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Abstract 
 
The modernization of Global Positioning Systems (GPS) 
and the availability of more complex signals and 
modulation schemes boost the development of civil and 
military applications while the accuracy and coverage of 
receivers continually improve. Recently, software 
defined receiver solutions gained attention for flexible 
multimode operations. For them, developers address 
algorithmic and hardware accelerators or their hybrids 
for fast prototyping and testing high performance 
receivers for various conditions. This paper presents a 
new fast prototyping concept exploiting digital signal 
processor (DSP) peripherals and the benefits of the host 
environment using the National Instruments (NI) 
LabVIEW platform. With a reasonable distribution of 
tasks between the host hardware and reconfigurable 
peripherals, a higher performance is achieved. As a case 
study, in this paper the Texas Instruments (TI) 
TMS320C6713 DSP is used along with a Real Time 
Data Exchange (RTDX) communication link to compare 
with similar Simulink-based solutions. The proposed 
testbed GPS signal is created using the NI PXI signal 
generator and the NI GPS Simulation Toolkit. 
 
Keywords: GPS receiver, NI LabVIEW, SDR, A-GPS, 
RTDX 
_____________________________________________ 
 
1. Introduction 
 
The US GPS is one of the existing Global Navigation 
Satellite Systems (GNSS) that provides the end user with 
improved position, velocity and time solutions. 
GPS/GNSS receivers continually evolve by 
progressively modernizing conventional algorithms and 
implementation platforms for faster operation and 
development. In our previous work (Akopian et al., 
2011) it was mentioned that major challenges of 
advanced receiver development, especially in academia, 
are system development complexity, long development 
cycles, RF front-end and hardware accelerator interfaces 
for real-time processing, and access to end-to-end 
development and testing platforms.   

While GNSS systems perform very well in strong signal 
conditions, their operation in many urban and indoor 
applications is difficult or impossible due to weak 
signals and strong distortions. The modernization of 
existing and new signals and modulation schemes adds 
to system complexity; challenging the research 
community to explore new algorithms and methods.  
 
The urban and indoor applications of the GPS/GNSS 
receiver operation are based on the technology called 
Assisted GPS/GNSS (A-GPS/A-GNSS) (Misra, Enge, 
2001), (Agarwal et al., 2002), (Wireless E911 location 
accuracy requirements, 2012), (Zhao, 2002). In this 
approach, wireless channels are used to deliver aiding 
data to receivers, which they would normally need to 
receive and demodulate from weak GPS satellite signals. 
Assisted technology improves sensitivity and operational 
coverage of receivers. A-GPS and its hybrids are 
considered the best global positioning technologies for 
wireless devices; as a result A-GPS is standardized for 
all wireless networks (Wireless E911 location accuracy 
requirements, 2012), (Zhao, 2002). 
 

 
Figure 1: An example of various hardware/ software 
configurations in a commercial receiver product line 
(Fastrax, 2012). 
 
With higher-level receiver requirements, one should 
address more and more complicated phenomena and 
typically, state-of-the-art receivers should be flexible to 
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perform multimode tasks for operating in various 
conditions. The developers need reference receivers, 
associated software development kits (SDK), 
development platforms, simulators, and testbeds to 
accelerate and facilitate their research. Even in assisted 
mode, GPS receivers need massive correlators to 
enhance received signals by combining multiple received 
signal copies and accelerating computations. A popular 
solution for flexible multimode operations is an SDR 
receiver (Akos, 2003), where real-time correlators, 
tracking loops, and navigation calculation are all 
implemented in software or using general purpose 
accelerators such as FPGA and DSP peripherals. 
Massive correlators are implemented using fast 
algorithmic solutions or deployed on accelerators. Fig. 1 
illustrates relative costs and various hardware-software 
configurations (Fastrax, 2012) for GPS receivers and the 
increased role of central processing units (CPU) in SDR 
solutions. Software GNSS receivers require fewer 
hardware components, offer significant flexibility 
compared to conventional receivers with correlators 
implemented on dedicated application-specific integrated 
circuit (ASIC) technology, and are convenient for faster 
prototyping and academic research.  
 
The paper elaborates several benefits of using NI 
LabVIEW (LabVIEW, 2012) as a host platform for fast 
receiver development, prototyping, simulation, testing, 
and implementation of A-GPS (Zhao, 2002) support. 
This paper systematizes and extends an initial feasibility 
study of LabVIEW-based receiver development 
(Akopian et al., 2011) where it was shown that a 
LabVIEW-based receiver is an attractive alternative 
from a performance point of view and facilitates 
interfacing with RF front-ends. In this paper, we also 
demonstrate options on how a LabVIEW-based receiver 
can connect to DSP accelerators. A dedicated NI 
LabVIEW-based A-GPS support is also developed to 
generate assistance data for available satellites (Akopian 
et al., 2011). 
 
For DSP accelerator implementation, the Code 
Composer Studio (CCS 3.1) C6713 Device Functional 
Simulator from TI is used. The peripheral connects to the 
NI LabVIEW environment through the RTDX (Code 
Composer Studio, 2012) interface. Comparison of the 
algorithm performance is done between LabVIEW 
receiver and complete Simulink receiver implementation 
as described in (Hamza et al., 2009).  

The paper is organized as follows. Section 2 summarizes 
the GPS system architecture including 
hardware/software components. Section 3 describes the 
NI LabVIEW-based testbed including NI GPS Simulator 
Toolkit and A-GPS support. Section 4 overviews the 
advanced algorithms implemented in our case study. 
Section 5 presents DSP target compilation support in the 
LabVIEW environment. Section 6 gives the detailed 
implementation description of the GPS receiver with the 
A-GPS support. Section 7 provides conclusions. 
 
2. Software Defined Radio Concept For GPS 

Receiver Development  
 
Fig. 2 shows a generic GPS/GNSS receiver architecture 
design where all of the signal-processing tasks can be 
implemented on software, eliminating hardware 
accelerators. The software receiver design offers high 
flexibility for implementing various algorithms without 
constraints imposed by fixed hardware architectures and 
is convenient for multimode operations in challenging 
environments. 
 
Examples of SDR are the gpsSrx receiver (Akos et al., 
2001) and NavX-NSR (Heinrichs et al., 2007), and for 
the open source PC-based GNSS SDR systems there are 
examples described in (Borre et al., 2006), (GPS-SDR, 
2012). Proprietary or open source toolkits are also 
developed by incorporating new components in existing 
GNSS receiver solutions. Examples of toolkits range 
from Matlab-based (Matlab, 2012) receiver solutions to 
C/C++ based open source (Borre et al., 2006) and 
commercial systems (Fastrax, 2012), (Akos et al., 2001), 
(Heinrichs et al., 2007). 
 
High performance conventional GPS/GNSS receivers 
rely on ASIC technology to implement massive 
correlators, as the performance of SDR solutions is still 
limited. This provides for high performance but limited 
reconfigurability compared to SDR receivers. 
Complementing SDR receivers with programmable 
hardware such as DSPs and FPGAs provides for a trade-
off between acceleration and reconfiguration. ASIC 
hardware implementation requires long development 
cycles and additional hardware-software interfacing 
efforts, while FPGA and DSP development cycles are 
shorter due to convenient development tools and 
standard interfacing means.  

 

 
Figure 2: Schematic structure of a GPS receiver. Hardware accelerators are often completely excluded in software 
defined GPS 
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Table 1: Advanced Development-Testing Toolkit to Facilitate Research and Dissemination (Akopian et al, 2011) 

Components Benefits 

• An integrated platform using 
popular NI RF/PXI equipment, NI 
GPS simulator and LabVIEW 
software to facilitate algorithm 
research and performance analysis  

 

• LabVIEW algorithmic libraries: 
conventional receiver  algorithms; 
Advanced algorithms; Advanced A-
GPS support 

• Low-cost real-time processing platform with available RF 
Front-end interfaces and rich algorithmic libraries  

• Dataflow and/or C/C++ programming, available profiling 
tools to estimate performances, built-in user interface 
design and visualization tools 

• Easy access to RF and I/Q sampled signals from NI 
LabVIEW-based GPS simulator 

• UTSA SUPL standard-based A-GPS support 

• Build-in compilers for target platforms such as DSP 
processors and FPGAs 

  
Table 2: LabVIEW DSP Hardware and Software Support 

DSP Hardware Targets Supported by 
NI LabVIEW DSP Module NI Software Support for DSP Targets 

• TMS320C6711 DSK 
• TMS320C6713 DSK 
•  NI’s SPEEDY-33  

 
• LabVIEW DSP Module  
• LabVIEW DSP Test Integration 

Toolkit 
• TI DSP application as an external 

application in LabVIEW  

 
This paper focuses on GPS receivers with DSP 
peripherals specifically optimized for the efficient 
execution of common signal processing tasks. DSPs are 
microcontrollers designed specifically for signal 
processing applications. Unlike ASICs, DSPs are not as 
efficient in terms of speed and power consumption. 
However, they are characterized by their flexibility and 
ease of programming. Examples of the highly sensitive 
GNSS receivers using DSPs are receivers in (Girau et 
al., 2007), (Cetin et al., 2007). DSP-based solutions 
might be slower but still allow for high throughput 
correlator implementations with a shorter development 
cycle, using e.g., Fast Fourier Transform (FFT) 
algorithms.  
 
3. NI LabVIEW-Based Testbed for GPS SDR 

Development 
 
Table 1 summarizes the benefits for choosing a 
LabVIEW environment as a GPS receiver development 
platform. NI LabVIEW provides hundreds of built-in 
libraries for advanced development, analysis, and data 
visualization. It is convenient for fast algorithm 
prototyping and testing, comparative studies, real-time 
performance evaluation and dissemination. LabVIEW 
has integrated interfaces to various hardware peripherals. 
It also supports multithreading and multicore 
programming, which is useful for real-time applications. 

These advantages already have been used in other radio 
communication systems (Developing an OFDM 
Transmitter, 2012), (Prototyping Algorithms for Next-
Generation Radio Astronomy Receivers, 2012). 
 
The algorithms in LabVIEW can be implemented using 
LabVIEW library modules, Mathscript nodes using 
Matlab scripts for fast prototyping, and C/C++ language 
for fast processing. LabVIEW-based implementation can 
be transformed to C/C++ implementation for open 
source and commercial solutions using 
LabWindows/CVI (NI LabWindows/CVI, 2012). 
LabWindows/CVI supports convenient interfaces with 
peripheral instrumentation, and provides graphical user 
interface (GUI) design tools. 
 
Aside from the instrument control with NI hardware, 
LabVIEW also has support for external hardware 
peripherals to accelerate research and simulation of SDR 
development. As already mentioned, the hardware 
accelerators such as DSPs and FPGAs can be integrated 
with LabVIEW (Soghoyan et al., 2011). There are 
different integration modes. The easiest solution for 
developers is to transform a LabVIEW data flow 
schematic into a DSP code using a NI LabVIEW DSP 
Module. Only a few DSPs are supported by this software 
as listed in Table 2. Alternatively, the connection with 
many other DSPs can be performed in a conventional 
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Figure 3: Integrated receiver architecture with hardware front-end, A-GPS support, LabVIEW DSP and LabVIEW 
FPGA targets 
 
way, connecting a DSP application to LabVIEW using 
RTDX communication tools. This is accomplished 
through software support called NI LabVIEW Test 
Integration Toolkit. Another option is to use dynamic 
linked libraries (dll) to call the CCS standalone 
application externally in the LabVIEW environment 
using “Call Library Function Node” functionality.  
 
The initial system architecture for the real-time GPS 
receiver LabVIEW-based testbed first has been 
presented in (Soghoyan et al., 2011). Fig. 3 illustrates an 
enhanced version of the system, which provides A-GPS 
assistance delivery support, channel modelling extension 
for the NI GPS simulator, and FPGA/DSP accelerators. 
Details about FPGA integration will be described in 
another paper. The transmitter’s RF front-end consists of 
an antenna and NI PXIe-5673 RF vector signal generator 
(VSG), which can be configured to generate various 
GNSS signals. The GPS signal is generated using a 
LabVIEW-based NI GPS Simulation Toolkit 
(LabVIEW, 2012). Receiver RF front-end consists of an 

antenna, a variable gain amplifier (variable gain up to 
30dB) (GPS Networking, 2012) and NI PXIe-5663RF 
vector signal analyzer (VSA). It is connected to a 
computer running a LabVIEW-based software defined 
GPS receiver. Optional hardware DSP/FPGA peripherals 
are accessible through LabVIEW interfaces.  
 
The dedicated LabVIEW-based A-GPS support is 
integrated with NI GPS Simulation Toolkit. The 
simulator generates signal using ephemeris and almanac 
orbital parameters for all of the selected satellites. 
Proposed A-GPS support encapsulates the binary 
navigation data into assistance data, which are 
communicated by an assistance server to receivers. The 
process follows the guidelines of A-GPS assistance 
delivery according to Secure User Plane Location 
(SUPL) (Open Mobile Alliance, 2007), which defines 
the assistance delivery format and communication 
between the user (client) and SUPL server. SUPL is the 
Internet Protocol (IP)-based network service to deliver 
information through a User Plane bearer between a 
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SUPL enabled terminal (SET) (e.g. mobile devices) and 
a SUPL location platform (SLP) (e.g. A-GPS servers) for 
wireless communications developed by OMA (Open 
Mobile Alliance, 2007). A detailed description of an 
assistance data delivery solution can be found in 
(Narisetty et al., 2012).  
 
3.1 Front-End GPS signal simulator and transmitter  
The NI GPS Simulation Toolkit (LabVIEW, 2012) along 
with NI 5673 VSG is enabling the generation of one to 
twelve satellite signals with a waveform duration of up 
to 12.5 minutes (25 frames) which is the duration of an 
entire navigation message.  
 
The main features of the GPS Simulation Toolkit are the 
following: 
- Generation 24 hours of up to 12 satellite C/A codes.  
- Power adjustment levels of each satellite based on 

the testing specifications (-145dBm to +10dBm). 
- Direct streaming generation with either of those 

o Wide Area Augmentation System (WAAS) 
o Trajectory scripts 
o On the fly parameters 
o Stored file 

- Use the recorded stream of a simulated signal along 
with the NI RF vector signal generator for reliable 
and low-cost GPS testing.   

Additional selected simulator features are listed in Table 
3. The first example application has a common interface 
with the rest of the examples. The simulator determines 
visible GPS satellites based on the almanac and 
ephemeris files, GPS time, and receiver location 
specified. The simulator provides for satellite power 
control and WAAS availability concurrently with GPS 
signal. The toolkit simulates only those user-specified 
WAAS satellites that are present in the WAAS GEO file 
that can be downloaded from (WAAS Test Team, 2012).  
 
The simulator generates baseband GPS L1 band signals 
with a sampling rate of 1.5MS/sec (“IQ interleaved 
integer 16” data type). The almanac and ephemeris files 
necessary for the signal generation contain satellite orbit 
parameters and related information, which are used to 
estimate satellite locations, trajectories, and health for a 
specific date and time (Misra, Enge, 2001), (Kaplan, 
1996). The almanac and ephemeris file types, content 
and location are described in (Almanac information, 
2012), (Ephemeris information, 2012). Channel models 
can be developed in LabVIEW and integrated with the 
toolkit. The proposed testbed shown in Fig. 3 integrated 
Urban Three-State Fade Model (UTSFM) channel model 
(Ma et al., 2001) as described in (Soghoyan et al., 2011).  
 

 
Table 3: GPS Simulation Toolkit 2.0 Programming and Interactive Applications 

Example Application Description 

niGPS Adjust Satellite Power 

This example takes as an input Receiver location, Almanac and 
Ephemeris files,  Initial GPS Time of Week, Initial speed of the 
receiver(m/s), Maximum number of optimal satellites, and 
dynamically adjustable power of individual satellite and provides 
as an output GPS L1 band signal (Fig. 4) using the hardware 
resource specified. WAAS GEO files can be added to the 
simulation if the control is enabled.  

niGPS Direct Streaming Generation with WAAS 
This example is similar to the first one in addition WAAS 
satellites are augmented to GPS L1 signal given the WAAS file 
path. 

niGPS Write Waveform To File (Single 
Satellite,Manual Mode) 

This example takes as an input almanac and ephemeris files, 
number of frames, PRN number of an individual satellite with its 
Doppler shift, pseudorange and waveform scaling factor providing 
as an output the bits of GPS L1 signal in a binary file specified by 
the user.      

niGPS Write Waveform to File 
(Simple,Automatic Mode) 

In this example optimal satellites available are automatically 
selected based on the inputs of Receiver location, Almanac and 
Ephemeris files, Initial GPS Time of Week. The output is a binary 
file containing GPS L1 signal.  

niGPS Streaming From File This example inputs a binary file with GPS L1 band signal which 
is then streamed using NI RF vector signal generator.  
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Figure 4: Software GPS/GNSS receiver architecture 

 
4. GPS Receiver Signal Processing  
 
The conventional L1 civilian GPS signal is a direct 
sequence spread spectrum (DSSS) signal consisting of a 
multiplication of a sinusoidal carrier at 1.57542 GHz, a 
binary phase shift keying (BPSK) navigation signal at 
50Hz, and BPSK modulated spreading pseudorandom 
code signal (PRN) at 1.023 Mchips/sec. The spreading 
sequence is called the C/A (coarse acquisition) code. The 
generated signal is transmitted through a channel 
described in (Misra, Enge, 2001).  
 
The ultimate goal of a GPS receiver is to provide 
position, velocity, and time information. For that, 
receivers measure range, range-rate, and demodulate 
navigation data. Range and range-rate measurements are 
extracted by synchronizing locally generated replicas of 
the code with the received signal. This synchronization 
is performed in frequency by estimating Doppler 
modulation, and in time, by aligning the signal and 
replica and estimating their relative shift called code-
phase. The synchronization typically is performed in two 
phases: acquisition (coarse) and tracking (fine). These 
two modules constitute a baseband processing stage. 
After the synchronization, navigation data are simply 
obtained through sinusoidal carrier and PRN code wipe-
off. Navigation data contain time stamps, which, along 
with code phases, are used to estimate ranges to 
satellites. Navigation data also contain orbital 
parameters, ephemeris and almanac, which are used to 
find satellite positions provided time. These parameters 
can alternatively be received using assistance from 
wireless networks as described later in the paper. 
Satellite positions serve as beacon locations for 
trilateration using ranges. The baseband configuration 
for a software receiver (Fig. 4) follows the processing 
chain of conventional receivers (Fig. 2).  

Receiver operation is implemented using the modified 
version of the application from the LabVIEW build-in 
examples’ package called “RFSA Acquire Continuous 
IQ.vi.” Here the incoming signal is of integer 16 IQ 

interleaved format, which then is converted into integer 
8 datatype for faster receiver processing. The settings 
chosen for the signal acquisition are the following; the 
IQ sampling rate is 4.092MS/s, the reference power level 
is adjustable, the GPS carrier signal frequency is 
1.57542GHz, and the number of samples to read per 
each block of the received signal is 81840. Reference 
power level adjustment was done according to (GPS 
Receiver Testing, 2010), (GPS Multiplie Satellite, 2012).  
 
4.1 Acquisition 
The first stage of baseband signal processing is the 
acquisition of a satellite. A receiver replicates a code and 
a residual carrier signals matching those to the received 
signal in a two-dimensional search process. 
Conventional receivers achieve acquisition by searching 
over a predicted time-frequency uncertainty zone.  
 
Multiple possible signal replicas are generated and 
correlated with received signal to find a match and thus 
to identify input signal parameters. A statistical test is 
applied to the correlation results to determine if a signal 
acquisition has been reached or not. If it has been, the 
acquisition is terminated and the receiver starts the 
tracking stage for that satellite; if not, the search 
continues and moves to the next code-phase/frequency 
option. 
 
4.2 Tracking 
In the tracking stage, the residual code and carrier shifts 
are estimated using correlators, discriminators and a 
feedback loop to reduce signal misalignment adaptively. 
The code tracking loop called delay lock loop (DLL) and 
a carrier tracking loop called phase/frequency locked 
loop (PLL/FLL) are used for consecutive fine alignment 
of received and replicated signals. The DLL loop aligns 
the incoming signal with the local PRN replica for code-
phase estimation. In the conventional systems, several 
replicas are used with shifted relative phases, e.g. three 
replicas early, prompt and late with a code-phase spacing 
of ±1/2 chip are used by slightly shifting code replicas. 
The correlation outputs are fed into a discriminator, 
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which defines the relative shift of the received signal 
with respect to the prompt replica. Then the feedback 
from the discriminator is used to adjust the code phases 
of local replicas. In PLL/FLL (Misra, Enge, 2001) the 
output of the ‘prompt’ correlator connects to the 
discriminator of the carrier loop with the phase 
estimation between I and Q components. The PLL loop 
consecutively estimates phase mismatch and adjusts the 
locally generated residual carrier replica to minimize Q 
component. Phase changes indicate the presence of a 
residual sinusoidal modulation, and the PLL 
discriminator estimates this presence and instructs to 
adjust replica residual carrier frequency. Typically, 
filters are used to smooth discriminator outputs and 
avoid DLL/PLL loop overreactions.  
 
4.3 Advanced correlators 
Both acquisition and tracking algorithms use correlators 
to synchronize the incoming signal with the local replica. 
Typically, there is an element-wise multiplication of the 
received samples with the samples of each replica and 
eventually the products are integrated for the result. So-
called block correlators are implemented to reduce the 
computational loads performing shared computations. 
Examples of state-of-the-art block correlators are 

(Akopian, 2005) for acquisition (Fig. 5), and (Sagiraju et 
al., 2008) for tracking (Fig. 6). 
 

 
Figure 5: Block correlator for acquisition, coherent 
integration length is N2 code periods (N1 N2 samples for 
N1 samples per code period)  
 

 

 
Figure 6: Block correlator structure for tracking. An example with three replica sequences; sub-sum combining 
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Figure 7: (a) Acquisition result of a single satellite using LabVIEW Visualization Tools. (b) The signal strengths and 
PRNs of the acquired satellites. (c) Bits of the navigation message for a single satellite  
 
The block correlators for acquisition efficiently perform 
a parallel joint search in three dimensions: code phase, 
Doppler frequency, and satellite number using e.g. FFT. 
In (Sagiraju et al., 2008), many frequency search steps 
are implemented through iterations in the frequency 
domain; a long FFT is computed once, while shorter 
inverse FFTs are computed for each Doppler frequency 
and satellite.  
 
The tracking block-correlator concept (Sagiraju et al., 
2008) implements several correlators jointly in the time 
domain. Early-Late-Prompt replica sequences are 
transformed to a set of addresses pointing to a set of 
registers that accumulate partial correlations. Each 
incoming sample is added to a register as referred by the 
address array. Then these partial sums are combined as 
shown in Fig. 6. The acceleration is achieved by only 
one addition per sample for all three correlators plus a 
controlled overhead due to partial correlation integration. 
Overhead is not significant for three correlators. The 
tracking loop iterations are modified to make use of the 
block correlator concept. The DLL discriminator outputs 
estimate the misalignment of the incoming signal with 
the prompt code. As replicas are fixed, the code phase 
adjustments are performed by aligning the received code 
front edge with the front edge of the prompt replica 
code. Considering received signal as an array of data, 
one should shift a pointer to the start of the C/A code 
back and forth (Winternitz et al., 2004). These block 
correlators use only additions, which result in essential 
computational savings. Fig. 6 shows the combined 
carrier and code tracking loop.  
 
In our case study, coherent integrations of 8ms of signal 
are used for advanced acquisition implementation. This 
allows determining the availability of the visible 
satellites with their code-phases and frequencies. The 
PRN code replicas for 24 satellite codes are stored in a 
2D array for faster access. The correlation result will 
provide a 2D search over all Doppler frequencies and 
code phases and whenever there is a match between 

incoming signal and the local replica there will be a peak 
like the one shown in Fig. 7(a). The examples of signal 
strengths (dBHz) for detected satellites are shown in 
Fig.7(b). Therefore, once the outputs of the acquisition 
stage are available we can proceed to the tracking 
algorithm. 

The tracking algorithm implemented in the paper works 
for the sampling rate of 4.092 MHz. For the advanced 
tracking, these samples are integrated further to reduce 
the sampling rate to 2.046MHz. To avoid real time 
generation of the carrier wave a fixed sinusoid array is 
created to generate various Doppler modulation 
compensating sinusoids through the saved sinusoid 
decimations and cyclic array reading. The generated 
sinusoids are multiplied to the input signal to wipe-off 
the carrier. The resulting samples are accumulated into 
eight partial correlations (subsums). Fig. 7(c) illustrates 
the navigation message decoded in the tracking stage. 
The navigation databits and measurements are passed to 
position a computation module. In this implementation a 
conventional least squares positioning algorithm is used 
(Agarwal et al., 2002).  
 
5. DSP as a Hardware Accelerator  
 
As a user-friendly graphical programming language 
LabVIEW makes it easier to build DSP systems with fast 
application prototyping and deployment. It also allows 
creating reusable subvis; code blocks with input(s) and 
output(s). The NI LabVIEW environment connected 
with a LabVIEW DSP Module provides a hands on 
experimental learning environment for novice users, and 
self documenting, easily maintainable environment for 
professionals.  
 
TI TMS320C6713 DSP starter kit (C6713 DSK) (TI 
TMS320C6713 DSP, 2012) is used as a case study. It 
has 512K Flash and 16MB SDRAM memories, which 
will be sufficient for the advanced acquisition algorithm 

(a) (b) (c) 

(c) 
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development. The property list of C6713 includes the 
following (Texas Instruments, 2011): 
• C6713 operates at 225 MHz. 
• 16 MB synchronous DRAM. 
• 512 KB non-volatile Flash memory (256 KB usable 

in the default configuration).   
• Software board configuration through registers 

implemented in a Complex Programmable Logic 
Device (CPLD). 

• Standard expansion connectors for daughter card 
usage. 

• Joint Test Action Group (JTAG) emulation through 
an onboard JTAG emulator with USB host interface 
or external emulator.  

 
The functional block diagram with given features is 
shown in Fig. 8. Real-time bidirectional data exchange 
between host and target DSPs is maintained through a 
JTAG interface using the RTDX channel communication 
(Chassaing, Reay, 2008).  
 

 
Figure 8: Functional block diagram of the C6713 DSK 
(Benveniste et al, 2010) 
 
Two different approaches to operate NI supported DSP 
boards in a LabVIEW platform are described in detail 
below. The target requirement platform is selected to be 
NI LabVIEW 2010 version. The DSP hardware/software 
installation is done according to (TI TMS320C6713 
DSP, 2012).   
 
5.1 LabVIEW DSP module 
The first option is to use a LabVIEW DSP Module to 
create a DSP project (shown in Fig. 9) in a LabVIEW 
environment according to (NI LabVIEW DSP, 2012). 
Here the idea is to “automatically” map a LabVIEW 
design into a DSP code. The LabVIEW DSP Module 
identifies the available hardware I/O points from the 
supported hardware and it can easily switch between 
existing DSP targets if needed. The DSP module also 
allows deploying and running the application in a 
standalone mode. The NI LabVIEW DSP Module has a 
limitation to work only with three types of targets; NI 
SPEEDY-33, TI C6711 and C6713 DSKs. There are also 
other constraints. For example, by default, the NI 
LabVIEW DSP Module uses Flash memory of the target. 

Due to the memory constraint, only smaller tasks can be 
delegated to the DSP. In addition to that, target 
performance and memory profiling are disabled on the 
specified DSP peripherals. We succeeded at 
developing a single satellite acquisition with 1ms 
coherent integration length of an input signal sampled at 
1.024MHz sampling rate. 
 

 
Figure 9: View of a Project Explorer in NI LabVIEW 
environment 
 
A portion of the acquisition code implementing the FFT 
on the DSP module is depicted in Fig. 10 to demonstrate 
the concept. “EMB Real FFT” DSP Module function is 
used for the application development according to the 
advanced acquisition algorithm described in Section 4. 
The inverse FFT is also done using the same “EMB Real 
FFT” function. 
 
The second approach described below is able to utilize 
additional external memory resources and is applicable 
to a broader set of DSP targets. 
 
5.2 LabVIEW DSP test integration toolkit 
The more general second option is called a LabVIEW 
DSP Test Integration Toolkit (NI LabVIEW Test 
Integration Toolkit, 2012). The supporting libraries can 
be downloaded from (NI LabVIEW Test Integration 
Toolkit, 2012). A LabVIEW DSP Test Integration 
Toolkit allows third party DSP target code integration 
into the LabVIEW environment, e.g., using a TI CCS 
Integrated Development Environment (IDE) to create 
test systems for DSP target development. CCS is the 
programming, building, and debugging interface of TI 
DSPs. To configure a platform and make a basic setup of 
the CCS v3.1 project using RTDX library functions refer 
to (TI TMS320C6713 DSP, 2012), (TMS320C6000 
Code Composer Studio Tutorial, 2012). Once the project 
is created in Projects-Build Options-Linker the 
configuration is set up in the following way.   
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Figure 5: Acquisition algorithm implementation in LabVIEW environment 

 

 
 
These are the supporting libraries to implement RTDX 
communication, FFT operations, compilation on the 
C6713 DSK target, etc.  
 
The source codes must be added in order to run the CCS 
application. To run the code follow the following steps:  
 

 
 

Alternately, the same process automated in LabVIEW is 
done using six advanced RTDX libraries: CCS Halt VI, 
CCS Close Project VI, CCS Open Project VI, CCS 
Download Code VI, CCS Build VI, and CCS Run VI. 
The .pjt file path is wired to the CCS Open Project VI to 
open the .pjt file in CCS IDE. The CCS Build VI builds 
the .pjt file (created in CCS v3.1) to create the DSP 
target code .out file. The CCS Download Code VI 
downloads the .out file to the development board. The 
CCS Run VI runs the embedded .out file on the 
development board. The RTDX communication and the 
memory VIs enable accessing data from the target code. 
RTDX is available on XDS510 and XDS560 class 
emulators (TMS320C6000 CCS Tutorial, 2012). 
 
CCS IDE allows advanced debugging options, memory 
map, and a graphical view of the data in the project. In 
this paper the acquisition algorithm is heavily based on 
FFT (see Fig. 5) and a TI’s C Callable Optimized FFT 
Function (Chassaing, Reay, 2008) is used.  
 
For illustration purposes a fragment of the TI’s C 
Callable Optimized FFT Function used in the CCS 
project is given below:  
 

1. File→Load→Program→Select the “.out” 
under debug folder. 

2. Debug→Reset CPU 
3. Debug→Restart 
4. Debug→Go Main 
5. Debug→Run 

 

-c -heap10000 -m".\Debug\t2h.map" -
o".\Debug\t2h.out" -stack10000 -w -x -
i"C:\CCStudio_v3.1\C6000\\dsk6713\include" -
i"C:\CCStudio_v3.1\C6000\cgtools\include" -
i"C:\CCStudio_v3.1\C6000\csl\include" - 
i"C:\CCStudio_v3.1\c6700\dsplib\support\fft" -
i"C:\CCStudio_v3.1\c6700\dsplib\include" -
l"rts6700.lib" -l"rtdx.lib" -
l"C:\CCStudio_v3.1\C6000\dsk6713\lib\dsk6713bs
l.lib" -
l"C:\CCStudio_v3.1\C6000\csl\lib\csl6713.lib" 

http://processors.wiki.ti.com/index.php/XDS560
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TI’s radix - 2 optimized FFT function (cfftr2_dit), the 
function for generating the index for bit reversal 
(digitrev_index), and the function for the bit-reversal 
procedure (bitrev) are used. 
 
For the external memory usage of the target a linker file 
is created (Fig. 11). The linker file provides general 
memory structure defined in the MEMORY section with 
designated origin and length. The directive SECTIONS 
allocate the application code sections into predefined 
memory locations. More information about the linker file 
structure is found in (Chassaing, Reay, 2008). The 24 
shifted replica codes used by FFT-based acquisition in 
this paper are stored in the header file and added to the 
CCS project. The full acquisition algorithm is 
implemented completely on the C6713 target and called 
into the LabVIEW using RTDX communication. 
 
The input and output RTDX channels are enabled in 
CCS using “rtdx.lib” library functionalities:  
 

 
 
 

 
Figure 11: Linker command file for acquisition 
algorithm with external memory configuration 
 
Once the channels are enabled the incoming IQ signal 
with the sampling rate of 2.048 MHz is transferred into 
the target with the RTDX_read() command and then the 
results of the acquisition stage are obtained, e.g.; the 
code phases and Doppler frequency shifts within the 
±10Khz frequency range for all 24 satellites. These 
results are written into RTDX channel using a 
RTDX_write() command:  
 

 

      ⋮ 

      ⋮ 

{ 

while(!RTDX_read(&cinput, input, sizeof(input))); 

/* Wait for Target-to-Host transfer to complete */      
if ( !RTDX_write( &coutput, &csat, sizeof(csat) ) ) 
{ 
fprintf(stderr, "\nError: RTDX_write() failed!\n"); 
abort(); 
} 
while ( RTDX_writing != NULL ) 
      { 
#if RTDX_POLLING_IMPLEMENTATION 
            RTDX_Poll(); 
#endif 
        }                                                                                                                                  
 }  
RTDX_disableOutput(&coutput); 
RTDX_disableInput(&cinput);} 
 
   
 

RTDX_CreateInputChannel(cinput); 
RTDX_CreateOutputChannel(coutput); 
void main() 
{      
// Target initialization for RTDX 
TARGET_INITIALIZE(); 
/*enable RTDX channels*/ 
RTDX_enableInput(&cinput); 
RTDX_enableOutput(&coutput); 
} 

// N ->number of complex samples, 
// Radix = 2; 
for( i = 0 ; i < N/RADIX ; i++ ) 
// declare the FFT coefficients 
{ 
W[i].re = cos(DELTA*i); //real component of W 
W[i].im = sin(DELTA*i); //neg imag component 
} 
digitrev_index(iTwid, N/RADIX, RADIX); 
bitrev(W, iTwid, N/RADIX); //bit reverse W 
//get the real and imaginary of the input signal 
for (j = 0; j < N; j++) { 
x[j].re = values_re[j];     // I component 
x[j].im = values_im[j]; // Q component 
} 
cfftr2_dit(x, W, N ) ; //TI floating-pt complex FFT 
digitrev_index(iData, N, RADIX);  
bitrev(x, iData, N); //freq scrambled->bit-reverse x 
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Once the results are verified in the CCS environment the 
NI LabVIEW RTDX support application can be created.  
The block diagram in Fig. 12 shows how to automate the 
process of compiling DSP target code and embedding 
the code on a development board in LabVIEW as 
explained earlier.   
 
The input signal is transferred to the DSP target using 
“CCS RTDX Write Array I16.vi.” The streaming from 
the target to the host is done using “CCS RTDX Read 
SGL.vi.” To be able to run the RTDX streaming for 
more than 1024 bytes the RTDX buffer size should be 
modified as follows (Code Composer Studio, 2012). 

1. In CCS, Tools-RTDX-Configuration Control is 
selected to display the RTDX-Configuration 
Control window. 

2. The enable RTDX checkbox is not selected to 
ensure that RTDX is disabled. 

3. The configure button is used to access the RTDX 
Configuration Control Properties page. 

4. In the Buffer Size (in bytes) field, the desired 
buffer size is specified. 

5. In the Number of Buffers field, the desired number 
of buffers is entered. By default, the number of 
buffers is set to 4, which is the minimum. With a 
multiprocessor configuration, the total number of 
buffers must be equivalent to or greater than the 
total number of processors being used with RTDX. 
RTDX requires a unique buffer for each processor. 

6. For configurations to take effect, click OK. 
7. In the RTDX-Configuration Control window, click 

the Enable RTDX checkbox to enable RTDX. 
8. Build the project.  

 
Another approach is to use TI CCS embedded in NI 
LabVIEW, which provides full control over the target 
capabilities. Here a dll is created given the newer 
versions of CCS (starting from CCS v4.1), which then 

can be called in NI LabVIEW using the “Call Library 
Function Node” functionality that in turn eliminates the 
use of RTDX communication link. Table 4 summarizes 
these techniques and ranks their implementation 
complexity.  

 
Table 4: Summary of the Methods 

Tool Functionality Development 
Complexity 

NI LabVIEW 
DSP Module 

1. Limited 
Functionality  
2.No Access To the 
External Memory of 
the board for more 
complex algorithm 
development 
3. NI LabVIEW 
Profiling Tools 
disabled – only 
benchmarking is 
possible 

Low 

NI LabVIEW 
Test Integration 
Toolkit 

1. Enables 
functionality of TI 
CCS along with NI 
LabVIEW 
environment 
2. Requires knowledge 
of prior CCS 
development  
3.Currently officially 
not supported by NI 
 

Medium 

TI Code 
Composer Studio 
embedded in 
LabVIEW 

1.Full access to the 
board memory  
2. Full functionality of 
NI LabVIEW  
3. Requires knowledge 
of prior CCS 
development  
 

High 

 
 

Figure 12: Acquisition algorithm implementation fragment in LabVIEW environment using RTDX streaming to get the 
FFT of the input signal.   
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Table 5 shows the timing performance on different 
platforms for the advanced acquistion algorithm 
implemented for 24 satellites with the sampling rate of 
2.048 MHz. The coherent integration length is 1ms. The 
code is not fully optimized and mainly depends on the 
programming platform capabilities (e.g., multithreading, 
multicore operation, CPU speed). Fig. 13 provides a 
sample of profiling results on how timing statistics are 
collected in Table 5. Several implementation options are 
considered for the analysis. First, an acquisition 
algorithm is implemented in C/C++. The code is not 
optimized, and accelerations are only due to a fast block 
processing algorithm. The algorithm completes in 0.25 
seconds. Then the algorithm is implemented as a dll in 
MS Visual Studio C++ and called in NI LabVIEW using 
“Call Library Function Node” functionality. This is done 
for comparison purposes to check the overhead that 
LabVIEW environment may introduce over C/C++ only 
implementation. The algorithm runs in 0.28 seconds. The 
timing performance is critical for software receiver 
development, and one can see that LabVIEW is not 
adding significant overhead over the C code 
implementation, about 10% in this particular scenario. 

Table 5: Advanced Acquisition Algorithm Testing 

Platform Acquisition 
Time (sec) 

FFT Time 
(sec) 

Stadalone C/C++. MS 
Visual Studio 2008 0.25 0.016 

LabVIEW+DSP. Single 
Precision floating point 
radix-2   FFT with 
complex input function 
called in NI LabVIEW 
using RTDX 

0.031 0.001 

Implementation using 
native LabVIEW  blocks 0.058 0.004 

Calling dynamic linked 
library in NI LabVIEW 
created with MS Visual 
Studio C++ 

0.28 0.016 

 
 

 

 
Figure 13: Profiling results for the target compilation timing statistics. 

 
Then, the acquisition algorithm is implemented using 
LabVIEW native blocks. Interestingly enough the 
performance improves as the blocks are optimized and 
all other LabVIEW acceleration factors apply. The 
algorithm runs in 0.06 seconds, accelerating almost 5 
times. When delegating the acquisition algorithm from 
LabVIEW to DSP peripheral the overall runtime of the 
.vi that performs the acquisition algorithm in CCS IDE 
using a bidirectional RTDX communication link is about 
0.03s, which is twice as fast as the same algorithm 
implemented on LabVIEW only. The operation must be 
even faster, but an RTDX communication link is quite 

slow when transferring big arrays of data. In all 
scenarios, the results achieved in these case studies are 
exceeding by far the performance of the acquisition 
algorithm implemented on the C6713DSP through 
Simulink (Hamza et al., 2009). In (Hamza et al., 2009) 
the result for the multiple satellite acquisition for the 
sampling rate of 4.092Mhz and the intermediate 
frequency of 2.046MHz gives the maximum 
performance of about 17s. The same acquisition 
algorithm implemented in Matlab by Borre and Akos 
(2006) takes 183s having the intermediate frequency of 
the incoming signal as 9.548MHz and the sampling rate 
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as 38.192MHz. Table 5 shows also the FFT times taken 
on different platforms. It shows that the performance of 
the DSP target might be significantly higher if not 
slowness of RTDX communication.  
 
Table 6 shows the timing statistics with a varying 
number of coherent integration lengths on the selected 
platforms when the sampling rate is still 2.048MHz. The  
LabVIEW application is performing faster according to 
the tests and still it’s not adding an overhead to the same 
algorithm implemented in MS Visual Studio and called 
in LabVIEW as a dll. 
 

Table 6: Advanced Acquisition Algorithm Testing (NI 
LabVIEW 2010 is used) 

Platform 
Input Signal 

duration 
(ms) 

Time 
(sec) 

Standalone C/C++. 
MS Visual Studio 
2008 

1 0.25 
8 1.25 
16 2.375 

Implementation 
using native 
LabVIEW  blocks 

1 0.058 
8 0.47 
16 0.94 

Calling dynamic 
linked library in NI 
LabVIEW created 
with MS Visual 
Studio C++ 

1 0.28 
8 1.188 

16 2.422 

 
A PC with Intel(R) Core™ i5 CPU M580, 2.67GHz 
(4CPUs), 3510MB RAM, Windows XP Professional OS 
is used as a GPS simulator and A-GPS generation 
platform. NI LabVIEW 2010 version is used as a 
development environment along with GPS Simulation 
Toolkit 2.0. MS Visual Studio 2008 Team Suite is used 
for creating a dll to communicate with LabVIEW. 
Performance evaluation of the system in the LabVIEW 
environment is done based on (LabVIEW, 2012). 
 

6. LabVIEW GPS/GNSS Receiver Testing with A-
GPS Support  

 
An assisted GPS concept facilitates a GPS receiver 
operation in a weak signal environment. It is 
standardized for all wireless networks (Zhao, 2002). As 
is mentioned in Section 3, one can integrate Labview-
based A-GPS with the NI GPS Simulation Toolkit. For 
the case study of this paper, the implementation follows 
the guidelines of Secure User Plane Location (SUPL) 
architecture (Open Mobile Alliance, 2007) for a mobile-
base network-assisted scenario. It is assumed that the 
receivers are equipped with wireless communication 
capability to receive assistance from a network. In one of 
the possible configurations, this communication is 
Internet Protocol (IP)-based to deliver assistance 
information through a User Plane bearer between a 
SUPL Enabled Terminal (SET), such as a mobile device, 
and a SUPL Location Platform (SLP) server. While a 
detailed description of an assistance data delivery 
solution can be found in (Narisetty et al., 2012), the 
following describes a general setup. 
 
Figures 14-16 illustrate the complete experimental setup 
to test user devices for A-GPS support. First, the NI GPS 
Simulation Toolkit (NI LabVIEW, 2012) generates GPS 
binary navigation data for all selected satellites based on 
user-defined ‘location’ and ‘time’ along with almanac 
files in SEM format (Almanac information, 2012) and 
the ephemeris files in RINEX 2.0 format (Ephemeris 
information, 2012). These data are used to generate GPS 
signals. In our implementation, the simulator is co-
located with the A-GPS SUPL server (SLP). The above-
mentioned binary navigation data is also provided to an 
A-GPS SUPL server (SLP), which encapsulates it into 
textual assistance files and communicates them to 
receivers following SUPL-defined procedure through the 
wireless link. Client/Server communication through the 
wireless data link is implemented in Java as described in 
(Narisetty et al., 2012). 

 
Figure 14: Assistance data generation and flow. 
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Figure 15: SUPL message flow (SET initiated) 

 

 
Figure 16: A block diagram of experimental setup for testing A-GPS support (Narisetty et al, 2012) 

 
 
Along with the orbital parameters (ephemeris and 
almanac) the assistance also includes ‘reference position’ 
and ‘reference time’ information. The generation of this 
data is quite straightforward as the simulator internally 
possesses the accurate time and location of the user. So 
one can generate these references by user-defined 
offsets. The reference location can be alternatively 
retrieved using a Cell-ID location provided by 
application programming interfaces (API) of mobile 
operational systems. Another alternative is to retrieve the 
reference location using wireless network addresses such 
as WLAN MAC-IDs and IP addresses and existing 
databases of network address locations. Details on these 
alternatives are presented in (Narisetty et al., 2012). 

 

The SUPL textual files are created in Abstract Syntax 
Notation (ASN.1) as described in (UniGone, 2012). 
There are five messages going back and forth between 
the SET and the SLP in the SUPL architecture as shown 
in Fig. 15. Whenever an application running on the SET 
requests for position, the SUPL agent on the SET sets up 
a secure IP connection with the SLP and initially sends 
the start message to the SLP (SUPLSTART), which 
contains the user position technology, preference method 
and position protocol. The SLP replies with the 
SUPLRESPONSE in ASN.1 format including the 
session-ID and the positioning method to the SET as a 
response message. The SET then initializes the position 
session by requesting for the assistance data sending a 
SUPLPOSINIT message to the SLP consisting of 
supported positioning methods and associated 
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positioning protocol. The assistance data (SUPLPOS 
message) is delivered to the SET by the SLP wrapped in 
the form of a RRLP payload. As long as the SET 
receives the orbital assistance message (SUPLPOS), it 
can proceed with the calculation of the coarse position 
based on the estimated assistance data from the SLP. 
Once the SUPLPOS message is received the SLP 
informs the SET to end the IP connection by sending a 
SUPLEND message for releasing resources related to the 
location session (Open Mobile Aliance, 2007), 
(Chayapathy et al., 2009). 
 
For wireless communication, the textual files are 
encoded in Unalighned Packed Encoding Rules (PER)  
(T-Rec-X, 2012) for minimal encoding size using OSS 
NOKALVATM runtime libraries and OSS 
NOKALVATMASN.1 TO JAVA COMPILER (OSS 
Nokalva, 2012) as shown in Fig. 16. 
 

Without A-GPS support there is a need to collect data for 
at least three first subframes out of five (6 seconds each), 
which is sufficient for decoding a navigation data 
fragment for position calculation. However, with the A-
GPS support, we already have the almanac and 
ephemeris information decoded; thus, we can proceed to 
the position calculation immediately. The GPS receive 
should still track the signals to collect code phase 
measurements and preferably detect time stamp 
locations.   

7. Conclusion 

The paper describes an integrated LabVIEW-based 
platform for GPS/GNSS receiver development and 
testing using a simulator, hardware accelerators and A-
GPS support. It is described how to delegate computing 
tasks to a DSP peripheral. An advanced acquisition 
algorithm is tested on C6713 DSP target platform using 
RTDX channel communication. A LabVIEW-based 
solution with the DSP target peripheral accelerates 
computations significantly compared to the Simulink 
GPS receiver developed on the same target (Hamza et 
al., 2009). Comparison the GPS receiver 
implementations using NI LabVIEW and MS Visual 
Studio C++ platforms is provided where it is shown that 
due to NI LabVIEW platform’s inherent optimization 
capabilities and embedded multithreading, the same 
algorithm implementation provides better performance 
and the overhead is insignificant while embedding the 
C++ dll into the LabVIEW environment.  
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