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Abstract 
 
This paper proposes an integration of ‘building heading’ 
information with ZUPT in a Kalman filter, using a shoe 
mounted IMU approach. This is done to reduce heading 
drift error, which remains a major problem in a 
standalone shoe mounted pedestrian navigation system. 
The standalone system used in this paper consists of only 
single low cost MEMS IMU that contains 3-axis 
accelerometers and gyros. Several trials represented by 
regular and irregular walking trials were undertaken 
inside typical public buildings. The results were then 
compared with HSGPS solution and IMU+ZUPT only 
solution. Based on these trials, an average return position 
error of below 5 m was consistently achieved for an 
average time of 24 minutes – at times as long as 40 
minutes - using only a low cost MEMS IMU. 
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1. Introduction  
 
 Navigating in indoor environment, particularly inside a 
building proves to be a complicated navigation problem. 
An absolute positioning system such as GPS is quite 
useful and reliable in outdoor environments with a clear 
view of GPS signals, however using this technology in 
indoor remains a complicated task. This is because of the 
fundamental problems of GPS signals, such as low 
transmission power, which makes it vulnerable to the 
surrounding environment. As a result, GPS signals will 
always get attenuated due to reflection and refraction. 
This is much worse in indoor buildings, where the level 
of attenuation is significantly higher due to varieties in 
indoor infrastructures.  
 
Until now, using a High Sensitivity GPS (HSGPS) 
receiver to produce a continuous reliable position 
solution in indoor building is very difficult. Although it 
can be used to detect weak GPS signals, often the signals 

are not reliable enough to produce good position 
solutions (Lachapelle 2007). This is partly due to the 
inability to separate signal errors such as multipath from 
a good GPS signal. Even if this problem can be 
overcome, in many situations, there are simply too few 
GPS satellites in view to be used that have detectable 
reliable signal and good geometry. A logical approach 
would be to increase satellite availability. This was 
investigated by (O’Driscoll et al. 2011) using a 
combined GPS/GLONASS high sensitivity receiver in 
urban canyon. However, although the number of 
detectable satellites did increased, it was found that 
multipath effect remains a major problem that hinders its 
advantage. 
 
The question is now whether deviating from using GPS - 
by using other type of positioning system - is feasible for 
indoor pedestrian navigation to avoid the problem 
mentioned before. RFID, WLAN, WIFI and UWB are 
examples of systems that do not use GPS signals to 
compute a position solution. RFID uses absolute position 
information embedded in it to aid navigation system. 
WLAN/WIFI provides absolute position information 
through ‘fingerprinting’ or by using signal strength (Pei 
et al. 2011). UWB is also using a similar approach of 
using signal signatures (for example Time Difference of 
Arrival) to compute position (Kietlinski-Zaleski et al. 
2010). All of these however, do require infrastructures, 
which relates directly to the increase in cost. In some 
cases – for example during emergency – infrastructures 
might not be available at all to aid navigation system. 
This means that resorting to another technology that 
doesn’t rely on external infrastructures is a reasonable 
option to decrease the cost and eliminate environment 
disturbances. 
 
A common approach would be to use an Inertial 
Measurement Unit (IMU), which has the advantage of 
not relying on external infrastructures. The sensors – 
normally three accelerometers and three gyroscopes – 
are small, low power, and inexpensive due to the 
advances in Micro-electromechanical Sensors (MEMS) 
technology. Due to its ‘dead reckoning’ approach, once 
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initialized, the system is totally self-contained. However, 
the performance of low cost MEMS technology is still 
relatively low and as a result, their use for positioning 
applications is relatively limited unless frequent 
measurement updates from external sensors or 
technologies are available. 
 
An example of useful frequent measurement updates is 
Zero velocity UPdaTe (ZUPT) (Skog et al. 2010), which 
was used successfully in pedestrian navigation to 
estimate some of MEMS IMU errors. In order to do this, 
the IMU was ‘strapped’ on foot/shoe. During walking, 
the foot has to be briefly stationary (zero velocity 
condition) in between steps when it is on the ground. 
These frequent events allow ZUPT to be used to correct 
the IMU velocity by knowing that velocity should be 
zero. Furthermore, if the ZUPT measurements are used 
in Kalman filter, for example in (Foxlin 2005; Godha 
and Lachapelle 2008; Jiménez et al. 2010), they can not 
only be used to correct the user’s velocity, but also help 
to restrict correlated position and attitude errors and 
estimating the sensor bias errors. Therefore, the frequent 
use of ZUPT measurements consistently bounds many of 
the errors and as a result, even relatively low cost 
sensors can provide useful navigation performance. 
 
However, even with the use of frequent ZUPT 
measurements in Kalman filter, low cost inertial 
pedestrian navigation systems still suffer from heading 
drift. This is because of the unobservability of IMU yaw 
error (assuming that heading drift is primarily caused by 
accumulation of IMU yaw error). Unobservability is 
defined as the inability to estimate a state from a given 
sequence of measurements. In this paper, where only 
ZUPT is used to aid the low cost IMU, it is then not 
possible to estimate yaw error using only this 
measurement. This means that external heading 
measurements from external sensors are necessary. A 
common approach is to use magnetometers (Faulkner et 
al. 2010; Haverinen and Kemppainen 2009; Kemppi et al. 
2010; Storms et al. 2010), which is often incorporated 
with inertial sensors in an IMU, to give the desired 
heading measurement. However due to significant 
magnetic disturbances in indoor buildings, this 
measurement is often unreliable. Instead, it is desirable 
to use heading measurement updates from other means 
to properly control heading drift. 
 
As the application is intended for indoor pedestrian 
navigation, we tried to look for ways that could aid 
heading drift error when navigating inside buildings. We 
noticed that a common feature often found in most 
buildings is that buildings are built in such a way they 
resemble square or rectangular shape, or a combination 
of both. Interestingly, rooms, corridors and walls inside 
these buildings are also often consistent with the outer 
orientation of the building. Although by no means all 

buildings are constructed in this way, a good deal of 
buildings are. For instance, it was reported that 83.2% of 
high rise buildings in Kuala Lumpur, capital city of 
Malaysia, are rectangular or square in shape (Ling et al. 
2007). As a result, most of the walking in this kind of 
building is constrained to only follow this feature. 
 
Motivated by this useful information on buildings and 
how it constrains a walk, this paper presents an approach 
of using ‘building heading’ as a measurement update in a 
Kalman filter. ‘Building heading’ can be derived 
automatically from aerial imagery (Abdulrahim et al. 
2010), or can also assumed to be known. A new 
algorithm is developed that integrates the ‘building 
heading’ information and ZUPTs in the Kalman filter. 
We simply assume that most of the walking in indoor 
buildings is straight, restricted to either one of four 
possible directions (‘4 edges of rectangular’). We argue 
that when this assumption is invalid, as presented in the 
result section, the IMU is reliable enough to navigate for 
a significant period of time without drifting too much. 
 
Note that using a Kalman filter provides us with the 
advantage of using other reliable measurements as well – 
if they are available – to further improve the navigation 
solution. This could be from occasional reliable GPS 
positions, to WiFi/RFID ‘finger printed’ positions, or 
simply a point in a map. This flexibility should provide 
more integrity and better accuracy to the estimation of 
system solution, if it can be used reliably to update 
Kalman filter. However, in our trials, there were no other 
measurement updates used, except from ZUPTs and 
‘building heading’ algorithm. Note also that there is an 
advantage of using Inertial Navigation System (INS), as 
in this paper, against basic Pedestrian Dead Reckoning 
(PDR) algorithms. Basic PDR assumes that all steps 
detected are forward walking, thus side-stepping and 
backward walking lead to false measurements, whereas 
INS, in contrary, is capable to handle this. 
 
Trials have taken place in a public hospital in 
Nottingham and several buildings around the University 
of Nottingham campus, which represents a typical 
building. Real world measurements were taken from a 
low cost MEMS IMU that was attached to a shoe. The 
data were post-processed using a forward Kalman filter 
only, so that the results can be applied to a real time 
system in the future. It was then compared with a 
HSGPS solution and ZUPT only solution. An 
improvement of almost thirty fold in return position error 
was achieved, getting an average return position 
accuracy of below 5 m from an average distance of about 
1500 m using the developed approach, against only 154 
m using standard ZUPT only approach. Return position 
accuracy is the accuracy of start and end position, and 
not a representative accuracy throughout the whole 
trajectory. This is because there was no ground truth to 
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be used as a reference in the trials. Therefore positions 
were plotted on Google Earth images for visualization 
purpose and through this visualization, comparison of 
position errors were then made. Although there is no 
absolute sense of quantifying the quality of the solution 
against Google Earth, it is at least useful to see from the 
visualization where the positioning has been done and 
how the heading drift has been reduced. 
 
In summary, this paper presents an approach of 
integrating ‘building heading’ information and ZUPT in 
a Kalman filter, using only low cost MEMS IMU. The 
idea is to use only IMU for real time navigation, in this 
paper however, a data logger is used to log the data for 
post-processing. Using the proposed approach, there is 
no requirement to have extra sensors to correct heading 
drift such as magnetometer, camera or optical sensor. 
There is also no requirement to have a very precise 
room-level map for navigation. These will be quite 
convenient for a true low cost pedestrian navigation 
system in the future. The improvements made in 
estimating heading error are also analyzed and discussed. 
True field trials which employ this approach are shown 
to present the successful implementation of such 
approach. It is envisaged that a self-contained inertial 
navigation could be made possible for a longer duration, 
at least in a typical indoor environment. 
 
2. Inertial Navigation System (INS) 
 
2.1 Equipments  
A low cost MEMS IMU from MicroStrain (3DM-GX3-
25) was used in the trial. It should be a reasonable 
representation of a low cost sensor, with typical 
technical specifications of a low cost IMU grade with a 
dimension of 44mm x 25 mm x 11mm and weighing 
only 11.5g. It was strapped on the forefront of a shoe. 
The accelerometer bias stability is quoted as ±0.01g, and 
for the 300 degree/s model, the gyro biases are specified 
as ±0.2degree/s. The particular IMU used has a limit of 
1200 degree/s for angular rotation and 18g for 
acceleration. Although the IMU contains a 3-axis 
magnetometer as well, only accelerometers and gyros are 
used for the approach in this paper. Fig. 1 shows the 
setup. The IMU is shown to be mounted on the foot 
while the HSGPS receiver and data logger were put 
inside a backpack. Note that the HSGPS receiver is used 
only for comparison purpose as presented in result 
section. 
 
2.2 INS Mechanization 
This section briefly describes the INS mechanisation and 
for more details, please refer to for example (Groves 
2008; Shin 2005; Titterton and Weston 2004). The INS 
mechanisation involves initializing the position and 
attitude of the INS, before the measurements are 
numerically integrated to produce attitude and position  

 
Figure 1. Example of system setup 

 
measurements. The initial position for the IMU was 
estimated from a GPS position (which assumes that 
navigation would start in a well received GPS signal 
area). In practice however, a fully GPS-independent 
system can only be realized by knowing the initial 
position, for example by standing on a pre-surveyed 
coordinate. For the initial attitude, a short stationary 
condition (<10 seconds) is required for coarse alignment. 
The roll and pitch were calculated by differencing the 
local gravity vector with the accelerometer 
measurements, assuming only gravity force is being 
measured. Initial heading, on the other hand, was 
initialized manually. It is possible however, to use one-
off magnetometer reading, provided that there are no 
significant magnetic disturbances during this period 
disturbing the heading measurement. Once it has been 
initialized, the system will work out its position relative 
to this initial position. 
 
In order to propagate error states that are being estimated, 
a standard strapdown error navigation equation was used 
to update the states vector using phi-angle error model in 
navigation frame (Farrell and Barth 1999; Shin 2005). 
The model can be written as follows: 
 
𝛿�̇�   =  −𝝎𝑒𝑛

𝑛 × 𝛿𝒓𝑛  +  𝛿𝜃 × 𝒗𝑛  +  𝛿𝒗𝑛           (1) 
 
𝛿𝒗�̇� =  𝑪𝑏𝑛𝛿𝒇𝑏 + 𝑪𝑏𝑛𝒇𝑏 × ∅ − (2𝝎𝑖𝑒

𝑛 + 𝝎𝑒𝑛
𝑛 ) × 𝛿𝒗𝑛 −

                    (2𝛿𝝎𝑖𝑒
𝑛 + 𝛿𝝎𝑒𝑛

𝑛 ) × 𝒗𝑛 + 𝛿𝒈𝑛            (2) 
 
∅̇     =  −𝝎𝑖𝑛

𝑛 × ∅ + 𝛿𝝎𝑖𝑛
𝑛 − 𝑪𝑏𝑛𝛿𝝎𝑖𝑏

𝑏             (3) 
 
where 𝛿𝒓,𝛿𝒗, and ∅ are the vectors of position, velocity 
and attitude errors respectively, × is the cross product 
operator, 𝑪𝑏𝑛 is the rotation matrix that transform from 
body frame to local navigation frame, 𝝎𝑒𝑛

𝑛  is the 
navigation frame transport rate, 𝝎𝑖𝑒

𝑛 is the Earth’s 
rotation, 𝛿𝒈𝑛 is the gravity vector error, 𝛿𝜃 is the angle 
between true frame and navigation frame and 
𝛿(∙) represents the error of specific vectors. The position 
and attitude of the system can then be regularly updated 
by numerical integration of the IMU output. 
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2.3 ZUPT Detection using Angular Rate 
Correct stance phase detection is essential in a self-
contained inertial navigation system that uses ZUPTs. 
This is because it enables ZUPTs to be used correctly in 
the Kalman filter for state error estimation. Zero velocity 
detection based on angular rates was used for this 
purpose and proved to be fairly robust in detecting 
stance phase for the trial. Angular rates detection was 
used mainly because it was shown in (Feliz et al. 2009; 
Skog et al. 2010) to slightly outperform commonly used 
acceleration based detection, namely acceleration 
moving variance detection and acceleration magnitude 
detection. The improvement was demonstrated in terms 
of reliability of step detection during different gait 
velocity. As a result, this method gives a satisfactory 
result with regards to step misdetection and works fairly 
reliably at least for the trials described in this paper. 
 
First, a simple moving average filter with a window size 
of 7 measurements was used to smooth out some of the 
short term angular rate measurement fluctuations. Then 
an empirically determined threshold is applied to the 
magnitude of angular rates to detect a stance phase 
condition (zero velocity condition). The measurements 
are then decimated to 20Hz and another integrity check 
is then applied to ensure ZUPT is detected correctly. 
This is done by ensuring only two consecutive filtered 
measurements fall below the set threshold before ZUPT 
can be declared and used during stance phase. Finally the 
ZUPT rate is further reduced to 10Hz to reduce Kalman 
filter computational load before being used in the filter. 
Fig. 2 shows example of the detected ZUPT events. 
 

 
Figure 2. Exampe of ZUPT detection using angular rates 
detection 
 
3. Kalman Filter (KF) 
 
3.1 Measurement Update using ZUPT  
Optimal state estimation using Kalman filter is widely 
used and extensively reported in literatures such as in 
(Faulkner et al. 2010; Grewal and Andrews 2008; Hide 

et al. 2007). Our Kalman filter is used in feedback form, 
which means that estimated errors from Kalman filter are 
feedback on every iteration to correct the system, 
zeroing the Kalman filter states in the process. Due to 
this, Kalman filter states are kept small and thus 
maintain the small error assumption of the states. This 
ensures that the linearized error model assumption in the 
filter remains to be valid. The error state vector that was 
used is: 
 
𝒙 =  (𝛿𝒓 𝛿𝒗𝑛  𝛿𝜺 𝛿𝒈 𝛿𝒂)𝑇             (4) 
 
where 𝛿𝒓 is the vector of latitude, longitude and height 
errors; 𝛿𝒗𝑛 is the vector of navigation frame velocity 
errors; 𝛿𝜺 is the vector of attitude errors (roll, pitch and 
yaw); 𝛿𝒈 is the vector of gyro bias errors and 𝛿𝒂 is the 
vector of accelerometer bias errors. Other IMU errors 
such as accelerometer and gyro scale factor error, cross-
coupling error and gravity dependent error were not 
modelled in this work. Therefore, the effects these 
unmodelled errors have towards Kalman filter states 
were coarsely approximated by increasing accelerometer 
and gyro noise empirically so that the measurement 
noise impact is much greater than the unmodelled errors. 
 
In this paper, the knowledge of errors during ZUPT is 
used as a measurement update in the Kalman filter to 
better estimate IMU errors. During ZUPT epochs, 
differences between inertial measurements and the 
ZUPT condition are entered into the Kalman filter for 
error estimation. The design matrix used in this paper 
which uses ZUPT to update Kalman filter is shown 
below: 
 
𝑯 = (03𝑥3  𝐼3𝑥3 03𝑥3 03𝑥3 03𝑥3)                  (5) 
 
with observation 𝒛𝑘 = 𝛿𝒗𝑛 and covariance matrix 
𝑷𝑘 = 𝐸(𝒏𝑘𝒏𝑘𝑇),, where 𝛿𝒗𝑛is the difference between the 
INS velocity and zero, 𝒏𝑘 is a constant measurement 
noise and 𝑘 is the current epoch. 
 
3.2 Measurement Update using Building Heading  
In (Abdulrahim et al. 2010), the heading of a building is 
derived from an aerial imagery map. The ‘produced 
heading’ therefore, either derived or assumed known, is 
a single value for a particular building. Due to the 
assumption that most buildings are in square or 
rectangular shape or both, there will be then four 
principle possible directions of walking, thus four 
possible ‘headings’. These four possible ‘headings’ are 
actually just a 90 degree offset from each other, making 
the derivation of ‘building heading’ a simple task. 
 
In order to use ‘building heading’ correctly in the 
algorithm, a correct heading quadrant has to be chosen 
(due to four possible ‘building headings’). This is 
because, only one heading measurement is needed by the 
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algorithm to update Kalman filter. Remember that we 
have four derived ‘building headings’, as a result of the 
assumption on building shape. Therefore, out of these 
four ‘building headings’, only one is correct at any 
instance. 
 
The algorithm starts by running a check on the system, 
to determine whether a step has been taken or not. The 
changes in horizontal position (North and East) are used 
to compute a step length in meters. Knowing that it is 
possible a step has been taken if the measured step 
length is more than 0.5 meter, and is almost impossible 
for a normal user to take a step more than 10 meter in 
length, an empirically determined step length threshold 
is used to verify indeed a step has been taken. If it 
returns true, it goes to a second stage of the algorithm, 
where the task is to calculate a step heading, as 
explained below. Otherwise, no update is applied to 
Kalman filter states. 
 
The second stage of the algorithm involves calculating a 
step heading. This was calculated at every ZUPT epoch. 
A step heading is defined as the change in heading 
measurement at current epoch (t), from previous epoch 
(t-1). It is conveniently chosen with the assumption that 
within this epoch the IMU error remains small. The 
following equation is used to calculate step heading by 
utilizing atan2 function, which is just a variation of 
arctan function to resolve the angle in the right quadrant. 
 
𝜓𝑠� = 𝑎𝑡𝑎𝑛2 �Δ𝐸

Δ𝑁
�                                         (6) 

 
where 𝜓𝑠� is the measured step heading and Δ𝐸  and 
Δ𝑁 are the changes in East and North position over one 
step. This heading measurement is based only on the 
change in position caused by a single step, and therefore 
it consists of not only the true heading plus drift, but also 
other unmodelled errors from inertial navigation. 
 
After that, the algorithm will proceed to the third stage, 
where it will determine which one of the four ‘building 
headings’ is to be used. Due to equation (6), the 
calculated step heading is unambiguous, in a sense that it 
can now be in any of the four heading quadrants of the 
building. Therefore, if the difference between the 
calculated step heading with any of the four ‘building 
headings’ falls to a certain threshold, that particular 
‘building heading’ will be chosen as the correct heading 
at that particular time, which represents the correct 
direction of user’s heading. 
 
Using this correct ‘building heading’, an observation 
equation (𝒛𝑘)  is formed that represents the observed 
heading drift error in navigation frame,  
 
𝑧𝑘 = 𝛿𝜓𝑛 = 𝜓𝐵 − 𝜓𝑠�              (7) 

where 𝜓𝐵 is the correct ‘building heading’ and 𝜓𝑠�is the 
measured step heading from raw IMU measurement. 
When pitch angle  (𝜃)  is not equal to 90 degree, the 
heading angle (𝜓) can be computed from the elements of 
Direction Cosine Matrix (DCM) as (Titterton and 
Weston 2004): 
 
𝜓 =  𝑡𝑎𝑛−1 �𝐷𝐶𝑀21

𝐷𝐶𝑀11
�              (8) 

 
The design matrix (H) for heading error observation 
equation is then constructed using yaw partial equation 
as (Shin 2005): 
 
𝑯 = �01𝑥3 01𝑥3 �

𝜕𝜓�

𝜕∅𝑁
  𝜕𝜓

�

𝜕∅𝐸
 𝜕𝜓

�

𝜕∅𝐷
�  01𝑥3 01𝑥3�            (9) 

 
with measurement from equation (7). Note that an 
appropriate measurement noise has to be used to 
accommodate steps that are not consistent with the 
building, for example from zigzag walking. Furthermore, 
we also assume the heading error is the main source that 
contributes to position drift error. 
 
3.3 The Use of Kalman Filter  
Potentially, by using Kalman filter, all type of 
observations or measurements that are known, in 
particular during stance phase, can be used to update the 
Kalman filter. For example, if there are reliable 
occasional position updates from GPS, the design matrix 
(H) can be constructed as: 
 
𝑯 =

 ��
𝑅𝑁 +  ℎ 0 0

0 (𝑅𝐸 + ℎ)𝑐𝑜𝑠𝜆 0
0 0 −1

�  03𝑥3 03𝑥3 03𝑥3 03𝑥3�    

                  (10) 
 
with 
 
𝒛𝑘 = 𝛿𝒓                                       (11) 
 
where 𝛿𝒓  is the difference between INS and GPS 
position, 𝑅𝑁and 𝑅𝐸  are the major and minor radius of the 
Earth respectively. Due to the nature of Kalman filter 
which uses every available observation, the proposed 
system is therefore conveniently ready for future 
integration with other reliable observations, where 
possible. 
 
In our Kalman filter configuration, ZUPT was used with 
a constant empirically determined measurement noise. 
However, it was demonstrated recently in (Bebek et al. 
2010) that the use of a pressure sensor to detect the 
correct moment of ZUPT for shoe mounted system, 
produced more accurate detection in the middle of the 
shoe. This is important for a subsequent accurate 



Abdulrahim, et. al: Integrating Low Cost IMU with Building Heading in Indoor Pedestrian Navigation 
35 

 

position determination. Therefore, it will be a focus of 
our future work to try to adaptively tune measurement 
noise for ZUPT measurement. One possible way is to 
decrease the measurement noise value in the middle of 
every ZUPT measurements, while keeping it constant at 
the start and at the end of the measurements. 
  
Similarly, the ‘building heading’ measurement was also 
updated to KF with a constant measurement noise. One 
possible way to improve the estimation process is to 
investigate the effect of tuning the measurement noise to 
the algorithm using innovation residual based approach 
(Hide et al. 2003). However the tuning of the 
measurement noise must be investigated carefully as it 
can be extremely volatile if the three Kalman Filter 
assumptions fail: no time correlation of process noise, no 
time correlation of measurement errors and no time 
correlation between process noise and measurement 
noise (Mohamed and Schwarz 1999). 
 
4. Results 
 
The first trial using proposed algorithm was performed 
inside a hospital in Nottingham on June 2010. A user 
equipped with the equipments as described in section 2.1 
was asked to walk around inside a hospital. The walking 
trial was performed for about 40 minutes with an 
approximate distance of 2400 meters. The user started 
walking from the outside of the hospital, and walking 
into the hospital through the main entrance. After 
walking was done inside the hospital, the user walked 
out again through the same entrance, back to the same 
starting position. The reason behind starting and ending 
at approximately the same position is to ensure we are 
able to quantify the return position error. This is because 
ideally, starting and ending at exactly the same location 
should give us a ‘zero’ return position error. The HSGPS 
receiver was only used for comparison purposes to 
indicate the performance of a high sensitivity receiver in 
this building. 
 
Fig. 3 shows the output of HSGPS receiver. There were 
significant jumps in the solutions – at times beyond the 
hospital’s walls – which make it impossible to compare 
it with the proposed system. In contrary, Fig. 4 shows 
the output of the IMU, which was updated with ZUPT. 
Although there are still significant position errors as a 
result of heading drift, we can start to see the walking 
trajectory through continuous position solutions from the 
IMU. Finally Fig. 5 shows the proposed system position 
solutions. It is obvious that the proposed system solution 
overcomes the other two approaches of using HSGPS 
and IMU + ZUPT only solution, based on the difference 
between these two trajectories. Note that only coarse 
comparison of the trajectory was made between the three 
solutions as a result of unavailable ground truth as a 
reference. However, it does provide a useful insight into 

the effectiveness of this approach against a standard 
ZUPT and HSGPS. 

 
Figure 3: HSGPS solution 

 

 
Figure 4: IMU+ ZUPT solution 

 

 
Figure 5: The position output of the proposed system 
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A few more trials were undertaken and the results are 
summarized in Table 1. The first trial, as explained 
before, is tabulated as trial 4 in Table 1. All the trials 
lasted for a period of at least 10 minutes and above, with 
a minimum and maximum distance of about 500 m and 
3000 m respectively. The time is measured using the 
timestamp in the IMU output file while the distance is 
measured using raw IMU position output. For an average 
of 24 minutes of walking with an average calculated 
distance of 1500 m, using ‘building heading’ aided 
approach gives us an average of below 5 m return 
position error. In contrast, without using ‘building 
heading’ approach, the return position error is well 
above 150 m. 
 

 
Figure 6: Trial with irregular walking (I,II,III and IV 
sectors) 
 
In order to examine how robust the algorithm is when 
the assumption to walk in straight lines in indoor 
environment does not necessarily hold true, a trial with 
an irregular walking pattern was attempted for a period 
of 15 minutes. This was labelled as I, II, III and IV in Fig. 
6 where I represents walking and wandering around in a 
shop; II represents a zigzag walking; III represents 

backwards walking; and IV represents walking down 
and up a spiral stair for a few levels. With these irregular 
walking patterns, the start and end position error still 
gives an error of only about 1.25 m, approximately 0.1 
% of the total walking distance of ~1248 m. 
 
5. Conclusion 
 
This paper presented an approach to restrict heading drift 
error in low cost inertial pedestrian navigation system. 
This was performed by using true ‘building heading’ 
information in Kalman filter. An algorithm to fuse this 
information inside Kalman filter is explained. A result of 
several walking trials was then presented. It was shown 
to give an average return position error of only 4.62 m in 
24 minutes, with an average distance of 1.57 km. It was 
shown from the trial result that a significant 
improvement in position can be achieved using only a 
low cost IMU, without relying on external sensors such 
as magnetometer or camera to determine heading. 
 
In addition, the use of ‘building heading’ information 
provides many advantages to indoor navigation system. 
It is only needed once for the developed algorithm to 
form the heading observation equation. Once the system 
has worked out its heading, repeated requests are not 
needed anymore. This is very important for a future low 
cost system with low computing capability, for example 
one that looks for a real time solution. Furthermore, a 
precise room level map is not needed, although its 
inclusion should improve the position accuracy. 
Therefore, in a Geographical Information System (GIS) 
database for example, it is possible to associate each 
building in the database with ‘building heading’ 
information to help a user with GIS capability to 
navigate. 
 
The use of a Kalman filter to integrate ‘building heading’ 
information for updating process should also create 
greater level of integrity and redundancy. For example, 
occasional reliable positions from GPS can be directly 
integrated to either update the system with more 

 
 
 

Description 
  

 Return Position Error 

Trial Duration 
(minutes) 

Distance 
(m) 

 Heading Aided 
(m) 

No Heading 
Aided (m) 

 
1 Straight pathway 15.7 496.8 

 
6.25 270.42 

2 Car park 12.7 905.4 
 

3.96 28.63 
3 Football pitch 40.3 3000 

 
4.42 34.58 

4 Hospital 1 30.4 1973.7 
 

4.23 109.6 
5 Hospital 2 21.9 1443.9 

 
7.6 518.24 

6 Hospital 3 38.8 2665.3 
 

3.11 204.21 
7 Hospital 4 16 918.8 

 
6.2 38.73 

8 Campus 14.83 1066 
 

1.19 24.52 

 
 

     AVERAGE  23.79125 1557.46 
 

4.62 153.61625 
 
 

 

        

Table 1: Summary of all walking trials 
 

Start /End 

        I II 

III 

IV 
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measurements or as a means to verify the proposed 
system solution. Theoretically, any possible or relevant 
measurements from any kind of systems can be 
integrated with a Kalman filter, thus allowing better 
estimation of the solution. 
 
Another interesting factor – to use only low cost IMU for 
navigation – is that it is independent of infrastructures. 
This permits the use of the system in any kind of 
environment which has the typical feature discussed in 
this paper, although the effect of extreme variation in 
temperature to the IMU performance should be 
investigated more carefully. This means that the cost of 
the system is not directly proportional to how big the 
navigation area is. This is very convenient because a 
possible true low cost system can be realized from this 
approach. 
 
It must be mentioned however that the algorithm 
assumes the user to be walking in either four main 
headings most of the time in typical indoor building. 
This is indeed assumed to be valid because in a typical 
building which has rectangular orientation; most of the 
corridors, walls and rooms are consistent with building’s 
orientation and as such, restricting users to only walk in 
either four of these main headings. It is envisaged that 
extended period of walking in other than main headings 
will cause suboptimal results – which highlight the need 
for additional information or sensors – although we have 
demonstrated in this paper that the algorithm is robust to 
short periods of movement that doesn’t follow these 
directions. 
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