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Abstract 
 
3D personal navigation is becoming a standard feature in 
smartphone platform, which develops in a fast speed 
nowadays. However, the hardware restrictions of 
smartphone may degrade the 3D rendering performance, 
and such real-time operation is not an energy-efficient 
procedure on smartphone, because heavy computation 
consumes a lot of power, which is crucial for a 
smartphone equipped with limited capacity battery. This 
paper presents a novel solution utilizing geocoded 
images instead of 3D models to mitigate these technical 
restrictions on the smartphone. To demonstrate the 
performance and the improvement of the proposed 
solution, evaluations are carried out in term of 
positioning accuracy, resource consumption, efficiency, 
visualization, and labour costs. The results show that the 
proposed solution has overwhelming advantages in all 
these comparisons. This solution also has the capability 
of achieving a higher frame rate and has a better 
visualization performance as well. In addition, the 
proposed solution provides an optional way to decrease 
the labour costs and hardware investment to build up a 
similar but quick application by utilizing photos instead 
of complex 3D model construction for a small-scale area 
personal navigation application. 
 
Keywords:  personal navigation, geocoded images, 
evaluation, smartphone  
_____________________________________________ 
 
1. Introduction 
 
Navigation in smartphones has been in spot light for the 
past decade. 3D personal navigation technology gives 
smartphone users totally new experience, which can help 
mobile users be familiar with surroundings and find their 
destinations easier comparing with traditional 2D 

navigation. Therefore, it has a huge market potential in 
the future.  
 
In the traditional 2D navigation application, road 
information displayed is composed with points, lines, 
polygons and texts abstractly. A foreigner, who cannot 
understand the relevant text indication of the 2D 
navigation application, will be easily lost his/her right 
positions. However, even a stranger, who is completely 
unfamiliar with the visited city and doesn’t understand 
the local language, can easily recognize surroundings 
from a realistic 3D street views, thus to find her/his 
location. Fig. 1 briefly shows the difference between 2D 
and 3D navigation.  
 

 
Figure 1: Comparison between 2D navigation and 3D 

navigation 
  
3D technology in mobile devices has been remarkable 
maturity and popularity in recent years. Several 
developers have implemented or prototyped various 3D 
navigation applications in smartphone platform.  
 
In 2001, Rakkolainen (Rakkolainen, et al., 2001) 
proposed a system that applied 3D Virtual Reality 
Modelling Language (VRML) models of a city centre 
with a 2D map of related area on a personal digital 
assistant (PDA) terminal. The project studied the effects 
of 3D graphics on navigation and way finding in a city 
environment. But due to slow rendering speed in the 
PDA, the project was simulated on a laptop.  
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In 2005, Burigat (Burigat, et al., 2005) investigated a 3D 
navigation application for location-aware presentation in 
a smartphone for tourists. However, the computational 
capability of the smartphone could not meet the 
requirements for keeping the good performance and right 
representation simultaneously. Furthermore, the image 
displayed did not adequately correspond to the actual 
viewpoint in some situations because of low accuracy of 
on-board GPS data. 
 
Nurminen (Nurminen, 2006) developed a solution which 
turned a photorealistic VRML model into an efficient 
real-time 3D map running on a smartphone without 
hardware acceleration in 2006. The 3D models utilized 
in smartphone were downloaded via 3G networks in an 
optimized, progressive download scheme. However, the 
download scheme required strictly on the networking 
transferring speed and that might not an economical 
solution for a foreign user because of expensive date 
transmission fee. 
 
In 2007, Coors (Coors, et al., 2007) presented a mobile 
navigation application by using 3D city models. The 
application provided navigation support with cognitive 
semantic route descriptions by using 3D landmarks. 
However, the project did not implement the navigation 
function in a smartphone, but simulated the virtual 
navigation on a computer. 
 
In 2010 Shanghai EXPO, an application named as 
Three-Dimensional Personal Navigation (3D PN) and 
Location-Based Service (LBS) in a smartphone was 
demonstrated successfully in the Shanghai EXPO Park 
(Liu, et al., 2010). The project generated a 3D city model 
through aerial photogrammetry images and point clouds 
collected by a car-borne laser scanner (Kukko, et al., 
2007). We developed a 3D indoor and outdoor seamless 
navigation and positioning system, which consisted of 
GPS receiver, multiple Micro-electromechanical 
Systems (MEMS) sensors, wireless network positioning 
chip and map matched technology (Chen, et al., 2009b). 
A Nokia 6710 smartphone, which was installed with the 
application, could accurately navigate a mobile user to 
the destination in the Expo Park (Pei, et al., 2011). 
However, due to the hardware restriction, the insufficient 
rendering speed causes several problems, e.g. low 
refreshing rate, and long initialization time. Based on the 
3D PN LBS program which is based on 3D model, we 
propose a geocoded image based solution to mitigate the 
hardware restrictions to present a better user experience.    
 
This paper is organized as follows. Section 2 addresses 
the motivation of this study. Section 3 describes the 
architecture of the navigation component and discusses 
the procedure of the geocoding and visualization. 
Section 4 presents the field test. Section 5 provides and 

evaluates the test results. The conclusions are made and 
the further studies are outlined in Section 6. 
 
2. Motivation 
 
Although techniques of smartphones and other handheld 
devices develop rapidly, physical conditions still limit 
the 3D visualization application in those devices. A 
desktop or a workstation often relies on dedicated 
hardware and architecture design, e.g. Intel Accelerated 
Graphics Port (AGP) interface, for 3D graphics to 
achieve real-time performance. It is still a challenging 
task for a handheld device to render 3D graphics as the 
applications in 3D are extremely resource-demanding 
programs (Pulli, 2006). 
 
Comparing with computer platforms, smartphone 
platforms have the various hardware restrictions such as 
CPU power, memory size, and bus bandwidth. The 
hardware capabilities of a smartphone nowadays are 
similar to those of the desktop PCs about 10 years ago 
(Chun, et al., 2009). Low bus bandwidth in smartphone 
affects the vertex per polygon count and frame per 
second (FPS) in applications (Chehimi, et al., 2006). 
And the data transferring from CPU to graphics routines 
are also restricted due to low bus bandwidth of 
smartphones. Meanwhile, many enticing 3D effects such 
as 3D wrapping, involve floating-point arithmetic. But 
most smartphones do not have floating-point units in 
their processors. Instead, such floating point operations 
are emulated in software which spend 50 times CPU 
load comparing with integer operations (Wagner, et al., 
2007). 
 
In the previous 3D PN LBS application, its visualization 
engine employs a simplified 3D model with compressed 
textures in order to accelerate the rendering speed. Even 
though, the rendering performance is still restricted by 
the hardware limitations of smartphone platform. 
Insufficient rendering causes a long period of 
initialization. In the case of Shanghai EXPO, it takes 
more than 30 seconds to complete the initialization of 
the application, which includes more than 200 diverse, 
unique and complex 3D pavilion models. The texture of 
the building is temporary missing because of the 
insufficient rendering speed as shown in Fig. 2 (a). 
 

 
Figure 2: Screen snapshots in the 3D PN application 

which is based on 3D models. 

(a) (b) (c)(a) (b) (c)
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The similar situation happens during navigation 
procedure. In order to decrease the resource 
consumption, 3D models and its textures are loaded tile 
by tile. In some worse case (see Fig. 2 (b)), 3D models 
cannot be rendered in time because of the limitation of 
computation power. Such display lag degrades the user 
experience of navigation because it is difficult to obtain 
textual information in time.  
 
Although the compressed texture and the simplified 
model are employed to accelerate the rendering speed, it 
results in low resolution model and texture, which makes 
the building facade too vague to be identified as Fig.2 (c) 
present (Wang et al., 2012). 
 
To achieve a better visualization performance and 
enhance energy efficiency by mitigating the technical 
restrictions of the 3D model based solution in a 
smartphone for small-scale area application, this paper 
presents a new approach whose visualization engine is 
no longer dependent on 3D models, but utilizes the 
geocoded images extracted from 3D models on a 
computer platform (Wang, et al., 2012, Chen, et al., 
2012c). Geocoding is a procedure of transforming the 
objects associated with georeference from other 
geographic data (Goldberg, 2008). The motivation of 
this paper is to develop a system using geocoded images, 
and build up a workable 3D pedestrian navigation 
solution on the smartphone platform. Furthermore, a 
series of tests are carried out to prove the image-based 
solution has advantages than the previous 3D models 
based solution.   
 
3. System Development 
 
By modifying the navigation component of the 3D PN 
LBS application, the proposed geocoded image based 
personal navigation system is developed on the Nokia 
Series 60 (S60) smartphone platform. The system 
consists of a locator component, a navigation 
component, a visualization component, and a LBS 
component (Pei et al., 2009a).  
 
The locator component transfers positioning information 
to the navigation component in the software. Such 
positioning information includes the location and 
heading information, obtaining either from the built-in 
positioning sensors in the smartphone, such as 
accelerometer, digital compass, or from radio 
opportunity signal, for example, a GPS receiver, a 
WLAN (Wireless Local Area Network), or a Bluetooth 
chip. The navigation component combines the 
positioning information with road data, and navigates 
users to find their destination. The visualization 
component displays the street view of current position. 
The LBS component constructs the interface to operate 
the landmarks. For detailed information about this 3D 

model based personal navigation system, please refer to 
(Chen, et al., 2008, Chen, et al., 2009b, Chen, et al., 
2010a, Wang, et al.2012, Pei, et al., 2010, Pei, et al., 
2011).  
 
3.1 Navigation component 
The flow chart of navigation component is shown in Fig. 
3. The navigation component fulfils the functionalities 
like querying, map matching and route planning. 
 

 
Figure 3: Flow charts of the navigation component. 

 
The navigation component decodes the road data into an 
adjacent matrix and a spatial index. The adjacent matrix 
stores the relationship between every two nodes, which 
is utilized in the route planning module for calculating a 
shortest path; and the spatial index (Pei, et al., 2009b), 
which is generated based on the Minimum Boundary 
Rectangle (MBR) property of each arc, is used for 
querying module. 
 
The querying module searches the closest road and the 
closest node for a given position point. The route 
planning module calculates the shortest path between 
two existed nodes, and the map matching module locates 
the given position point in the road data, and fetches the 
correct picture. 
 
3.2 Querying module 
In the querying module, as illustrated in Fig. 3, the 
related position of point A is transferred into the 
navigation module with its coordinates, heading and 
velocity. The coordinates of the given point A are 
converted into point A’ in local East-North-Up (ENU) 
coordinates as cyan dot in Fig.4 presents, then a buffer 
square (yellow square in Fig. 4) centred on the given 
point A’ is set with a given buffer value as shown in Fig. 
4.  
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Figure 4: The procedure of querying 

 
Every MBR in the spatial index as a requested geometry 
is tested against the query geometry, this buffer square, 
to determine the spatial relationships between two 
geometries. The Dimensionally Extended 9-Intersection 
Model (DE-9IM) (Clementini, et al., 1993) is used to 
present the pair-wise spatial relationship. There are 
seven possible relationships in this case: contains, 
overlaps, touches, within, equal, disjoint, and covers. 
The querying list is re-filtered to exclude the arc if a 
‘disjoint’ relationship is predicated. Among the filtered 
querying list, the querying module calculates the closest 
arc and node apart from the given point A’.  
 
3.3 Map matching module 
The map matching module is important for the personal 
navigation in the smartphone, because the positioning 
accuracy of the on-boarded low-cost GPS is poor. It is 
not surprising that the smartphone even locates user on a 
place tens of meters away from its true position in some 
GPS degraded environments. However, the requirements 
of positioning accuracy for smartphone based personal 
navigation are stricter than car navigation. The 
positioning error requires to be mitigated under several 
meters for most LBS applications.  
 
A simple map matching algorithm is applied to minimize 
the calculation demanding and mitigate the position error 
efficiently simultaneously. As the position obtained from 
a built-in GPS which might deviate from the true 
position for several meters, to achieve better accuracy, 
we correct the position point P(x, y) by projecting the it 
onto the point P’(x’, y’) which locates on the centre of 
the road as Fig. 5 displays. The correcting steps are as 
following: A) calculates the angle of the arc AB to the 
true north as α ; B) calculates the angle θ  which is the 
deviated angle from arc AP to the arc AB by cosine 
formula; C) multiplies the length of AP with cosθ  to get 
the length of AP’; D) projects point P(x, y) to the arc AB 
by formula (1) 
 

                       
' '

1
' '

1

sin
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y y AP

α

α

 = + ×
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                        (1) 

 
Figure 5: The diagram of projecting the deviated point P 

to the closest arc AB. 
 
Meanwhile, the heading output from the smartphone is 
not stable and not entirely consistent with the direction 
of the road which is calculated from the road data. If the 
angle between the heading and the road direction is less 
than 90 degrees, the algorithm assigns the heading with 
the direction of the road. Otherwise, the opposite 
direction is assigned. More details can be found in 
(Chen, et al., 2012c). 
 
3.4 Route planning module 
After the quarrying module successfully finds the closest 
arcs and nodes of the start node and the destination node 
respectively, the shortest path is calculated using 
Dijkstra's algorithm (Cormen, et al., 2001). The 
algorithm uses an adjacent matrix of the graph V which 
represents the connectivity of the road data and contains 
the distance between two arbitrary nodes if they are 
connected. A traversal algorithm based on the adjacency 
matrix is applied for the route searching.  
 
The algorithm proceeds as the pseudo-codes shown in 
Table 1, and returns the queue Q as the shortest path 
from the destination to the start node. 
 
Table 1:   Pseudocodes of route planning module 

 

100 50 0 50 100

MBR

Buffer square

100 50 0 50 100100 50 0 50 100100 50 0 50 100

MBRMBR

Buffer square

θ
α

Node B(x2,y2)

Point P(x,y)

P’ (x’,y’)N

Node A
(x1,y1)

Node B(x2,y2)

Point P(x,y)

P’ (x’,y’)N

Node A
(x1,y1)

/* Initialization: set every distance to INFINITY except the 
start node; */ 

for vi∈V  // V is the adjacent matrix of the graph 
dist [i] = INFINITY; 
previous[i] = NULL; 

end for; 
dist [start] = 0 ; 
while Q is not empty:  // Q is the set of all nodes in Graph 
 u = vertex in Q with smallest distance in dist []; 
 if dist [u] = INFINITY 
      break;  // which means no vertices can access to 

start node 
end if; 
remove u from Q; 

      for each neighbor v of u // v∈Q 
       if(dist[u] + length(u, v) < dist[v]) 

dist[v] = dist[u] + length(u, v); 
previous[v]=u; 
update Q;  // Reorder v in the Queue 

     end if; 
               end for; 
     end while; 
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3.5 Geocoding images  
Images utilized in the solution are obtained from the 3D 
model constructed on a computer with 3D Max software. 
Considering the speed of a pedestrian is normally 3-7 
km/h, the interval of images generated is set as one 
meter to be more comfortable for human’s eyes. The 
resolution of the image is scaled to fit the window of the 
smartphone as 240x320 pixels, and the average size of 
the image is 6 KB.  
 
The images are associated with geographic information 
by the nomination based on the following premises: A) 
each arc is numbered by a unique natural number; B) 
every arc has two directions. The images are geocoded 
according to the following criteria: A) the arc belonged; 
B) the start node of the arc, C) the distance apart from 
the start node. After that, a unique geocoded filename is 
assigned to each image according to the IDs of the 
belonged arc and start node as 
ArcID_StartNodeID_ImageID. In this way, any real-
time position of a pedestrian on a path can be located in 
the relevant geocoded image. (Wang et al., 2012) 
 
4. Field Test 
 
To evaluate the positioning accuracy and the 
performance of the proposed methods and algorithms, 
we carried out an outdoor field test on the 22nd Jul, 2011 
at Tapiola centre in Espoo, Finland.  
 
A tester carried a backpack platform which was firmly 
installed with a NovAltel Synchronized Position Attitude 
Navigation (SPAN) system, and took two experimental 
Nokia 6710 mobiles in hands. The mobiles were 
installed the model-based application and the image-
based application respectively. An assistant took a laptop 
to download and archive the data from the SPAN for 
post-processing. NovAtel’s SPAN technology tightly 
couples precision GPS receiver with robust Inertial 
Measurement Units (IMUs) to provide reliable, 
continuously available measurements including position, 
velocity and attitude even though short periods of time 
when no GPS satellites are available. Data from the 
SPAN were post-processed to generate the reference 
trajectory with centimetre level accuracy. Such accuracy 
can meet the experiment’s requirements for evaluating 
the performance and the improvement of the proposed 
map matching algorithm. 
 
The installation of SPAN in the field test is shown in 
Fig. 6. It composed with a GPS antenna, an IMU, a GPS 
receiver and a battery. The trajectory of GPS 
measurements of SPAN for Tapiola test is illustrated in 
Fig. 7 with reference of Google Earth. The route of the 
test started from A (Handels Bank) to B (Sokos 
Shopping Centre), and returned from B to A; then started 
from A again, and turned left at C (Stockmann) and 

walked to D (Pohjola Insurance Co.,), then returned to C, 
then went to B, and finally went back to E (Nordea 
Bank). The GPS gap between location C and location D 
in Fig. 7 is because in that period, the high buildings in 
that area blocked the GPS signal. The similar situation 
also happened in the beginning period of the test when 
the GPS visibility was poor because of the blockage 
from southern buildings. However, the IMU provide 
continuous and precise measurement during GPS 
outrage.  
 

 
Figure 6: The installation of SPAN. 

 

 
Figure 7: Trajectory of GPS measurements of the SPAN. 
 
5. Results and Evaluations 
 
The evaluation is carried out by comparing in the 
performance between the model-based solution and the 
image-based solution in terms of: A) positioning 
accuracy, B) resource consumption, C) efficiency, D) 
visualization E) labour cost. Some basic test results have 
been presented in (Wang et al., 2012, Chen, et al., 
2012c); more detailed data could be found in this 
section. 
 
5.1 Positioning accuracy evaluation 
Fig. 8 presents the trajectories from three data sources: 
built-in GPS data archived by smartphone in blue, map-
matched dataset based on the original GPS in green, and 
the reference trajectory from the SPAN in red in local 
coordinate. The road data are also presented in black, 
which are the base for querying and route planning. 
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Figure 8: The trajectories of raw GPS data, map matched 
results and reference achieved by the SPAN  
 
The original GPS data are randomly scattered around the 
reference trajectory. On the road CD, as the reason 
mentioned above, it is a GPS unfriendly area where the 
GPS signal is blocked by intensive high-rise buildings 
nearby. As a result, the trajectory of original GPS data 
doesn’t reach the end of the road CD. The map matching 
algorithm matches the GPS data to the centre of the road 
according to the original position and heading. The map 
matched trajectory is basically consistent with the 
reference trajectory, except the part of the GPS-blocked 
area as Fig. 7 presents. 
 

 
Figure 9: Positioning improvement of map matching 

algorithm 
 

Table 2:   The distance difference of raw GPS and map 
matched data 

 Mean 
(m) 

Max 
(m) 

Min 
(m) std Improvement 

GPS 8.41 31.54 0.23 5.33 40% Matched 5.00 27.79 0.08 5.27 
GPS(50:550) 7.67 21.53 0.23 3.74 54% Matched(50:550) 3.52 19.45 0.08 3.03 

 
We can also compare the horizontal error distance of 
original GPS data and map matched data against the 
reference trajectory in Fig. 9 and results are listed in 

Table 2. The maximum horizontal error distance of the 
original GPS data is 31 meters, with 8.41 meters as mean 
value. After map matched, the error decreases to 5.00 
meters. Therefore, the position accuracy is improved by 
42.6%. A considerable error appears from the 550th 
second to the 650th second, when the tester walks on the 
GPS unfriendly location - road CD. To check the 
position error in GPS friendly environment, we select the 
dataset from the 50th second to the 550th second to 
analyse. The map matched positioning error in the 
selected period is 3.24 meters, against 7.67 meters of 
original GPS data. The position accuracy of smartphone 
GPS is improved by 54% in GPS friendly environments 
by proposed map matched algorithm.  
 
We evaluate the heading improvement by comparing the 
GPS-derived heading and map matched results with 
reference heading as well. The compared result is 
displayed in Fig. 10.  
 

  
Figure 10: Heading improvement of map matching 

algorithm 
 
The average deviation of the original GPS-derived 
heading is 30 degrees, which is 5 degrees higher than 
that of map matched results. In the GPS friendly 
environment from the 50th second to the 550th second, 
the map matched mean deviation decreases to 5 degrees. 
Such heading accuracy can meet the requirements of 
most positioning applications in the situations. 
 

Table 3:   The deviation of raw GPS heading and map-
matched heading 

 Mean 
(deg) 

Max 
(deg) 

Min 
(deg) std Improvement 

GPS 30 179 0 46 17% Matched 25 179 0 49 
GPS(50:550) 13 134 0 17 62% Matched(50:550) 5 164 0 12 

 
A conclusion can be drawn based on the test results 
discussed above that the map matching algorithm plays a 
significant role to improve the position and heading 
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accuracy of the GPS data obtained from smartphone 
built-in sensor in the GPS friendly environment.  
 
However, in the GPS-degraded environments like the 
complex urban city, more solutions are demanded to 
improve the positioning accuracy, such as mitigation of 
non-line-of-sight positioning errors (Chen, et al., 2012a, 
Chen, et al., 2009a), motion recognition based on 
measurements of self-contained sensor  (Chen, et al., 
2010b, Pei et al., 2012) and multi-sensor fusion method 
(Chen et al., 2012b) etc. 
 
5.2 Consumption evaluation 
To quantify the improvements on resource consumption 
of the proposed solution, the value of improvements is 
calculated using the values between two solutions for 
each measurement with the equation (2): 
 

 100)()( 00 ×
−−−

=
m

im

v
vvvvp              (2) 

where p is the improvement in percentages, vm is the 
value of consumed resource of the model-based solution; 
vi is that of the image-based solution, and v0 the value 
when the smartphone is running at standby state. Tapiola 
test field is selected for the evaluation. 
 
The consumption evaluation is executed with Nokia 
Energy Profiler 1.2, which is a stand-alone measurement 
application for S60 3rd Edition, and offers developers to 
monitor the energy usage on their target applications in 
real time. The Nokia Energy Profiler supports multiple 
measurement views including power consumption, 
Random Access Memory (RAM), processor, current etc. 
 
The evaluation data consist of four separated scenarios: 
A) initialization (PI); B) virtual navigation (PV); C) real 
time navigation (PRN) and D) real time positioning 
(PRP). The virtual navigation scenario runs the 
application offline in a similar way as playing a game. 
No positioning sensor is activated in this scenario 
because all position information is input by user through 
pressing the direction keys on the smartphone keyboard. 
The real time positioning scenario turns on the GPS chip 
but does not offer navigation service, thus the power 
consumption should be lower in comparison with real 
time navigation scenario which activates full navigation 
service.    
 
In order to evaluate the improvement of the image-based 
application objectively, we also take the data measured 
at the standby state into consideration as a baseline for 
comparison.  
 
The comparison of power consumption between image-
based application (ABI) and model-based application 
(ABM) is shown in Fig. 11 and Table 3. The red curve 

displays the fluctuation of power consumption of ABM, 
while the blue one represents that of ABI. From the Fig. 
11, we can conclude the image-based solution has 
significant advantages on consumptions than the model-
based solution. 
 

  
Figure 11:  The comparison of power consumption  

 
Average power consumption of ABI is 0.52W and 
ABM’s power consumption is 0.68W. The power 
consumption at standby state is 0.31w. The imaged-
based solution decreased the power consumption by 43 
precents in all. Especially in of initialization period, the 
image-based solution consumes 36% of the power 
needed for model-based solution. Considering a larger 
3D model will be loaded, the energy efficiency for 
image-based solution is even higher.  
 
The lower consumption of the proposed solution benefits 
smartphones to be used for a longer time. The tested 
smartphone will last 5 and half hours when the ABM is 
running, which is 1.5 more hours comparing with ABI. 
In the terms of energy, the image-based solution has 
obvious advantages. 
 

Table 4:   Comparison of power consumption 
Power Consumption 

(W) Mean Net 
Increase Improvement 

PI ABI 0.48 0.17 64% ABM 0.80 0.48 

PV ABI 0.50 0.18 43% ABM 0.63 0.32 

PRP ABI 0.52 0.21 37% ABM 0.65 0.34 

PRN ABI 0.59 0.28 20% ABM 0.66 0.34 

Average ABI 0.52 0.21 43% ABM 0.68 0.37 
Remarks: Power consumption in standby status is 0.31W. 

 
The CPU load is presented in the Fig. 12. We introduce 
two items in the comparisons of CPU load: one is FCR 
(Full CPU load occupation Rate) which calculates the 
ratio that 100% CPU load during the test; and another is 
the ratio that 90% of CPU payload is occupied by the 
program during the test, abbreviated as FCR90. 
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Figure 12: The comparison of CPU load 

 
The average CPU load of ABM in PI is 96%, and FCR90 
is 92%, as shown in Table 4. In the procedure of 
initializing ABM, the application occupies almost full 
computational power of the CPU, and there is hardly any 
free time slot available for other applications. That will 
put more pressure on the system and easily lead to a 
system crashing. In both real-time procedures 
(navigation and positioning), the ABM demands higher 
CPU calculating power to load and render the 3D model 
in real time, while the FCR and FCR 90 of the ABI are 
zero. In general, the average CPU load for ABI is 32%, 
achieves 81% improvement when comparing with that of 
ABM. Both the data and figures can prove 
overwhelming advantages on the CPU load for the ABI 
solution.  
 

Table 5:   Comparison of memory consumption 

CPU Load 
(%) 

Mea
n 

Net 
Increas

e 

Improveme
nt (%) 

FC
R 

(%) 

FCR9
0 

(%) 

PI ABI 38.8 14.5 80 6.9 21.0 
ABM 96.1 71.8 12.5 92.0 

PV ABI 36.4 12.1 71 0.9 8.5 
ABM 66.8 42.5 17.0 45.0 

PRP ABI 26.2 1.9 93 0 0 
ABM 51.2 26.9 18.4 26.0 

PRN ABI 28.5 4.2 87 0 0 
ABM 56.0 31.7 21.0 26.0 

Aver
age 

ABI 32.5 8.2 81 2.0 7.4 
ABM 67.5 43.2 18.6 47.0 

Remarks: The CPU load in the standby state is 24.3%. 
 
The system RAM of smartphone is used by active 
programs and the system itself, as well as providing 
“disk” space. The net increase of ABI’s occupied RAM 
is 3.6MB averagely, and is 16.6MB for ABM, improving 
by 78%. From Fig. 13, we can observe the occupied 
RAM of ABI increases little comparing with the standby 
state. Considering the size of the current 3D models is 
relatively small, simplified with compressed texture, the 
occupied RAM will have a more significant increase if 
large, more complex models with higher resolution are 
applied. On the contrary, the occupied RAM for ABI 
always keeps fluctuation in a narrow scale regardless of 
the model size. In this aspect, the image-based solution 
gets less restriction from hardware viewpoint, and can be 

applied for more low-end smartphone since most 
smartphones have external memory cards nowadays.  
 

 
Figure 13: The comparison of RAM consumptions 

 
5.3 Efficiency evaluation  
The efficiency of the solutions is evaluated according to 
the parameter of consuming time, which is the cost time 
for completing specific functions. The consuming time 
in program running can be computed in a specific 
function and the results are archived in a debug file 
stored on the smartphone memory. The difference 
between two solutions is observable to be identified even 
by human’s eyes. 
 
Time consuming for two solutions is compared in the 
Table 6. The full operating cycle includes the procedures 
of obtaining GPS data, post-processing, querying, 
routing, map matching, and displaying, which is 
executed in the program every second. ABI can finish all 
of these procedures in 0.09 second, while it cost 0.67 
second for ABM.  
 

Table 6:   Comparison of time consumption 
 ABI (seconds) ABM (seconds) 

Initialization 0.45 1.94 
Initial rendering 1 15 

Full operating cycle 0.09 0.67 
 
The consuming time for model-based solution increases 
with the large and complex model. Taking Shanghai 
EXPO 2010 model as an example, it takes 30 seconds to 
finish the initial rendering after the application starts. On 
the contrary, the consuming time for the image-based 
solution is independent of the scale of model. No matter 
which size the 3D model is, or how large the area to be 
demonstrated is, the image-based solution keeps the 
same efficiency. The application with shorter consuming 
time for initialization offers better user experience.  
 
5.4 Visualization evaluation 
The displaying performance is seriously restricted by the 
CPU load and the rendering speed in ABM solution. 
Limited by the computational power, the texture 
rendering or even the display of the 3D model is always 
temporary missing as Fig. 14 (a) and Fig. 14 (c) presents. 
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Such situations will never happen in the ABI solution, as 
Fig. 14 (b) and Fig. 14 (d) show.  
 
Meanwhile, the images applied in the ABI solution are 
captured from the model constructed on the computer. 
They keep explicit model and uncompressed texture as 
those on computer in the visualization. Furthermore, 
comparing with the simplified background in the ABM 
solution, the adding texture of sky and finer ground casts 
a more realistic immersion for the mobile user. 
 

 
Figure 14: Comparison of the same street views  

 
The frame rate, also called FPS, is the frequency at 
which the smartphone displays consecutive images. In 
the ABM solution, 1 FPS already reaches the limit of 
display engine. Even so, the rendering speed still cannot 
catch the speed of frame updating. Some textures fail to 
be rendered in time during the navigation.  
 
On the contrary, there is an obvious advantage for the 
proposed ABI solution. Taking Table 6 as reference, one 
single full operating cycle for the ABI costs no more 
than 0.1 second, thus there is still some potential for 
increasing FPS of the ABI solution in a certain range, 
under the premise of the proper operation. Higher 
refreshing rate results in a smoother visualization which 
makes humans eyes more comfortable. The frame 
frequency can be increased from 1 to 2.5 frames per 
second according to the test.  
 
In one word, the proposed ABI solution can increase 
frame rate to achieve a smoother visualization, on the 
premise of keeping even lower consumptions against 
model-based solution. 
 
5.5 Labour and cost Evaluation 
Most of the existing 3D mobile navigation systems 
utilize 3D model, which requires expensive equipment 
such as laser scanner for data acquisition which costs 
more than hundreds thousands of euros, involves 
complicated model construction and even plentiful 
manual work.  
 
In this work, the data used in this 3D model construction 
are collected by a mobile road environment mapping 
system which is composed with several latest 
technologies. The instruments are expensive and far 
from easy access by the public. Meanwhile, the data 
processing of data is also a redundant procedure. For 

example, the 3D model of the Tapiola test field is based 
on laser point cloud collected by a mobile mapping 
system. And it took a proficient researcher about three 
months to construct 3D model, and spent a master 
student nearly one year to import the model into the 
mobile platform.  
 
Furthermore, to construct a 3D model for indoor 
environment with a mobile mapping system will be more 
difficult from the aspect of technology. And it is not an 
economic solution for small-scale models considering 
the corresponding cost on the labour and the time. 
 
The proposed geocoded image based solution provides a 
novel method to 3D visualization in a more efficient and 
economical way, by implementing visualization with 
real photos replacing the images taken from 3D model. 
Such replacement only needs a camera cost several 
hundred euros and a simple geo-reference system. And 
the data collection task in the field can be accomplished 
in a couple days by one person. It is also flexible to set 
up a small-scale model within a few days. That means it 
can be easily transplanted into a commercial system for 
museum, exhibition, and other indoor applications. 
Comparing with traditional 3D modelling, the cost of the 
proposed method is largely saved in terms of labour, 
time and instrument investment. 
 
6. Conclusions and Discussions 
 
This paper introduces a simple, flexible, energy-efficient 
and cost-effective 3D personal navigation solution, 
which utilizes geocoded images captured on 3D models 
to implement 3D personal navigation in a smartphone for 
small-scale area.  
 
Comparing with the 3D model-based solution, the 
proposed geocoded image-based solution presents a 
better performance with higher resolution and refreshing 
rate and the complex 3D modelling process is not 
required anymore. As the consuming time for the 
calculation is reduced, the consumption of power, CPU 
and RAM decrease dramatically, as well as labour and 
cost. Because of low consumption of the system’s 
energy and resource, the solution also offers a possibility 
to be applied to low-end smartphone platform.  
 
 For a user-friendly personal navigation application, 
turning details is preferred as extra information. Such 
functionality will be added in further study. Other route 
planning algorithms besides the classic Dijkstra’s 
algorithm will be investigated to higher performance for 
large road database. Cloud-based image storage strategy 
will be probed for large-scale area application. The test 
area will be extended, and indoor scenario will also be 
considered. The geocoded images applied in further 
studies will be collected by a camera instead of 

(a) (b) (c) (d)(a) (b) (c) (d)
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snatching from 3D models. Panoramic photo will also be 
applied to fulfil 360 degrees viewpoint. To improve the 
positioning accuracy in the GPS-denied environment, a 
positioning solution based on vision will be considered 
as auxiliary algorithm to improve the accuracy and 
reliability of the system (Li, et al., 2010).  
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