related to the IMU body frame.  The measurements are 
combined using a Kalman filter that models the errors of 
the inertial sensor including position, velocity, attitude and 
sensor biases.  An initial guess for the camera height can 
be taken from the average height that a user holds the 
camera, and the estimate is refined by adding an additional 
state to the Kalman filter which can be estimated when 
measurements from sensors such as GPS are available.  
The paper extends the work previously presented in Hide 
(2010), where the algorithm was previously demonstrated 
with a tactical grade IMU.  
 
In this paper, the algorithm is tested using real-world 
measurements from a Microstrain 3DM-GX3 IMU 
attached to a commercial off-the-shelf camera.  It is 
demonstrated that during a 6 minute outage, the maximum 
position error experienced is 2.9m for the integrated IMU 
and computer vision system, whereas position errors are 
greater than 200m after only 1 minute using IMU-only.  
These results are derived from a trial walking around the 
perimeter of a tennis court which highlights the 
characteristics of the errors involved which are shown to 
be yaw drift and scale errors.  The positioning 
performance from such a system would be suitable for 
integration with other systems such as GPS when available 
or Wi-Fi position estimates such as from fingerprinting 
algorithms (see, for example, Mok and Retscher).  Such a 
combination of sensors, particularly when combined with 
map matching, could provide high accuracy indoor 
navigation using sensors that are available on smartphones.  
Issues such as using the camera in low light conditions and 
the computational requirements of the computer vision 
algorithm are also discussed. 
 
2. Inertial Navigation 
 
Inertial Navigation provides the foundation of the 
proposed algorithm.  An IMU is used that consists of three 
gyros and accelerometers that are used to compute the 
position and orientation of the mobile device.  The process 
of integrating the gyro measurements to generate attitude, 
and combining the attitude with double integrated 
accelerometer measurements is known as the INS 
mechanisation, and is described in, for example, Hide 
(2003), Titterton and Weston (2004) and Farrell and Barth 
(1999). 
 

In order to start the INS mechanisation, it is necessary to 
know the initial position, velocity and attitude of the IMU.  
Obtaining the initial position and velocity is trivial if GPS 
measurements are available.  However this is not always 
the situation if operating indoors and this becomes a 
significant limitation of the technology.  The initial 
attitude is also not trivial to compute.  The roll and pitch of 
the IMU can be computed from the accelerometers by 
comparing the measurements to the gravity vector 
assuming that gravity is the only force being measured.  
Obtaining the heading of the IMU is a more difficult task 
since the gyros are not sensitive enough to measure the 
rotation of the Earth which is commonly used for 
initialising higher quality devices (although such 
techniques are still impractical for pedestrian navigation 
considering the time required for alignment).  Instead, a 3-
axis magnetometer can be used to initialise heading, 
although this can be very inaccurate when operating in 
areas with large magnetic disturbances.   
 
A Kalman filter is used to estimate the navigation and 
IMU errors.  The state vector is defined as: 
 

( )Tbbn agvpx δδδφδδ=  (1) 
 
where pδ  is vector of latitude, longitude and height errors; 

nvδ  is the vector of navigation frame velocity errors; δφ  

is the navigation frame rotational misalignment; bgδ  is 

the vector of gyro bias errors; and baδ  is the vector of 
accelerometer bias errors.  The Kalman filter is used to 
estimate the errors using a linearised inertial navigation 
model such as that described in Titterton and Weston 
(2004).  The model describes the interaction between 
different error states and can be used to estimate the full 
state vector using position or velocity measurements and 
sufficient dynamics.  Dynamics are required in order to 
separate some of the error states; for example, heading 
error can only be estimated if there is sufficient horizontal 
acceleration when using position and velocity 
measurements from GPS (Hide, 2003). 
 
The filter is used in feedback form so that when a 
measurement is available from a sensor, the error is 
computed using the Kalman filter which is then used to 
correct the inertial sensor measurements and navigation 
parameters.  This is to ensure the navigation errors remain 
small and hence approximately linear.  More information 
on Kalman filters and Kalman filters for inertial 
navigation can be found in Hide (2003), Titterton and 
Weston (2004) and Farrell and Barth (1999). 
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3. Computer Vision 
 
This section describes how computer vision is used to 
compute the motion of the camera which will be used to 
aid the IMU.  The camera is pointed roughly towards the 
ground, and a sequence of images is captured. The ground 
is assumed to be approximately planar.  For each image, 
the relative position and orientation of the camera is 
estimated relative to its position when it captured the 
previous image.  The images contain features from the 
ground plane, but also features from the pedestrian’s 
moving legs, feet and shadow. The camera’s relative 
position and orientation are computed by matching 
features lying on the ground plane with the same feature 
from previous frames.  The algorithm also has to 
automatically detect and avoid incorrectly matched 
features, and matches between moving features and 
features not lying on the ground plane..  
 
When an image is captured, the first stage is to detect 
point features in the image. The FAST corner detector 
(Rosten et al, 2010) is used to detect approximately 300 
points in each image which are likely to be detected in 
other images showing the same scene.  The area around 
each FAST corner is described using a small patch of the 
image: a patch sized 27x27 pixels centered on each corner 
is scaled down to 9x9 pixels.  The similarity of two of 
these 9x9 patches is measured by computing the sum-of-
squared differences (SSD) between corresponding pixel 
values. 
 
Each patch feature from an image is matched to the most 
similar patch feature in the previous image. These feature 
matches (‘correspondences’) are found by computing the 
SSD between all pairs of patch features, and choosing the 
closest match to each (although a more efficient procedure 
could be used, such as a kd-tree as described in Beis et al; 
1999).  When a patch feature appears similar to several 
patch features in the other image, all possible matches 
between pairs of patch features are used as 
correspondences. 
 
Many of these correspondences will give the location in 
each image of some feature visible in both images.  Each 
detected feature location is transformed using the camera’s 
calibration matrix, and shifted to correct radial lens 
distortion.  When these correspondences also lie on the 
ground plane, they are related by a perspective 
homography, H, which is a 3x3 matrix mapping 
homogeneous point locations in one image, (x,y,1), to 
homogeneous point locations in the other image, (x’,y’,1) 
(following normalization so that the third component is 
one).  H can be computed from four or more 
correspondences using the Discrete Linear Transform, or 
DLT (Hartley and Zisserman, 2003), a least-squares 
approach. 
 

Some correspondences are not on the ground plane 
however, and many others will be incorrect matches 
caused by similar-looking features, and matches between 
moving features.  These outlier correspondences must be 
removed before a least-squares approach can be used.   To 
remove outliers while simultaneously fitting a 
homography to inliers, the BaySAC framework is used 
(Botterill, 2009).  BaySAC is based on the RANSAC 
framework (Fischler and Bolles, 1981), but enables 
matches between multiple similar-looking points to be 
used efficiently.  To compute H using RANSAC, many 
random subsets (‘hypothesis sets’) of four points are 
selected.  Each hypothesis set is used to generate a 
homography.  The number of correspondences compatible 
with each homography is counted.  When a homography 
compatible with many correspondences is found, this 
model is usually correct, and the correspondences found 
are inliers.  
 
In BaySAC, hypothesis sets are selected based on the prior 
inlier probabilities of each match (estimated from the 
number of potential match candidates) and the history of 
hypothesis sets which have been tried.  This reduces the 
number of iterations needed to find a good hypothesis set, 
and can efficiently remove low-quality matches between 
multiple similar features.  Once a homography and inlier 
set are found, the inlier set is refined by using the DLT to 
fit a new homography to all of the inliers found, then re-
computing which points are compatible with the new 
model.  The DLT is then used again to fit a homography to 
all of these points. 
 
The homography, H, has the property that 
 

TdRH tn1−+=   (2) 
 
where R  is the rotation from the previous camera location, 
t is the camera motion vector, n is a unit vector normal to 
the ground plane, and, and d is the distance between the 
camera and the ground.  H is decomposed to find R, n and 
t/d, using Levenberg-Marquardt’s algorithm (Hartley and 
Zisserman, 2003), t is calculated from the estimated height 
of the camera above the ground.  
 
Occasionally, when few matches between frames are 
correct (for example because there are no distinctive 
features on the ground, or motion is too fast and either 
frames contain motion blur, or consecutive frames do not 
overlap), BaySAC will fail to compute a homography 
compatible with many correspondences.  In this case, no 
update will be made and we will rely on the INS-only 
solution.  By only accepting estimates compatible with 
many correspondences, incorrect measurements are 
avoided.  
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4. Integration 
 
In order to use the computer vision measurements to 
correct the drift of the IMU, it is necessary to develop 
observation equations that relate the computer vision 
measurements to the INS error states modeled in the 
Kalman filter.  For this work, we do not consider the 
rotational information from the computer vision algorithm 
since the measurements from the MEMS gyros used are 
considerably more accurate.  Instead, we focus on using 
the translation information to restrict the drift of the IMU.   
 
For the camera measurements, we use the following error 
model: 
 

v
cb

c
b evCsv ++= )1(~ δ  (3) 

 
where bv~ is the estimate of the IMU body frame velocity 
from the camera; cv is the true velocity in the camera 
frame; sδ  is the scale factor error for the camera height; 

ve  is the measurement noise; and b
cC  is the rotation 

matrix from the camera frame to the body frame.  Since, 
for this work, we assume that the axes of the IMU and the 
camera are perfectly aligned, we set b

cC  equal to the 3 by 
3 identity matrix.  Again for simplicity and considering the 
accuracy of the sensors used, we do not consider the offset 
of the camera axes to the IMU axes.  Both of these 
parameters can potentially be calibrated using algorithms 
such as those used for boresight calibration in aerial 
photogrammetry such as in Tao (2007). 
 
Following the derivation in Shin (2005) to use vehicle 
frame measurements, and assuming no axes offset, we 
have the following INS error equation: 
 

[ ]
δφδ

δδφ
)(

)()(
ˆˆˆ

×−+≈
+×+≈

=

nb
n

nb
n

b

nnb
n

nb
n

b

vCvCv
vvIC

vCv
 

)6(
)5(
)4(

 

 
where .̂ indicates a predicted value from the IMU, v is the 
velocity with the superscripts b and n denoting the body 
and navigation frame respectively; and b

nC is the direction 
cosine matrix from the navigation frame to the body frame.  
Therefore the observation equation can be formed as the 
difference of the IMU and camera velocities:  
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This observation equation is used to relate the body frame 
measurements from the IMU and camera to the states that 

are being estimated in Equation 1; therefore Equation 1 is 
extended to include the scale factor error term. 
 
5. Experiment 
 
An experiment was conducted at the University of 
Nottingham UK in January 2011 to test the developed 
algorithm.  The equipment used is shown in Figure 1 
which consists of a back pack containing a GPS receiver, 
data logger, power supply and a handheld IMU attached to 
a camera.  The data logger used was a Precise Time Data 
Logger (PTDL) developed by the Geospatial Research 
Centre in New Zealand.  The PTDL is able to record 
measurements from different sensors and log the data to 
SD card with an accurate GPS time stamp using an 
integrated u-blox ANTARIS 4 high sensitivity GPS 
receiver.  The u-blox receiver recorded single frequency 
pseudorange, Doppler and carrier phase measurements 
which were used to generate a differential solution using 
data from the National GPS Network Ordnance Survey 
network at Keyworth forming a baseline of approximately 
10km.   
 

 
Figure 1: Experimental equipment 

 
A Microstrain 3DM-GX3-25 MEMS IMU was used with 
the particular model having a rotation range of ±1200deg/s 
and an accelerometer range of ±18g.  The IMU is typical 
of the current range of calibrated low cost MEMS sensors 
with gyro bias stability quoted as ±0.2deg/s for the 
equivalent 300 deg/s model and accelerometer biases of 
0.01g.  The IMU was fixed to a Canon IXUS 750 digital 
camera as shown in Figure 1 using the edge of the camera 
display for alignment.  The small misalignment between 
sensor axes of the camera and IMU was not calibrated due 
to the accuracy of the sensors used.  The camera was used 
to record 640x480 pixel images at 15 frames per second 
and the IMU sample rate was approximately 100Hz. 
 
While the GPS and IMU measurements were 
synchronized using the PTDL, no timing information was 
available for synchronising the images from the camera.  
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Instead, software was developed in MATLAB to perform 
a cross correlation of the z-axis gyro measurement with 
the z-axis camera rotation estimate from the computer 
vision algorithm.  The maximum cross correlation 
coefficient for different time offsets was calculated using 
20 second sections of data at regular points throughout the 
dataset.  A linear model was fitted to this data which was 
used to align the computer vision and IMU datasets.  
While this approach is not suitable for real-time 
application, hardware synchronisation of IMU, GPS and 
camera data is possible and could be developed for future 
research.   
 
A dataset was collected at a tennis court at the University 
of Nottingham.  The camera was initially still for 10 
seconds, after which a user walked five times around the 
outside of a single tennis court.  The data was collected 
outside so that GPS measurements were available 
throughout the test to assess the performance of the 
integrated solution.  Furthermore, a rectangular trajectory 
was selected to minimise the effects of heading drift on the 
solution, this is discussed further in the following sections.   
 
The datasets were processed using software developed at 
University of Canterbury and University of Nottingham.  
Computer vision software was developed to compute the 
translation and rotation of successive frames using the 
algorithm described in this paper.  The translation 
information was time stamped using cross correlation and 
scaled by an approximate initial camera height with the 
results written to a log file.  Every 2nd image from the 15 
frame per second video were used to reduce the processor 
requirements since each image contains a significant 
amount of overlap.  The IESSG’s POINT GNSS and INS 
integration software was modified to include the error 
model described in this paper.  Files containing the GPS 
position and velocity and the computer vision log file were 
used in the software to correct the drift of the IMU.  The 
results are presented in the following sections. 
 
5.1 Results 
 
Figure 2 shows an example of the computer vision 
algorithm operating as the user walks around the tennis 
court.  On the image, the detected features are shown as 
red dots.  The narrow red lines drawn on the figure show 
the incorrect feature correspondences between the current 
image and features detected on the subsequent image.  
These correspondences have been rejected by BaySAC.  
The dark blue lines show the correspondences identified as 
inliers by the BaySAC algorithm.  These inlier 
correspondences are used to estimate the homography 
between the images, and hence the translation and rotation 
of the camera between images.  The algorithm is shown to 
work robustly even on images that contain many features 
which are not on the ground plane, as well as on textures 
that contain many self-similar features.  The average 

processing time on a 3GHz desktop PC using a single 
processor core was 120ms per pair of frames, which 
means that the algorithm is able to run slightly faster than 
real-time using a video frame rate of 7.5 frames per 
second.  The optimisations which would be needed to 
attain real-time performance on the less powerful 
processors typically found in smartphones are considered 
in Section 3.2. 
 

 
Figure 2 Computer vision algorithm (red dots are 
detected features, blue lines are inlier correspondences 
between frames, red lines are outliers). 
 
Figure 3 shows the trajectory of the experiment.  The 
reference solution is generated using the differential GPS 
position solution from the u-blox ANTARIS receiver.  The 
computed standard deviation from the GPS processing 
software indicates the position accuracy to be between 0.1 
and 0.5m.  The GPS antenna and IMU are not collocated, 
therefore the position difference is not an exact estimate of 
the position error, however, given the accuracy of the 
sensors used, it is sufficient to provide a reference 
trajectory for this experiment.   
 
 

 
Figure 3 Trajectory around tennis court 
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The POINT integration software generates an INS solution 
that is corrected by measurements from the GPS and 
computer vision sensors.  The camera measurements are 
used constantly in the filter whereas the GPS 
measurements are used for the first 97 seconds which 
corresponds to a short stationary period followed by one 
single circuit of the tennis court.  Therefore, the GPS 
measurements are available to initialise the INS and help 
estimate the initial gyro and accelerometer biases, initial 
heading error and camera height.  The INS heading was 
initialised using a coarse estimate from the magnetometer.  
Figure 3 shows the GPS measurements that are used in the 
integration filter from the first circuit of the tennis court as 
green dots. 
 
Figure 3 also shows the integrated position solution in red.  
For the first circuit, the position estimate is close to the 
GPS position solution as the GPS measurements are being 
used in the filter.  Once GPS measurements are removed, 
the INS and computer vision measurements are able to 
maintain the trajectory for the following 6 minutes until 
the end of the dataset.  The position error for the 
experiment is shown in Figure 4 and Table 1.  Figure 4 
shows that the horizontal position error oscillates 
according to the position the user is walking round the 
circuit, but in general, the position error slowly grows with 
time.  The maximum horizontal position error after 6 
minutes without GPS corrections is 2.9m which is a 
significant result since this position accuracy would enable 
a range of applications where GPS signals are unavailable.   
 

 
Figure 4 Position error for tennis court experiment 

 
The experiment was carried out by walking around a 
tennis court which was designed specifically to explore 
two significant characteristics of the position error.  Firstly, 
Figure 3 shows that the integrated solution appears to be 
slightly shorter than the reference trajectory.  This is due 
to scale error where the exact height of the camera above 
the ground is not known.  Secondly, the trajectory shows 

that the error of the integrated position solution increases 
as a result of yaw error since the track of the trajectory is 
not following the same direction in the latter circuits.  This 
is because the yaw error of the INS is not observable 
through using the translation measurements from the 
camera.  These two error characteristics are exposed to be 
the main issues for the proposed method of sensor 
integration.   
 

Table 1 . Comparison of Horizontal Position Errors 
 Outage 

length (s) 
North 

error (m) 
East error 

(m) 
Horizontal 
error (m) 

IN
S 

on
ly

 

60 212 93 231 
120 595 663 891 
180 1474 2359 2782 
240 2723 5678 6297 
300 4349 10990 11819 
360 6551 18140 19287 

C
om

pu
te

r 
vi

sio
n 

ai
de

d-
IN

S 60 0.1 1.0 1.0 
120 -0.4 0.8 0.9 
180 0.0 0.8 0.8 
240 -0.3 0.5 0.6 
300 -0.6 1.4 1.6 
360 -0.6 2.9 2.9 

 
Figure 5 shows the estimated scale factor for the 
integrated solution.  The scale factor represents the 
percentage error in the height of the camera which is 
approximately 1.4m above the ground.  After the user 
moves, at approximately 9 seconds, the scale factor is able 
to be estimated using the GPS measurements in the 
Kalman filter.  However, when the GPS measurements are 
unavailable, after 97 seconds, the scale factor estimate 
slowly decreases with time compared to the scale factor 
estimate generated by integrating with GPS throughout the 
dataset.  This scale factor issue can also be seen in Figure 
3 where the scale of the trajectory is slightly shorter than 
the GPS solution.  Further analysis is required to 
understand this change in scale factor when GPS 
measurements are unavailable. 
 

 
Figure 5 Estimated scale factor for tennis court 
experiment 
 
6.  Discussion 
 
So far we have demonstrated that the computer vision 
measurements are able to significantly reduce the drift of 
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the low cost IMU when GPS measurements are 
unavailable.  The aim of this work is to provide a 
pedestrian positioning system that can work inside or close 
to buildings where GPS is unavailable or significantly 
degraded.  However, two issues remain before this work 
can be used for this application. 
 
Firstly, as we have already described, the computer vision 
algorithm is relatively computationally expensive.  Some 
simple modifications such as reducing the frame rate are 
already used in this paper, however further reduction in 
frame rate is not possible since the resultant images may 
not have sufficient overlap.  The most computationally 
expensive part of the algorithm is finding candidate 
correspondences by matching features between frames. 
One possible optimisation would be to more closely 
integrate the INS and computer vision algorithms so that 
the predicted translation and rotation from the IMU could 
be used to predict where matching features will be found, 
hence limiting the search area.  Such closer integration 
between the IMU and computer vision algorithm will be 
the focus of future studies. 
 
A second significant issue is the problem of using the 
camera in low light conditions such as those that can occur 
indoors. In this situation, insufficient features are matched 
between frames, BaySAC fails to compute a relative 
position and orientation, and no position update will be 
available.  The reason too few features are matched is that 
the camera used for this work has no control over the 
exposure time or sensitivity used, and the long exposure 
used when light levels are low leads to significant motion 
blur.  Future research will investigate the selection of 
image features which can be localized and matched 
correctly in the presence of motion blur or image noise.  
 
7. Conclusions 
 
This paper has demonstrated the integration of GPS and 
computer vision measurements with measurements from a 
low cost inertial sensor.  When GPS measurements are 
unavailable (typically due to obstructions such as when 
walking through buildings), low cost IMUs do not provide 
sufficient accuracy to navigate for more than a few 
seconds.  This paper has introduced a computer vision 
algorithm that makes use of images collected from a 
camera looking approximately towards the ground, which 
is where a camera is typically positioned when navigating 
using a smartphone.  During a GPS outage, measurements 
from the IMU and camera alone were sufficient to 
maintain a position accuracy of 2.9m after 6 minutes, 
when walking a circuit around a tennis court.  This is 
compared to a position accuracy of 231m after 60 seconds, 
degrading to over 19km after 6 minutes using only the 
IMU for positioning. 
 

The results in this paper demonstrate that a pedestrian can 
be positioned accurately for several minutes using only the 
measurements from a low-cost IMU integrated with 
relative position estimates from computer vision. This 
system can potentially be used to position a pedestrian 
indoors using only the camera and IMU available on a 
smartphone, however errors in scale, and errors in yaw 
still accumulate over distance. Future work will 
investigate the reduction of these errors through 
algorithms such as using IMU measurements to aid feature 
matching in the computer vision algorithm, and aiding the 
IMU with yaw corrections from map information such as 
that described in Abdulrahim et al (2010). 
 
The successful integration of GPS, IMU and computer 
vision is significant since these sensors are already found 
in modern smartphones.  Further work will look towards 
addressing issues such as reducing computational 
requirements of the algorithm through, for example, 
using the IMU measurements for outlier detection in the 
computer vision algorithm which is currently the most 
computationally intensive step.  Additional work can 
further investigate the integration of this technology with 
other sensors and algorithms.  One particularly 
promising area is through the integration with indoor 
maps which can significantly constrain the trajectory of 
the user as they walk along corridors and through 
doorways.  In summary, this paper describes and 
demonstrates the feasibility of a promising technology 
for indoor navigation. 
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