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Abstract 
 
Ad hoc solutions for positioning and tracking of 
emergency response teams is an important and safety-
critical challenge. The solutions based on inertial sensing 
systems are promising, but are subject to drift. Based on 
a brief characterization of the errors encountered in 
inertial-based dead reckoning estimates, we propose a 
solution based on a combination of foot-mounted inertial 
sensors and ultrasound beacons deployed as landmarks 
in an ad hoc fashion. This paper targets two important 
aspects within the context of providing positioning 
service for emergency responders namely on how to 
locate the deployed static beacons (using 
multidimensional scaling), and on how to track the 
responders by using a combination of ultrasound and 
inertial measurements (using a Kalman filter). We 
perform evaluation of both the ultrasonic beacon 
localization and tracking algorithm for data collected 
from real deployments for different trail topologies and 
our presented algorithms are benchmarked against an 
ultra-wideband (UWB) precision location system. Our 
approach of preventing the drift in inertial estimates by 
combining with ultrasound measurements are promising 
and offers a viable solution to providing positioning and 
tracking support to emergency responders. 
 
Keywords: emergency-response, positioning and 
tracking algorithms, experimentation, multimodal, 
sensor fusion 
_____________________________________________ 
 
1. Introduction 
 
In this paper we focus on the use of a sensor network to 
provide positioning and tracking capabilities that can 
directly support firefighters. A recent survey (Fischer 
and Gellersen, 2010) on location and navigation support 
for emergency responders highlights the requirements of 
such systems and provides an extensive list of the state-
of-the-art systems and prototypes that are specifically 
developed for this application. As quoted in the survey, 
although pedestrian dead reckoning (PDR) has been 

applied to tracking and navigation of first responders 
with promising results, and is the only self-contained 
system currently available, the position error in a purely 
inertial system increases with time and thus requires 
correction from external sources (Renaudin et al., 2007a).  
A common practice is to periodically use GPS to correct 
position estimates, but for most indoor scenarios, GPS is 
not available. We address the problem of positional drift 
by having the responders themselves deploy beacons 
(referred to as implicit deployment), as they progress into 
an unknown environment (Fig. 1). In contrast to the 
previously published research (Renaudin et al., 2007b), 
our focus is on creating an ad hoc sensor network that 
does not require any pre-deployment of infrastructure.  
 

 
Fig 1. Breadcrumb trails, with deployed ultrasound 
nodes shown as black squares and boots equipped with 
equivalent ultrasound node and inertial sensor. 
 
We use a combination of methods, namely ultrasound 
range/bearing and inertial measurements, as neither 
method is sufficient for the task independently. For 
instance, ultrasound measurements have limited 
precision (outlier measurements due to multi-path effects 
and noise) and reliability (signal loss between 
neighboring nodes due to communication or line-of-sight 
problems), and inertial tracking is prone to large drift 
with increasing distance. We strongly believe that such a 
combination of modalities can be extended to provide a 
fully functional ad hoc positioning system for tracking 
and navigating mobile users.  
 
This paper examines several issues within the context of 
providing positioning capabilities to emergency 
responders -- (i) how to reconstruct the topology of the 
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network at the time of ultrasound beacon deployment, (ii) 
once the nodes are deployed, how to localize the static 
ultrasound nodes (deployed beacons) and (iii) how 
tracking can be achieved by fusing the multimodal data. 
The outline of the paper is as follows. In section II we 
review the related work pertaining to search and rescue 
missions.  In section III we characterize the errors 
encountered in an inertial-based pedestrian dead 
reckoning solution and ultrasound range and bearing 
measurements in a mobile setting. In the section that 
follows, we highlight the beacon deployment strategy. 
We then present an algorithm for ultrasound beacon 
localization (using multidimensional scaling) in section 
V. In section VI we present a tracking algorithm 
(Kalman filtering based) for tracking the responder using 
a combination of ultrasound and inertial measurements. 
Section VII presents the performance of the presented 
algorithms based on traces of data gathered from real 
deployments. We validate the results using a 
commercially available precision UWB location system. 
Finally section VIII concludes the paper.  
 
Our results show that using a combination of ultrasound 
and inertial measurements, the drift in the inertial 
estimates can be minimized and our study offers a viable 
solution for providing ad hoc positioning and tracking 
support to the emergency responders. 
  
2. Related Work 
 
In this section we review some of the related work on 
positioning, tracking and navigational systems that were 
developed specifically for search and rescue missions. 
For more detailed information on this topic, we refer the 
reader to the recent published survey published (Fischer 
and Gellersen, 2010). Following their classification 
criteria, we mainly differentiate the existing systems in 
terms of deployment methods (pre-deployment, strategic 
or implicit) and infrastructure reliance (infrastructure 
support required or not required). 
 
(i) No deployment: Dead reckoning is the only 
completely self-contained location technique that 
requires no prior knowledge of the environment. The 
position provided by the inertial sensors invariably drifts 
over time-the drift can be reduced by using shoe-
mounted inertial sensors and resetting the velocity to 
zero at each footfall (Ojeda and Borenstein, 2006) and 
by combining the inertial measurements with data from 
an electronic compass through a Kalman filter in order to 
avoid drift in heading (Foxlin, 2005). HeadSLAM 
(Cinaz and Kenn, 2008) is a recent work that uses a 
combination of dead reckoning and measurements from 
a laser scanner (for detecting direction and distance to 
obstacles) for building the map of the environment and 
for positioning purposes. The main idea of this work is 
to develop a system that can perform Simultaneous 

Localization and Mapping (SLAM), a well-researched 
topic in robotics. As indicated in (Fischer and Gellersen, 
2010) SLAM can be quite effective when a particular 
area is scanned several times but it is not clear how this 
system might perform in the event of an emergency. It 
has been shown that disruptive motion (typical to search 
and rescue) produce scaling errors and thus the estimated 
position drifts even more than during normal walking. 
Despite these limitations, there is no other self-contained 
location technique available. This is why we, and others, 
attempt to address these limitations by combining dead 
reckoning with other complementary technologies. 
 
(ii) No deployment aided by map-
matching:  (Widyawan et al., 2008) have used floor 
plans to ensure that the successive dead reckoning 
estimates do not pass through walls using an algorithm 
based on particle filters. The idea is to discard the 
particles, which pass through the walls, and their results 
are obtained using building outlines. This work relies on 
the building plan detail to function effectively. 
 
(iii) Strategic deployment: Strategic deployment refers 
to infrastructure deployed at strategic points upon 
responders arrival either outside or inside the building. 
The navigation system developed by (Renaudin et al., 
2007b) combines PDR with map matching in order to 
prevent drift in the dead reckoning estimates. Inertial 
measurement units (IMUs) on the chest and legs are used 
to measure movement and posture. The first team to 
enter the building place an RFID tag on each door frame 
they pass through. The position computed by the inertial 
navigation system (INS) can then be corrected according 
to a database of the coordinates and directions of all 
doors in the building. The second team is equipped with 
an RFID reader and can therefore determine their 
positions as they scan each tag. This is an attractive 
solution since it is entirely ad hoc. Nevertheless it 
requires floor plans of the building and will fail in areas 
with few doors such as open plan offices or airport 
terminals. The indoor positioning system developed by 
Thales (Graham-Rowe, 2007) works similar to GPS but 
it is operational indoors: firetrucks parked around a 
building act as “satellites” that use UWB RF signals to 
locate firefighters inside a building by means of time of 
arrival measurements. Although this system might 
perform well for lightweight residential buildings, UWB 
may not penetrate larger structures that extend 
underground for instance. For this reason we choose to 
deploy a physical chain of sensors that can create a link 
to the outside both for positioning and communication 
purposes. 
 
(iv) Pre-deployment or pre-installation: The Fire 
project (Steingart et al., 2005) has developed SmokeNet, 
a wireless network of smoke detectors that are pre-
deployed in the buildings. When a firefighter node enters 
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a SmokeNet enabled building, the SmokeNet will 
identify the firefighter based on the node ID and route 
messages to the node pertaining to the firefighter's 
location, the location of other firefighters, location of the 
fire, etc.,. Since this work is based on the notion that 
sensors must be pre-deployed in the environment, the 
system is not useful when the infrastructure is severely 
damaged due to the advent of fire.   
 
(v) Implicit deployment: Infrastructure that is deployed 
by the emergency responders implicitly as part of their 
mission is referred to as implicit deployment. In (Fischer 
et al., 2008) a navigational support system based on a 
combination of foot-mounted inertial sensors and 
ultrasound beacons is proposed. The idea is to allow the 
emergency responders deploy the ultrasound beacons as 
they progress into the unknown environment.  A SLAM 
approach using a combination of inertial and ultrasound 
measurements have been addressed in our recent work 
(Fischer et al., 2011). 
 
Our work falls under the category of implicit deployment. 
We extend the prior work (Fischer et al., 2008) which 
focused on providing the navigation assistance by 
displaying an arrow on a head-mounted display unit, to 
help a person retrace a path by providing the positioning 
and tracking capability in this paper. 
  
3. Sensor Platform and Characterization 
 
In this section we give a brief overview of the platform 
that have been used for this work and report their error 
characteristics.  
 
A. Sensor Platform 
Ultrasound Sensor: The ultrasound sensors that we use 
are from (Relate project). The sensor board consists of 
four 40    KHz narrow band ultrasound transducers, a 
temperature sensor, and a battery. The ultrasound 
transducers act both as receivers and transmitters. When 
the brick is in the receiving mode, it uses data from 
transducers on which they detect ultrasonic pulses of 
sufficient strength and measure peak signal values and 
the time-of-flight (TOF) of the ultrasonic pulses sent by 
the transmitting device. The smallest TOF is then used to 
estimate the range. The angle-of-arrival (AOA) estimate 
is calculated from the relative spread of peak signal 
values measured across these transducers. More details 
on the range and bearing estimation algorithms from 
these ultrasonic devices have been previously published 
(Hazas et al., 2005). 
 
Inertial Measurement Unit: The MTx (Xsens 
Technologies) inertial measurement unit (IMU) 
comprises of a tri-axis accelerometer, gyroscope and 
magnetometer. In order to convert the MTx 
measurements into meaningful positions, the raw 

accelerations are rotated from the sensor coordinate 
system into the world coordinate system using the 
rotation matrix computed by the MTx. In our prior work 
(Fischer et al., 2008) we have presented the pedestrian 
dead reckoning algorithm, which uses shoe-mounted 
IMU’s and applying periodic zero-velocity updates 
(ZUPT). The accelerations are double integrated to yield 
position estimates. In order to reduce the position error 
(which increases quadratically with time) we reset the 
integrated velocities to zero at each stance phase 
resulting in linear error with distance covered. More 
details can be found in (Fischer et al., 2011).  
 
B. Sensor characterization 
Characterization of ultrasound sensor: In this 
subsection we briefly characterize the raw range and 
bearing measurements of the ultrasound nodes. The 
ultrasound nodes are deployed as in Fig. 6 (Sec. VII) and 
a commercially available precision ultra--wideband 
(UWB) system (Ubisense Technologies) is used as a 
groundtruth for characterizing the range measurements 
obtained from the ultrasound nodes.  Our measurement 
campaign is different from the previous work (Hazas et 
al., 2005) in the sense that we collected the ultrasound 
data while the device was moving; the earlier work 
characterized the ultrasound range/bearing measurement 
error for a static case, reporting typical range errors of 10 
cm and bearing errors of 30 degrees respectively. 
Several experiments were performed (refer to Sect:  VII 
A), and the ninetieth percentile of the range samples 
exhibit an error below 1 m and the ninetieth percentile of 
the bearing errors were observed as 60 degrees (Fischer 
et al., 2011). This is in contrast with the ultrasound range 
measurement campaigns performed in static setups, 
where the observed errors were significantly smaller. As 
with any ultrasonic ranging device, limited line of sight 
conditions (more caused due to mobility) cause 
performance degradation. When the line-of-sight 
between two devices is fully or partially blocked (much 
more due to the placement of the device on user's foot), 
several factors contribute to the measurement error. 
Firstly, the tendency of ultrasonic waves to bend around 
obstructions can slightly lengthen the measured TOF, 
reduce the received signal strength, and cause the 
received pulse shape to vary from the expected shape of 
a direct-path pulse.  Secondly, the receiver is more likely 
to identify multipath signals (i.e. reflections) as a valid 
ranging pulse. 
 
Characterization of Pedestrian Dead Reckoning:In 
this subsection we report the performance of the PDR 
algorithm. In all the experiments the IMU was firmly 
attached under the laces of the user's shoe. The 
experiment was run in the office corridors and the user 
followed the trajectory as represented by the groundtruth 
in Fig. 2. These paths were traversed several times each 
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and in all the experiments the user returns to the starting 
point.  
 

 
Figure 2. Depiction of progressive degradation of 
heading using only PDR. In Path 1, the inertial estimates 
are severely impacted by the error in heading right from 
the starting point. Path 2 starts off well, but drift is 
pronounced when repeating the trajectory multiple times. 
 
Two major sources of errors are observed in the dead 
reckoning estimates - error in distance and error in 
heading. The error in distance and heading together will 
lead to a large error in the position (as can be seen in Fig. 
2). The path shown in Fig. 2 (a) starts well but severely 
drifts off after one loop of walk, while from Fig. 2(b), we 
observe that the inertial estimates are severely impacted 
by the error in heading right from the starting point. 
Although some distance drift is inevitable due to the 
integration of noise and offsets in the raw sensor data, 
we believe that most of the distance error is due to the 
MTx incorrectly estimating its orientation as explained 
by (Foxlin, 2005). Thus we might interpret some of the 
forward motion as vertical motion, or vice-versa. Since 
MTx is a commercial product we have very little 
information about how the different sensors are used in 
computing the orientation, and almost no control over 
any of the internal parameters. Based on our experiments 
in different environments, as reported in our earlier work 
(Fischer et al, 2008) we assume that most of the heading 
errors are due to metallic objects or magnetic fields 
interfering with the MTx magnetometers. However, in 
both cases (Fig. 2(a) and (b)) we observe that the 
individual steps are not subject to huge drifts, as the 
shape of the trail adheres to the true distances, and the 
drift in inertial estimates occurs incrementally. 
 
4. Deployment Strategy 
 
In order to solve the positioning and tracking problem in 
the emergency response scenario, our solution requires 
the firefighters to deploy ultrasonic beacons along their 
path as part of their normal search operation. The 
deployment of these beacons has two main goals: to 
track the location of the firefighters by creating an 
estimate of the deployed beacon positions and secondly, 
to allow the firefighters to navigate along a previously 
deployed path. 
  

The beacon deployment algorithm needs to be simple 
(for practical reasons) and at the same time needs to take 
into account the physical limitations of the devices 
(ultrasound transmission range is limited to 5 m for our 
hardware (Relate project) and slightly more for the 
Cricket devices (Priyantha et al., 2000). At every single 
moment, a firefighter walking along the path determined 
by the beacon needs to be in contact with at least the two 
beacons at both ends of the segment of the path on which 
he/she is. 
  
Although the deployment of beacons is an added task to 
the firefighters, this is the minimal cost to be paid for 
setting up an ad-hoc infrastructure that can provide 
position and navigational assistance, which can in turn 
save lives. In reality, the beacon placement may be 
automatic (assuming a dispensing mechanism and using 
an audio triggering system that dictates when to deploy 
beacons) or strategic (e.g. at turns). We set three rules 
for deploying the beacons: (i) a beacon needs to be 
deployed at the entry point of the building, (ii) a beacon 
needs to be deployed at the point in which the last 
deployed beacon signal drops below a receiving 
threshold and (iii) a beacon needs to be deployed each 
time the firefighter takes a major turn. 
 
The first rule is straightforward: it defines the root of the 
graph created by the beacons. The second rule is 
triggered in case the firefighter walks in a straight line 
and gets outside the transmission range of the last 
deployed beacon. The last rule is introduced due to two 
reasons: on the one hand, by deploying beacons at major 
turns reduces the noise introduced by the inertial 
estimates and on the other hand, this assures that the 
firefighter will be in contact with at least two beacons 
(by mitigating the non-line-of-sight effects introduced by 
turns in corridors). The last rule is also based on the 
simplifying assumption that the geometry of the 
buildings is somewhat rectangular and the firefighters 
will move mainly alongside walls. Since the normal 
search operation carried out by firefighters covers the 
whole building where all the rooms are searched, this 
rule also increases the density of deployed beacons there 
by giving enough constraints to solve for the beacon 
position estimation. 
  
Deploying the beacons in the above manner has the 
advantage that it offers an alternative to navigation 
alongside the deployment based on computed position 
only. The deployment of the beacons can be done by 
marking the order in which the beacons have been 
deployed (assuming synchronized low-resolution timers 
on the beacons and a button being pushed at the moment 
of deployment). This way, each beacons receives an ID, 
based on the deployment time (the first beacon deployed 
having the lowest ID). In case of emergency, the 
firefighters can follow the ultrasound signals and 
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navigate to reach the exit (Souryal et al., 2007) (by 
moving always towards the beacon with the smallest ID 
they can hear).   
 
5. Static Beacon Localization 
 
When all the beacons have been deployed, we can 
employ a static localization algorithm to compute their 
positions. Once the position of the beacons is computed, 
this information can be used to track the firefighters by 
enabling mechanisms such as the use of Kalman tracking 
(Sect. VI). 
 
Many algorithms have been developed for locating a 
static network. Centralized approaches such as 
multidimensional scaling (MDS)  (Shang et al., 2003) 
and convex position estimation (Doherty et al., 2001) or 
distributed ones such as distance vector (DV) based 
techniques (Niculescu and Nath 2003) and robust 
quadrilaterals based techniques (Moore et al., 2004) 
solve the same problem with different methods. We 
decided to use the MDS approach, as the algorithm does 
not rely on beacons and provides results close to the 
achievable optimum (Costa et al., 2006). MDS has as a 
drawback the fact that traditionally it is a centralized 
algorithm, although distributed variants have been 
proposed (Ji and Zha, 2004). For our application 
scenario, both approaches will work (the main 
disadvantage of the centralized approach - high traffic 
needed - is counteracted by the low connectivity of the 
network and the delay tolerance of the network - beacons 
are deployed slowly). 
 
MDS takes a global view of the information available in 
the network (the measured or estimated distances 
between all devices). MDS provides a representation of 
the network topology, accurate up to a translation, 
rotation and flip. This uncertainty is usually solved by 
choosing three nodes with known positions in a 2D setup, 
effectively anchoring the setup. In the case of our 
scenario, this uncertainty is easily reduced by making 
use of the map of the building or the communication 
between the firefighters and the incident commanders 
outside.  
  
One issue arising with the static localization algorithm 
(and with MDS in particular) is that the connectivity of 
the network is very low; in the worst-case scenario each 
beacon only has two neighbors. The missing distances 
needed for MDS to run can be replaced in at least two 
ways: using the distance computed on the shortest path 
(Ji and Zha, 2005) or by employing a separate radio on 
each beacon. The second approach is less preferred 
because radio communication can provide only a very 
rough estimation of distance indoors (e.g. based on 
received signal strength indication). This comes at the 

cost of a more complex beacon hardware platform and 
the need of a radio communication protocol stack.  
 
6. Tracking Algorithm 
 
In this section we present our use of a Kalman filter to 
track a mobile user along a trail of ultrasound nodes pre-
deployed at “known” locations using both inertial and 
ultrasound measurements. Kalman filtering based 
approaches have been used for several tracking 
applications (Djugash et al., 2005). The tracking 
algorithm we present here, highlights how measurements 
from two different sensing media (ultrasound and inertial 
measurements) can be fused by a Kalman filter. The 
algorithm presented is inspired by SCAAT tracking as 
proposed by (Welch and Bischop, 1997) where 
incomplete data can be used for location, as opposed to 
methods where measurements are processed in batches. 
The SCAAT method blends individual measurements 
that each provide incomplete constraints into a complete 
state estimate. 
 
The user wears an ultrasound node on the toe of their 
shoe and an inertial sensor is attached to the foot. The 
ultrasound node emits pulses approximately three times 
per second and inertial measurements are sampled at 100 
Hz. The inertial measurements are recorded in “step 
length” i.e. the distance moved per time step and “step 
heading" i.e. the difference in heading between two time 
steps. Based on our observations reported in Sect. III 
where individual steps are not subject to huge drifts and 
the drift in inertial estimates occurs incrementally, we 
use the Kalman filtered ultrasound measurements to 
correct for the drift in inertial sensors. 
  
We formulate an EKF using a state vector xk with four 
variables, two position variables u, v, and two correction 
variables ψ and scale, where ψ refers to the correction 
factor to be applied to heading estimate and scale refers 
to the correction factor to be applied to distance 
estimates of the inertial sensors. After any discrete time 
step, the filter has an idea of its state and how confident 
it is in that state. The filter then corrects the predicted 
state based on the most recent measurements and its 
internal state. The measurement function here represents 
the range and bearing converted to position estimates. 
While it is also possible to use range-only and bearing-
only ultrasonic measurements, we found that the best 
result is achieved using both the modalities. 
  
The filter is initialized with a posterior state estimate xk- 
and uncertainty Pk- We set the initial state estimates 
based on the real position measurements reported by the 
Ubisense system deployed in the same test area. 
Alternatively, one could set the initial state estimates 
based on averaging the first few ultrasound 
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measurements through non-linear regression (Hazas et 
al., 2005). Since we use a SCAAT implementation, we 
order the measurements based on the recorded time-
stamps as to whether the current measurement is an 
ultrasound measurement or inertial measurement. Each 
ultrasound measurement consists of a timestamp, the 
position of the deployed node that took the measurement, 
and the relative range and bearing to the mobile node. 
Each inertial measurement consists of a timestamp, the 
step distance (difference between the current and 
previous position) and step heading (difference between 
the current and the previous heading). 
 
If the current measurement is an ultrasound 
measurement, the position and correction to be applied 
to the heading i.e. ψ and the error in distance is 
estimated i.e. scale and updated as part of the filter 
estimates. If the subsequent measurement is an inertial 
measurement, it uses the ψ and scale estimated by the 
filter when the previous ultrasound measurement was 
received and add this correction factor to the current 
inertial step length and step heading. The idea here is to 
correct the inertial step length and heading based on the 
correction factor that is estimated during the previous 
ultrasound measurement. Basically, when the 
measurement is an inertial measurement, the filter does 
not update the state but corrects the inertial estimates. In 
doing so, the drift of the inertial measurements is 
effectively scaled based on the correction factor 
determined by the ultrasound measurement. In principle, 
if the ultrasound measurements are frequent enough, the 
error in inertial estimates will be minimized. 
 
7. Experimental Evaluation 
 
In this section, we first outline the test bed used for 
collecting data (ultrasound and inertial measurements) 
and the ground truth or reference system used for the 
evaluation purposes. We then summarize the 
performance of the beacon localization algorithm in Sect. 
V and tracking algorithm in Sect. VI. 
 
A. Data collection and Reference system 
Twenty-one ultrasound nodes were deployed (receivers) 
covering an area of approximately 15x9 m. The position 
of deployed nodes was surveyed apriori. In all the 
experiments (varying from three till eight minutes) the 
inertial and the transmitting ultrasonic sensor were 
firmly attached to the user’s foot. Many different paths 
were traversed along the deployed nodes (refer to Fig. 3).  
 
In order to validate our tracking algorithm we need to 
compare the results to some ground truth. We use the 
results of the Ubisense Location Engine (Ubisense 
Technologies) (refer to our previous work 
(Muthukrishnan and Hazas, 2009) reporting the 
Ubisense performance for the same deployment area) to 

report the ground truth measurements. In addition to the 
IMU and ultrasound node, the users also carried an 
Ubisense compact tag to gather the ground truth for 
validation purposes. Although the Ubisense estimates 
will have some error (also due to the fact that the 
ubisense tag was placed at a different location on the 
user when compared to the ultrasound node), they are 
close enough for the purposes of judging the validity of 
the tracking performance (especially to see the shape of 
the trail). For static beacon localization, the manually 
surveyed points are used to validate the results of MDS. 

 
Fig. 3. Test paths, six different experimental traces 
ranging from three till eight minute duration. 
 
B. Evaluation of Beacon Localization Algorithm 
In this section we evaluate the performance of MDS 
algorithm for the localization of the beacons (reported in 
Sect. V). As previously mentioned, one of the problems 
occurring is that not all range estimates between all 
beacons are available (because of the trajectory of the 
pedestrian, each beacon has only two neighbors). We 
focused our analysis on two methods to supply the 
missing range information (additional methods exist - for 
example, the authors of (Djugash et al., 2005) suggest 
sending robots in the network to supply missing 
information). 
 
The first method we analyze is suggested by the authors 
of MDS in (Ji and Zha, 2004). The missing links can be 
replaced with the ranges computed on the shortest path 
(similar to the approach taken by DV distance method 
(Niculescue and Nath, 2003). 
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Fig. 4. Static localization errors – MDS (missing links 
are based on shortest path) (a) Effect of varying 
ultrasound transmission range; (b) Effect of varying 
number of beacons.  
 
In the following, we ran hundred simulations for each 
metric of interest. The simulation setup we used 
reproduces the deployment of the beacons in the 
experimental setup. For the noisy ultrasound range 
measurements we used random samples drawn from a 
distribution matching the collected experimental data. 
We took these steps to ensure that the simulation results 
match the experimental setup as close as possible. The 
results are provided as boxplots of the mean value of the 
error considered for each simulated case. We chose to 
represent a function of the individual mean errors rather 
than all measurements, because we are interested in the 
mean behavior, while in the other case the outliers would 
have taken most of the space in the figure. 
  
Fig. 4(a) shows the error characteristics for the case of 
real deployed beacons (uniformly over the simulated 
area). We simulated various scenarios where the 
maximum transmission range of the beacons is varied 
(the values on the X axis). The results indicate a mean 
positioning error between 1 m and 3 m. We notice a 
slight increase in performance with the increase of the 
maximum transmission range (leading an increased 
connectivity in the network). The deployment of the 

nodes along the path or randomly across the area has 
basically the same effect - similar results were obtained 
in simulations because both setups provide a uniform 
coverage of the area. 
 
Another fact arising from the simulation studies is that 
the noise level has little influence on the results (it is 
small compared to the measured distances) - this leading 
to the fact that the underlying topology has the highest 
impact on the obtained results (previous work, such as 
(Moore et al., 2004) describes the effects of the 
underlying topology graph with respect to achievable 
localization accuracy). In order to sustain this idea, we 
also evaluated the effects of beacon density, by 
modifying the number of beacons (“virtual” beacons 
were added based on a 2D uniform random distribution). 
As shown in Fig. 4(b) a larger number of beacons does 
not have any relevant benefit (in fact it increases the 
mean error), because adding more beacons actually 
decreases the ratio between known range measurements 
and missing range measurements. The localization error 
has a minimum around 20 deployed beacons (see Fig. 
4(b). Using fewer beacons will result in an exponential 
increase of the localization error, as studied in (Shang et 
al., 2003). 
  
The second method we describe refers to using radio 
communication to fill in the missing links in the network. 
The problem of indoor radio channel modeling and 
distance estimation based on received signal strength 
indication has received significant consideration in the 
past (e.g. (Patwari et al., 2003)). We used the same 
“traditional” channel model described in (Patwari et al., 
2003) (with the standard deviation of RSSI 
measurements σ=4dB and the attenuation coefficient 
n=2.3) and generated the missing links (the noise is 
assumed to have a lognormal distribution (Hashemi, 
1993) (Rapport, 1996). Fig. 5(a) shows the results 
obtained by varying the maximum allowed transmission 
range of the beacons, while Fig.5(b) shows the effects of 
various noise levels on the localization error 
characteristics. 
 
Radio communication-based distance estimation exhibits 
significantly more errors than the ultrasound based one. 
The conclusions we can draw from the presented study is 
that using radio communication-based techniques leads 
to significantly lower accuracy. Even when changing 
significantly the noise level on the radio links, the 
achieved accuracy was still lower than the first method 
we proposed. 
 
Based on these results, we conclude that using RSSI 
distance estimation in this scenario should be avoided 
when one can rely on accurate ultrasound distance 
measurements. As shown in the previous graphs (based 
on simulation results backed by data collected from the 
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real deployment) the static localization techniques lead 
to a mean positioning error between 1m and 3m. This 
accuracy cannot be increased by using more beacons. A 
slight increase can be obtained by using a more accurate 
ultrasound ranging hardware - just a minor improvement. 
This is somewhat the limit of what is feasible using static 
localization schemes by themselves - the choice of the 
centralized MDS technique guaranteeing a result very 
close to the theoretical limit (Costa et al., 2006). 

 

 
Fig. 5. Static localization errors – MDS (missing links 
are based on RSSI estimates) (a) Effect of varying 
ultrasonic transmission range; (b) Effect of varying noise 
level. 
 
C. Tracking Performance Evaluation  
In this section we report the performance of the tracking 
algorithm presented in Sect.VI. Table 1 summarizes the 
performance of the tracking algorithm for the all the six 
walking traces. The fiftieth and seventy-fifth percentile 
errors (inclusive of all the paths in Fig., 3) are 1.9 m and 
3.7 m respectively. Inertial combined with ultrasound 
performs well in all cases better than inertial estimates 
only (refer to Fig. 6). 
 
 
 
 

Path 50% conf level 
(m) 

75% conf. level 
(m) 

a 2.35 3.70 
b 2.11 4.57 
c 1.45 3.46 
d 1.06 2.38 
e 1.65 2.8 
f 3.76 4.92 
Overall 1.93 3.70 

 
Table 1. Tracking performance summary. All values 
shown pertain to the tracking results of each of the six 
walking traces shown in Fig. 3. 
 
Fig. 6 shows the estimated path of the tracking algorithm 
with Ubisense estimates plotted for the purposes of 
comparison. In most cases, we notice that the shape of 
the resultant trail matches to the Ubisense result and the 
PDR only trail is significantly impacted by the heading 
errors. Also one can notice that there is a difference in 
the performance of the PDR among all the traces. This 
may be due to the internal calibration algorithm used by 
the Xsens IMU, as it has been reported that the internal 
calibration algorithm adapts to the characteristics of the 
users movement (Xsens Technology). Comparing our 
results with the ground truth, we observe that the 
Ubisense results are much smoother than the presented 
algorithms, re-assuring that the ground truth we have 
used is more likely closer to the real path. Also, from the 
Fig. 6 we see that the algorithm can perform well for the 
intended application of locating the user within room-
level. The other benefit of fusing multiple modalities 
comes with regard to the update rate; since ultrasound 
measurements are sampled only every 5 Hz 
approximately while the inertial sensors are sampled at 
high rate (typically 100 Hz), fusing multiple modalities 
by using SCAAT based algorithm, increases the update 
rate of the resultant tracking algorithm. The performance 
of the algorithm will improve if the beacon 
measurements are supplied more frequently and will 
deteriorate for lower beacon densities and for error in the 
beacon position.  
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Fig 6.  Path estimated by Kalman filtered ultrasound-inertial and inertial-only measurements. 
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Fig 7. Error with respect to Ubisense (reference) 
estimates 
 
Fig. 7 shows the results of tracking performance for one 
of the paths (c) that we illustrate in Fig. 3. From Fig. 7 
we observe that in general the error in the estimates 
decrease periodically, confirming that the moving device 
was getting closer to the deployed ultrasound nodes. 
  
MDS computed position: As reported earlier applying 
MDS to estimate the deployed beacons position results 
in an average positioning error of 1 to 3m. While, we 
have used the perfect location of the deployed nodes for 
the analysis in Fig 6 and Table 1, Fig. 8 shows the results 
of Kalman tracking when we use the MDS computed 
beacon positions in place of the perfectly known beacon 
positions. Comparing with Fig 6, the trajectory is slightly 
pulled in the direction of the newly computed beacons. 
This shows that there is a tight requirement for 
computing the beacon locations as accurately as possible. 
One possibility to improve the accuracy of the beacon 
position is to use the results of MDS as a first 
approximation and then obtain a refined position by 
extending Kalman filtering as explained in (Djugash et 
al., 2005). 
 

 
Fig 8. Path estimated by Kalman filtered ultrasound 
measurements (using MDS estimates). 
 
Parameters and its effect: One of the issues arising 
with Kalman filter is that the system model is not well 
known, and the modelled noise values need to be 
increased in order to account for the errors. The specific 
parameters we used in the tracking algorithm for the 

process noise covariance (Q) and measurement noise 
covariance (R) were chosen empirically and does not 
reflect to measurable noise values. We observed that 
with increasing values of the measurement noise 
covariance and process covariance, the accuracy of our 
algorithms degrades. In future, adaptive Kalman filters 
that have the capability of tuning the thresholds 
automatically based on the current measurement will be 
explored.  
 
Comparison with ultrasound only Kalman filtering: 
It is interesting to compare the performance of our 
tracking algorithm with ultrasound-only Kalman filtering 
approach to showcase the benefit of multimodal fusion. 
Raw ultrasound measurements are noisy (especially 
bearing), thus using raw measurements directly to 
estimate the position of the mobile node will give a 
rough trail. Here, the state vector is both the position 
variables and velocity variables. We transform the 
reported range/bearing measurement to Cartesian 
coordinates. After any discrete time step, the filter has an 
idea of its state and how confident it is in that state. The 
filter then corrects the predicted state based on the most 
recent measurements (range/bearing converted to 
position) and its internal state. Fig. 9 reports the 
performance comparison between both the tracking 
algorithms. Inertial measurements combined with 
ultrasound measurements perform well in all cases better 
than ultrasound only tracking, and accuracy is typically 
improved by about 1.5 m. 
 
Although there are other ways to combine the 
heterogeneous data (Djugash et al., 2005, Fischer et al., 
2011) the results show that our approach is well suited 
for the problem at hand and analyzing the trade-off 
among different approaches is a subject of future work. 

 
Fig. 9. Tracking performance of Kalman filtering – 
ultrasound and inertial measurements and ultrasound 
only (all test path included).  
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8. 8. Conclusions 
 
In this paper we have focused on the use of a sensor 
network to provide positioning and tracking capabilities 
that can directly support firefighters. Although 
application of sensor networks to support emergency 
response and in particular firefighting has been explored 
in a range of projects by pre-deploying positioning 
infrastructure, our research in contrast focuses on a 
sensor network approach that does not require any pre-
deployment of infrastructure. We have addressed the use 
of ultrasound and inertial sensing technologies to aid 
firefighters by providing positioning and tracking 
solutions. Based on the understanding of the errors 
encountered in the PDR estimates, we have looked into 
complementary technologies that can correct for the drift. 
Specifically, we have used ultrasound sensors, which 
have the capability to measure relative range and bearing. 
  
We have used the algorithm based on multi-dimensional 
scaling (MDS) for estimating the position of the beacons. 
Two methods were analyzed to fill in the missing links 
needed for MDS, shortest path and radio communication 
based approach.  For tracking, we have used an extended 
Kalman filter based algorithm. The results of the 
ultrasound fused with inertial sensors are clearly a win 
over only inertial data. We also showed how ultrasound 
fused with inertial measurements have improved 
accuracy over Kalman filtered ultrasound-only 
measurements. This is because the error in inertial 
estimates starts to grow gradually, and periodic 
corrections from ultrasound estimates will help in 
minimizing the drift. The fusion of ultrasound combined 
with inertial not only improves the accuracy, but 
increases the update rate of the overall system. However, 
the increased processing also consumes more of the 
mobile device's resources. Analyzing these tradeoffs and 
usage of other probabilistic algorithms such as particle 
filtering or variants of Kalman filtering such as 
unscented Kalman filtering is a subject for future 
investigation. We strongly believe that such a 
combination of modalities (inertial and ultrasound) can 
be extended to provide a fully functional ad-hoc 
positioning system for tracking and guiding the 
emergency responders.  
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