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Abstract 
 
A Bayesian method for dynamical offline estimation of 
the position and the path loss model parameters of a 
wireless network's communication node is presented. 
Two versions of three different online positioning 
methods are tested using data collected from cellular 
networks and WLAN networks in outdoor and from 
WLAN networks in indoor environments. The tests show 
that the methods that use the estimated path loss 
parameter distributions with finite precisions outperform 
the methods that only use point estimates for the path 
loss parameters. They also outperform the coverage area 
based positioning method and path loss model method 
with generic path loss parameters, and are comparable in 
accuracy with the k-nearest neighbour fingerprinting 
method. Taking the uncertainties into account is 
computationally demanding, but the Gauss–Newton 
optimization methods is shown to provide a good 
approximation with computational load that is 
reasonable for many real-time solutions. 
 
Keywords: indoor positioning, outdoor positioning, 
received signal strength, path loss model, statistical 
estimation 
 
1. Introduction 
 
Hybrid navigation means navigation using 
measurements from different sources, such as Global 
Navigation Satellite Systems (e.g. GPS), Inertial 
Measurement Unit, and/or local wireless networks such 
as cellular networks, WLAN or Bluetooth. Range, 
pseudorange, deltarange, altitude, map constraint and 
heading are examples of measurements in hybrid 
navigation. This paper focuses on hybrid navigation 
using cellular net- works and WLAN networks. The 
ranges from the network’s communication nodes (CN) 
are inferred using received signal strength (RSS) 
measurements and path loss (PL) models. 
 

A PL model is a model for signal attenuation in space. In 
the literature, for example in [1] and [2], there are many 
different path loss modeling methods, from deterministic 
and computationally heavy ray-tracing algorithms to 
empirical and semi-empirical channel models based on 
extensive measurement campaigns. Each model contains 
tunable parameters, which attempt to capture the nature 
of the investigated radio propagation environment. 
 
The main contribution of this article is the introduction 
of a method for dynamic estimation of the model 
parameters for each CN using learning data collected at 
known positions. The underlying model is a simplified 
statistical path loss model, which omits antenna and 
environment factors and uses offline-estimated 
parameter values instead. The number of required path 
loss parameters is kept small in order to keep down the 
computational complexity and the amount of information 
required in the positioning phase. For example, in [3] 
and [4] these parameters are estimated generically for a 
test set of CNs, and in [5] a choice is made between 
several generic PL models based on the RSS value. 
However, the optimal parameter values are apparently 
CN-specific. Therefore, in this article these parameters 
are optimized for each CN independently. This approach 
has been adopted for example in [6], which only used 
point estimates of the estimated parameters and did not 
estimate their accuracy. 
 
In this article, the estimation is based on Bayesian 
statistics. This is a flexible and theoretically principled 
framework, and there exists extensive literature on 
different Bayesian models and algorithms for Bayesian 
inference. As an important built- in property, Bayesian 
methods produce the statistical description of the 
uncertainty of estimated parameter values. Parameter 
precisions are needed especially if several measurements 
are combined e.g. in hybrid systems or in time-series 
filters. A Bayesian posterior distribution contains all the 
information provided by the measurements, so the 
parameter estimates can be updated with new 
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statistically independent measurements without needing 
to keep the old measurements in memory. 
 
Furthermore, this article shows the influence of finite PL 
parameter precisions on the positioning results. The 
positioning algorithms studied here are Monte Carlo 
based Metropolis–Hastings (MH) sampler and 
computationally lighter Gauss–Newton method (GN). 
Grid positioning is used as a reference method. For each 
of the methods, two versions are compared: The first one 
uses point estimates for the path loss parameters and 
assumes them to be accurate. The second version 
assumes the parameters to follow specified probability 
distributions. 
 
The presented methods are applicable for both cellular 
and WLAN networks and for both indoor and outdoor 
environments. Our earlier articles on those methods 
tested the algorithms with cellular networks in outdoor 
environments and with WLAN networks in indoor 
environments [7,8]. This article summarizes these 
results, also applying the methods to hybrid outdoor 
positioning in which both cellular and WLAN networks 
are involved. Static and filtering algorithms are 
compared. The methods are also compared with the cell- 
ID-based coverage area method, k-nearest neighbour 
method and the path loss method that assumes the path 
loss parameters to be common to all the CNs. 
Furthermore, the influence of data pruning and data 
aging are investigated. The performance of each method 
is evaluated using data sets collected from real wireless 
communication networks from outdoor and indoor 
environments, outdoor data containing both cell and 
WLAN measurements, and indoor data with WLAN 
only. 
 
The paper is organized as follows. In Section 2 the path 
loss model is introduced and the method for estimating 
the model parameters is presented. In Section 3 a 
statistical measurement model for the positioning phase 
is presented, and the positioning algorithms are 
presented in Section 4. Testing and the results are 
described in Sections 5, 6 and 7. Finally, Section 8 
presents the conclusions. 
 
Notations: Matrices are denoted with unitalicised 
uppercase letters. Vectors and scalars are not 
distinguished.  refers to the (multivariate) 
normal distribution with mean  and covariance matrix 

, and  refers to its probability density function 
(pdf) evaluated at . Notation  means that 
pseudo-random number  is generated from probability 
distribution . 
 

2. Path Loss Model 
 
2.1 Path loss model input 
This section presents a method for estimating the path 
loss parameters and location for a single CN of a 
wireless network. This procedure is then applied to each 
CN in the learning data. The assumption that the 
parameters of separate CNs are statistically independent 
may result in some information losses, but it will 
simplify the form of the created CN database and reduce 
the number of recorded statistics. 
 
The input for the parameter estimation procedure of a 
single CN is a set of RSS measurements of signals 
transmitted by the CN. The measurement set  includes 

measurements given as 
 

,                  (1) 
 
where ℝ2 includes the easting and northing of the  

:th measurement point, and  is the received signal 
power of the :th measurement point in dBm. We 
assume that the transmitter power and antenna gains are 
fixed during the measurements, which should be a valid 
assumption in both WLAN and cellular networks. With 
this assumption, the received signal power is only 
dependent on the measurement coordinates . 
 
2.2 Path loss model definition 
 Friis's law determines the received signal power as a 
function of distance in a free space as 
 

,                      (2) 

 
where , , , and  are the transmitted signal 
power, transmitter antenna gain, receiver antenna gain, 
and signal wavelength, respectively. The distance 
between transmitter and receiver antenna is . The 
square term is the actual channel dependent path loss 
term, while the other parameters are transmitter and 
receiver dependent. However, using the free-space 
model could be a practical approach only in line-of-sight 
scenarios, but not in real-life cellular networks where 
buildings and ground surface fluctuations act as 
obstacles to the radio signal path. 
 
One of the most recognized outdoor path loss models is 
the classical log-distance model (or power law model) 
[9]. In the log-distance model the received signal power 
is defined as 
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,           (3) 

 
where the power  is given in logarithmic scale,  
is a reference distance,  is a path loss exponent, and 

 is a normally distributed random variable 
that models the slow fading (shadowing) effects. Here 
the path loss exponent  and the slow fading standard 
deviation depend on the local propagation environment. 
Notice that since the term indicates the received 
signal power at the reference distance , it 
automatically takes into account the transmission power 
along with the antenna gains and wavelength shown in 
Eq. (2). Moreover, apart from the slow fading,  is 
only affected by the path loss exponent . Now, by 
setting  m, and denoting , it is possible 
to write the final path loss model as 
 

,                  (4) 
 
where the parameter  is referred to as the apparent 
transmission power. 
 
2.3 Estimation of CN position and path loss 

parameters 
CN position and path loss parameters are estimated using 
the Iterative Reweighted Least Squares method 
(equivalent to the Gauss–Newton method). The function 
to be minimized is 
 

         (5) 

 
where  is the apparent transmission power,  the path 
loss exponent and  the CN position. The Jacobian 
matrix of the vectorized measurement model function is 
 

. (6) 

 
The Gauss–Newton algorithm for solving the Bayesian 
maximum a-posteriori (MAP) estimate is described in 
detail in Algorithm 3. 
 
The measurement data of cellular networks tends to be 
spatially correlated [10]. In order to reduce the effect of 
correlations, the measurements are pooled on a grid of 

pre-specified points before the estimation process. The 
RSS value of a grid point is the mean of the RSSs 
observed in the grid point's neighbourhood. The distance 
of adjacent grid points was set to 50 m for outdoor and 5 
m for indoor environments. 
 
To improve convergence properties of the Gauss–
Newton algorithm, all the quantities are given an almost 
uninformative Gaussian prior, i.e. a Gaussian 
distribution with so large a variance that the prior's 
influence on the posterior mode is negligible. The initial 
value for the CN position in the iterative solution is the 
position of the strongest measurement, to help ensure 
that the algorithm does not get trapped at a local 
extremum in an area of weak RSSs. Initial values for  
and  can be chosen more arbitrarily from the valid 
ranges, since the distribution is typically unimodal when 
the number of data points is large. 
 
The algorithm also returns an approximation for the 
covariance matrix of each quantity. Consequently, we 
are potentially able to distinguish between trustworthy 
and untrustworthy path loss models. In the Bayesian 
sense, the algorithm tries to estimate the MAP value and 
the covariance matrix is the covariance of the linearized 
model. 
 
In an ideal case without any slow fading variations, the 
CN position would be found at the coordinate point 
where the received signal power reaches its maximum 
value. However, in practice there might be several clear 
peaks in the received signal power map or there might 
not be enough measurements to find even a single peak. 
Besides, the CN might not even be located inside the 
measured power map. 
 
However, it should be emphasized that there is no need 
to know the exact true CN positions as long as the same 
estimated CN positions are used also in the positioning 
phase. Thus, one could easily refer to a certain kind of 
pseudo CN positions. Furthermore, it can be shown that 
using correct CN positions may even result in a worse 
modeling outcome. One reason is that the used 2D model 
does not work accurately in close proximity of the CN 
position where CN antenna height and antenna tilting 
have a considerable effect on the received signal power. 
 
2D-projection effects are taken into account by 
modifying the covariance matrix of the CN position 
artificially by adding a constant to elements on the 
diagonal. This modification models also the effects of 
GPS errors in the learning data and measurement error 
correlations due to environmental effects. For this reason 
and for reducing the number of recorded parameters, the 
CN positions and path loss parameters are assumed to be 
uncorrelated. Fig. 1 shows power maps (interpolated 
between the measurement points) of two separate CNs 
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Figure 1: Power maps and estimated CN positions of a 

WCDMA cell (up) and a WLAN access point 
 

 

 
Figure 2: Path loss curves of a WCDMA cell (up) and a 

WLAN access point 
 
and the resulting CN position estimates along with the 
covariance ellipse. 

As pointed out before, the path loss exponent  and the 
slow fading standard deviation are highly dependent on 
the radio propagation environment. For example, in a 
shadowed urban cellular radio network the typical values 
of  and  are varying around 0.1–4 and 1–6 dB, 
respectively [2,11]. Examples of path loss model curves 
can be found in Fig. 2, in which the path loss models are 
derived for the same CNs that were previously show in 
Fig. 1. 
 
3. Estimation Theory 
 
3.1 Bayesian filtering equations 
Consider the Gaussian system 
 

,                              (7) 

 
where  is the vector of observations at time instant , 

 represents the state of the system at  and  
represents nuisance parameters that have prior 
distribution . The motion model is linear and 
independent of the nuisance parameters. The random 
noise terms  and  are 
assumed to be mutually independent and independent of 
the state  and the parameter vector . Matrix  is the 
state transition matrix. 
 
By the Chapman–Kolmogorov equation, the prior 
distribution of the state at time instant  is 
 

.      (8) 
 
This is the prediction step of a Bayesian filter. It is 
assumes that the estimate of parameter vector  is not 
modified online, so it is approximated that the 
distribution of  remains unaffected by the data that is 
received in the positioning phase, i.e. 

. By Bayes' rule, the posterior pdf of 
the state is thus 
 

    (9) 

 
This is the update step of the Bayesian filter with 
unknown static nuisance parameters in the measurement 
model. 
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The filtering technique used in this article is an 
approximation of the general Bayesian filtering 
procedure described above. The presented positioning 
algorithms are formulated so that they return the 
posterior mean  and covariance matrix  of the user 
position. The posterior distribution is then approximated 
by a normal distribution with the estimated parameter 
values. Using this simplification and linear motion 
model with additive Gaussian noise, the filter prediction 
step (8) becomes 
 

,                (10) 

 
where 
 

,  . 
 
This approximation is done in order to simplify the 
prediction step of the filter, which is now the 
conventional Kalman filter prediction. Note that this 
procedure may result in information losses especially in 
case of multimodal posterior. Finding the optimal scaling 
of the process noise covariance matrix  may be 
problematic since it depends on the user's movement 
patterns. In the tests of this article the value was tuned 
for indoor and outdoor tracks separately. 
 
3.2 Path loss model 
The path loss model with uncertain parameters presented 
in Section 2 is a special case of the observation model in 

(7). In this case,  is the vector of 

 RSS measurements from different CNs at time 
instant  and  is the user position. Parameter vector 

 contains the path loss model parameters of all the 
possible CNs: 
 

. 

 
The PL models are not updated online, so the 
approximation (9) is used. The measurement model 
function is 
 

. 

 
 
Measurement noise covariance matrix is . 
The PL parameter's distributions are modelled to be 

normal, since the Gauss–Newton algorithm requires this 
in its basic form and the normal pdf of  and  is the 
conjugate prior of the likelihood. However, other 
distribution families such as Student's -distribution 
could also be studied. For simplicity, it is also assumed 
that CN position and PL parameters are independent a 
priori. Thus, 
 

              (11) 

 

where the parameters , , 

 and  are estimated from the learning data using 
the Gauss–Newton algorithm of Section 2.3. 
 
4. Positioning Algorithms 
 
In this section a Gaussian prior distribution 

 is used for the user's position. In case of 
multimodal likelihood function, the prior may function 
as a regularizer. Furthermore, it may reflect location 
information from other sources, and in case of time 
series filtering, the filter's prediction distribution is the 
prior. 
 
4.1 Grid method 
By (9) the posterior pdf value at point  is 
 

 (12) 

 
which can be approximated using standard Monte Carlo 
integration. The grid method is presented in Algorithm 1. 
 
The most crucial implementation issues are the Monte 
Carlo sample size parameter  as well as grid size and 
density. Note that CN likelihoods are combined using 
logarithms to avoid numerical underflows. 
 
4.2 Metropolis–Hastings method 
The Metropolis–Hastings (MH) sampler generates 
Monte Carlo samples from an arbitrary posterior 
distribution of a multivariate random variable. It is an 
iterative algorithm that can be proved to converge under 
mild restrictions towards the target distribution as the 
Monte Carlo sample size increases. The posterior mean 
and covariance can then be approximated by the sample 
mean and covariance of the sampled set. The algorithm 
is presented in Algorithm 2. 
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Algorithm 1 Grid with Monte Carlo integration 

1. Set a grid ℝ2  that covers 
most of the prior probability mass. 

2. For each observed CN , draw 

 

for . 
3. At each grid point  compute for each CN 

 and for each sample  

, 

and . Then set 

, . 

4. Normalize the grid to get a set of weights 
 and compute mean and covariance 

estimates 

, . 

 
The MH sampler uses a so-called proposal distribution, 
from which it is straightforward to generate random 
numbers. At each iteration of the algorithm, proposal 
values for the estimated variables are drawn from the 
proposal distribution. The proposal values are then 
accepted with probability proportional to the ratio of the 
pdf values of the proposal value and the latest accepted 
value. [12, Ch. 5] 
 
It can be proved that 
 

  (13) 

 
where 

,  

with . The simple form of this 

formula enables analytical integration over PL 
parameters  and . 
 

In the implementation phase, great care must be taken 
when setting the proposal distributions to ensure the 
algorithm's convergence in a feasible number of 
iterations. For convenience, the proposal distributions 
are chosen to be multivariate normal with the latest 
accepted value as the mean and the covariance matrices 

 and  tuned from prior covariance matrices of  
and . 
 
Algorithm 2 Metropolis–Hastings algorithm 

1. Set , ,  and 

 for . Set  using the 
formulas in step 3. Set . 

2. Generate , and for each CN 

, generate . 

3. For each , compute 

 and 

 

Set 

 

4. Set  and . 

Generate . Compute 
if  then 
    for do 
         
    end for 
    ,  
else 
    for  do 
         
    end for 
    ,  
end if 

5. Set . If , go to step 2. Otherwise, set 

, . 
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4.3 Gauss–Newton method 
With suitable measurement models, iterative state 
estimation methods can be as accurate as any closed 
form solution but simpler and easier to implement [13]. 
The Gauss–Newton method, also known as the Iterative 
Reweighted Least Squares method, is tested for 
positioning with the presented path loss model. The 
detailed description is in Algorithm 3. 
 
The iteration is not guaranteed to converge globally, but 
including good enough prior information and initial 
values seems to prevent the method from diverging. To 
improve convergence properties further, the step length 
in the state-space is chosen by a simple line search 
method so that the objective function value decreases at 
every iteration. However, the number of line search 
iterations is limited to ensure stability. The global 
convergence properties of the Gauss–Newton method 
with damped step size are discussed in [14,15]. 
 
For formulating the Jacobian matrix that is needed in the 
Gauss–Newton algorithm, the analytical partial 
derivatives of the measurement function  are formed: 
 

, , 

, . 

 
The remaining partial derivatives are zeros. Note that the 
prior covariance matrix is always full rank, so the least-
squares estimation can be performed. The measurement 
covariance matrix  is the diagonal matrix of the 
measurement variances. In Algorithm 3 the complete 

state is denoted with . As in the PL parameter 

estimation phase, the output of the algorithm contains 
estimates for the MAP and the covariance matrix of the 
posterior of the linearized model. 
 
 
4.4 Comparison methods 
The presented methods are compared with two 
conventional positioning methods: in indoor and outdoor 
cases with statistical coverage areas (CA)  [16,17] and in 
indoor cases with the (weighted) k-nearest neighbour 
algorithm (WKNN) [18]. The statistical CAs are 
bivariate Gaussian distributions that are fitted to the 
fingerprint database. Since the product of Gaussian 
densities is a Gaussian density, the standard Kalman 
filter can be applied to these measurements. In the 
WKNN method, the measurements are not compressed 
into parametric form, i.e. no statistical assumptions are 
made of the measurement model. Instead, the whole 
 

Algorithm 3 Gauss–Newton algorithm 
1. Choose the stopping tolerance . Let 

  

and 
 

be the prior covariance and mean. Let the initial 
iterand be . Additionally, measurement 
variance  is required. Set . Denote the 
objective function with 

. 

2. Compute the Jacobian 

. 

3. Set 

 

4. Choose the step length: 
 

while  and  do 

     
end while 
where  is a configuration parameter, e.g. 0.05. 
Set . 

5. If stopping condition  is not satisfied and 
, increment  and repeat from Step 2. 

Otherwise, compute  and set 

the state estimate 
, .  

 
measurement database is stored in the memory. In the 
positioning phase, the difference of the measurement to 
each database point is computed using the Euclidean 
distance of RSS differences, and the location estimate is 
set to the mean value of the three closest database points. 
The CNs that were observed in the positioning phase but 
that do not appear in a learning data point are taken into 
account in RSS-distance calculation by using –120 dBm 
as a radiomap value. The WKNN estimates are not 
filtered in this paper, so the algorithm only uses 
measurements of the current time instant. 
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Figure 4: Likelihoods of measurements –50, –75 and –90 dBm as a function of the distance from the mean of the CN 
position estimate. Curve “N” represents algorithms that assume PL parameters to be normally distributed a priori, and 
curve “acc” the algorithm that assumes that the parameters are known accurately. 
 
5. Likelihood Illustrations 
 
Fig. 3 illustrates the influence of the uncertain 
parameters on the likelihood. In the presented case 

 and . These 

representative values are based on our experimental 
knowledge of the Finnish cellular network. The 
likelihoods are calculated using the grid algorithm. The 
upper row illustrates the likelihoods of the model that 
takes the parameter uncertainties into account, and the 
lower row shows the likelihoods when it is assumed that 
the path loss parameter values are correct. The RSS 
values corresponding to the likelihoods are -50 (on the 
left), -75 and -90 dBm. The path loss model standard 
deviation is  dB. It can be seen that with strong 
signals, the RSS likelihood is unimodal or almost 
unimodal when the parameter uncertainties are taken 
into account. 
 
In the case of radially symmetric CN position 
distribution, the posterior density depends only on the 
distance from the mean of the CN position estimate. Fig. 
4 illustrates the likelihoods of the user's position as a 
function of this distance. They have been computed 
using standard Monte Carlo integration and normalized 
so that the maximal likelihood value is one. Curve “N” 
represents algorithms that assume PL parameters to be 
normally distributed a priori, and curve “acc” the 
algorithms that assume that the parameters are known 
accurately. Fig. 4 shows that the tails of the “N” curve 
are considerably heavier. 
 
In Fig. 5 the likelihood of two RSS measurements of –80 
dBm is presented. The PL parameters are similar to the 
ones in Fig. 3, and the distance between CNs is 400 
meters. If the parameter uncertainties are not taken into 
account (the figure on the right), the support of the 
likelihood consists of two separate parts, whereas in the 
left figure there is significant amount of likelihood mass 
also in the CN positions' surroundings. 

 

 

 
Figure 3: The likelihoods of measurements –50, –75 and 
–90 dBm. In the upper row, parameter uncertainties have 
been taken into account. 
 

 
Figure 5: The combined likelihood of two CNs with 
signal strengths –80 dBm. On the left, parameter 
uncertainties have been taken into account. 
 
6. Outdoor Tests 
 
6.1 Experiment setup 
A measurement campaign was accomplished to evaluate 
the performance of different algorithms in a real use 
case. First, a large set of outdoor fingerprints was 
collected in Tampere, Finland for learning the radiomap. 
The measurement device was a mobile phone with a 
suitable logging software and GPS receiver. The data 
contains IDs of both observed WCDMA cellular base 
stations (BS) and WLAN access points (AP). The 
measured RSS values are based on the measured
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 Received Signal Code Power (RSCP) indicator reported 
by the user equipment. 
 
In this article, two separate outdoor test tracks are 
presented. The first track (Hervanta) was collected by a 
pedestrian in a densely populated urban/suburban area. 
In the second track (Lukonmäki) the measurer rode a 
bicycle with a low velocity in a suburban area. In all the 
cases the true user positions were tracked using 
conventional GPS positioning. By plotting the GPS 
solutions on the map, it was confirmed that the GPS 
error on the area is small compared to the cellular 
positioning accuracy. The measurement interval was 
approximately 1 second, but the measurements were 
used for estimation with ten seconds interval to reduce 
measurement error correlations and to simulate the real 
use-case in which power should be saved. 
 
The coverage area (CA) of each BS and AP was 
estimated by fitting a normal distribution to the data 
[16,17]. Furthermore, path loss model parameters were 
estimated using the method of Section 2 of this article. In 
the static positioning, the prior distribution for the user's 
position was the product of CAs. In time-series filtering, 
the prior was the product of the filter prediction and the 
CA estimate. 
 
6.2 Parameter estimation results 
Fig. 6 shows the distribution of the estimates of the PL 
parameters  and  and BS positions  which were 
obtained from the collected data. The plots show the 
empirical quantiles of the means and standard deviations 
of the parameters. The distribution of the correlation 
coefficients, that is, the ratio of the covariance and 
product of standard deviations of  and , is also 
shown. 
 
Fig. 6 indicates that there is broad variation in the values 
of the PL parameters  and . Furthermore, at least 10 
% of the BSs has very high parameter variances for  
or  or both compared to the majority of the BSs. The 
PL parameters are in majority of the cases highly 
correlated. The correlation coefficient is always positive, 
since increasing the -intercept term of the fitted line 

 always makes the slope –  more negative. 
 
6.3 Positioning results with static and filtering 

algorithms 
The positioning results of the real-data outdoor tests are 
in Tables 1 and 2 for the static and filtering algorithms 
respectively. In the filter, the prediction step is the 
Kalman prediction based on equation (10) and the update 
step is one of the positioning algorithms 1, 2 or 3. 
Abbreviation “N” stands for the algorithms that assume 
the path loss parameters to be normally distributed a 
priori whereas “acc” indicates that the parameter values  

 

 

 
Figure 6: Estimate distributions for outdoor cellular BSs: 
means of  (up left), standard deviations of  (up 
right), means of  (middle left), standard deviations of 

 (middle right), correlation coefficients of  and  
(low left), and square-rooted maximal eigenvalues of the 
covariance matrices of  (low right) 
 
are assumed accurate. “CA” refers to the method in 
which only the product of coverage areas is used. Note 
that the performance of the filter is highly dependent on 
the process noise coefficient in (10). The chosen value of 
this parameter was a compromise between the optima of 
different tracks. 
 
For evaluating the performance of the algorithms we rely 
on statistics of positioning errors. The positioning error 
at one time step is the Euclidean distance between the 
position estimate and the corresponding reference 
location. Columns “Mean”, “Med” and “95 % err.” in 
the tables are mean error, median error and empirical 95 
% percentile of errors in meters. “Time” is the average 
running time of our MATLAB implementation in 
seconds. Note that the codes are not highly optimized so 
the running time values have to be considered only 
roughly indicative. The times are also highly dependent 
on the chosen configuration parameters. 
 
Column “Cons” displays the 95 % consistency that is 
determined using the Gaussian consistency test [19, p. 
235] with risk level 5 %. The solver is deemed to be 
consistent at a certain time step, if the true position is 
within the 95 % ellipse of the posterior distribution, 
assuming normality of the posterior. For the case of 



Nurminen et al.: Statistical path loss parameter estimation and positioning using RSS measurements 
22 

 

Gaussian posterior distribution, the closer “Cons” is to 
95 %, the more realistic the covariance matrix estimation 
is. Note that in the case of RSS measurements the true 
posterior cannot be expected to be Gaussian, and the 
validity of the consistency test may suffer in multimodal 
and heavy-tailed cases. These cases occur especially if 
the prior has large variance and the number of 
measurements is low. 
 
From Table 1 it can be seen that taking the parameter 
uncertainties into account improves the consistency 
remarkably for all the estimation methods. Accurate 
covariance matrix estimation is crucial especially when 
location information from other sources is combined 
with RSS measurements or when positioning is done 
with Bayesian time-series filters [20]. 
 
The presented “N” algorithms seem to outperform “acc” 
algorithms slightly in the positioning accuracy. In the 
Hervanta case, time-series filtering reduces mean errors 
by at least 10 %, and performance differences between 
“N” and “acc” algorithms are somewhat clearer than in 
the static results. For the Lukonmäki case, the 
performance improvement of the filter compared to the 
static algorithms is not as clear as in Hervanta, except in 
95 % error. This indicates that the data quality in 
Lukonmäki is most of the time so good that filtering 
does not provide significant improvement, but it mainly 
helps in difficult cases where the number of observed 
cells is low or the measurements are noisy. Both the GPS 
solution and the estimated track of the Lukonmäki case 
are plotted on the map in Figure 7. These figures 
illustrate the filtering algorithm's tendency to make the 
appearance of the estimated track smoother and less 
jumpy. 
 

      
Figure 7: The GPS track (Reference) and the track 
estimated by the Gauss–Newton algorithm (Estimate) for 
the Lukonmäki test track. The static solution is on the 
left, and the filtering solution on the right. (The map is © 
openstreetmap.org contributors.) 
 
Among the three estimation methods, the grid and MH 
sampler approach the exact Bayesian posterior 
distribution. The grid gives the precise posterior values 
in the grid points assuming that the Monte Carlo 
integration's accuracy is adequate. The MH sampler 
converges theoretically to the true posterior as the 
sample size parameter N approaches infinity. In practice, 

the rate of convergence in MH algorithms is highly 
dependent on the form and parameters of the proposal 
distributions. With the chosen configuration the method 
usually fails to compete with the grid especially in 
consistency. However, the Monte Carlo framework is a 
flexible and efficient tool especially in time-series 
analysis of highly nonlinear or non-Gaussian 
measurements [21]. 
 
The Gauss–Newton method lacks global convergence 
properties and the covariance matrix estimate is based on 
a linearized model and has thus a less clear Bayesian 
interpretation. Indeed, the real data tests show that the 
algorithm's convergence is more sensitive to the quality 
of the prior distribution. However, the presented results 
are comparable with those of the other methods, and the 
GN is clearly the computationally lightest one of the 
presented PL algorithms. 
 
6.4 Positioning results using pruned learning data 
In the middle column of Table 2 the learning data set 
was pruned so that for 75 % of the BSs only 10 % of the 
data points were used for parameter estimation. The 
excluded points were chosen randomly. This models a 
real use case, since there might be newly added BSs or 
the area as a whole might be inadequately covered by the 
database. 
 
Based on the obtained results the positioning errors with 
the pruned data are approximately 10 % higher than 
those with the complete data set. In the Lukonmäki case 
the results are even slightly better in median error sense 
with the pruned learning data, but in the 95 % sense 
worse, which might indicate that pruning results in an 
increase in the number of outlier measurements. It also 
seems that pruning tends to amplify slightly the 
performance differences of “N” and “acc” algorithms. 
Theoretically it is obvious that PL parameter 
uncertainties should be taken into account especially if 
some of the BSs are likely to be badly mapped, since the 
parameter uncertainties' function is to compare the 
reliabilities of different BSs' PL models. 
 
6.5 Positioning results using generic parameters 
The right column of Table 2 presents the positioning 
results of the same test tracks obtained using generic PL 
model parameters. In this approach the Gauss–Newton 
parameter estimation method of Section 2 is applied to 
the whole learning data set, and the estimated parameters 
are BS position for each BS and PL parameters  and 

 that are common for all the BSs. Coverage areas are 
also estimated for each BS separately. 
 
In the Hervanta case the generic parameters seem to 
increase the errors by at least 25 % compared to the 
results obtained with BS-specific PL parameters, 
whereas in the Lukonmäki case the error statistics are 
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rather similar. The generic parameters approach is more 
efficient in terms of data storage, but loses BS-specific 
environment information. 
 
6.6 Positioning results using combined cell and 

WLAN 
Table 3 presents the corresponding positioning results 
from the Lukonmäki track obtained so that the 
information contained by the received WLAN signals is 
fused to the cellular positioning estimate. The PL 
parameters and CN positions of the WLAN APs were 
estimated using the same learning data as with cellular 
BSs, but without the pre-specified grid. In the left part of 
the Table 3 the used WLAN information is the CAs of 
the WLAN APs, in the middle part the WLAN CAs and 
RSSs and in the right table the RSS measurements of 
WLANs. In each case both cell CAs and cell RSSs are 
also used. 
 
The results indicate that WLAN RSS measurements do 
not contain any additional position information in 
outdoor cases compared to mere connectivity 
information of WLANs (CAs). However, the WLAN CA 
methods seem to underestimate the uncertainty in the 
position estimate, which is indicated by the low 95 % 
consistencies. The reason for this behaviour is a topic for 
future research. 
 
7. Indoor Tests 
 
7.1 Experiment setup 
A large set of WLAN fingerprints was collected in 
public indoor spaces in the city of Tampere, Finland for 
learning the radiomap. The test case presented in this 
article is located in a building at Tampere University of 
Technology campus area. The test track consists of 
several parts measured on different floors of the same 
building. Each floor has a separate radiomap with 2-
dimensional PL models, and the correct floor is assumed 
known in both learning and positioning phases. Suitable 
floor detection methods are under research. 
 
The measurement device was a tablet computer. The 
reference locations were set manually on the floor plan 
figure. The WLAN scanning interval was varying 
between 10 s and 20 s. 
 
7.2 Results and discussion 
The distributions of the PL parameter and AP position 
estimates and their standard deviations are presented in 
Fig. 8. It is also clearly visible in the indoor WLAN data 

that the PL parameters are not global constants but have 
significant variation over different APs. 
 
The error statistics of the real-data indoor tests are in 
Table 4 and Table 5. In the middle column of Table 4 
only randomly chosen 10 % of the fingerprints in the 
learning data were used for randomly chosen 75 % of the 
APs, and in the right column the PL parameters  and 

 were assumed to be generic for all the APs. The 
results of Table 5 are based on the same radiomap and 
covers approximately the same positioning tracks as the 
other tests, but the positioning track data were collected 
one and a half years later. Abbreviation “N” stands for 
the algorithms that assume the PL parameters to be 
normally distributed a priori whereas “acc” indicates 
that the parameter values are assumed known. “CA” 
refers to the product of coverage areas. “WKNN” is the 
weighted 3-nearest neighbour method with the Euclidean 
distance. 
 

 

 

 
 
Figure 8: Estimate distributions for indoor WLAN APs: 
means of  (up left), standard deviations of  (up 
right), means of  (middle left), standard deviations of 

 (middle right), correlation coefficients of  and  
(low left), and square-rooted maximal eigenvalues of the 
covariance matrices of  (low right). 
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Table 1: Results of static cellular positioning with real data 
 

Solver Mean 
(m) 

Med 
(m) 

95%err 
(m) 

Cons 
(%) 

Time 
(s) 

Hervanta      
Grid, N 225 196 457 93 101 
Grid, acc 227 219 460 81 54 
MH, N 230 199 477 84 56 
MH, acc 229 213 476 75 17 
GN, N 209 190 451 94 0.7 
GN, acc 219 200 480 72 0.6 
CA 274 239 532 100 0.4 
Lukonmäki      
Grid, N 203 149 495 93 105 
Grid, acc 211 159 497 79 57 
MH, N 215 156 562 84 74 
MH, acc 224 165 543 73 24 
GN, N 214 158 497 88 0.7 
GN, acc 225 173 511 62 0.6 
CA 248 195 548 95 0.4 

 
 

Table 2: Results of cellular positioning with filter 
 

 Full learning data Pruned learning data Generic parameters, 
full learning data 

Solver Mean 
(m) 

Med 
(m) 

95%err 
(m) 

Cons 
(%) 

Mean 
(m) 

Med 
(m) 

95%err 
(m) 

Cons 
(%) 

Mean 
(m) 

Med 
(m) 

95%err 
(m) 

Cons 
(%) 

Hervanta             
Grid, N 192 174 385 81 209 202 394 78 250 235 548 64 
Grid, acc 203 199 397 61 227 215 421 52 255 247 550 56 
MH, N 196 186 391 64 209 201 401 61 259 233 615 44 
MH, acc 208 210 398 47 232 213 438 43 274 250 606 40 
GN, N 196 177 409 85 210 197 402 81 251 246 549 59 
GN, acc 208 189 426 53 234 214 458 44 256 245 550 47 
CA 223 178 496 85 295 311 536 72     
Lukonmäki             
Grid, N 179 142 444 80 165 125 504 78 182 146 499 75 
Grid, acc 186 166 429 63 170 138 469 65 190 158 495 60 
MH, N 187 145 494 65 169 124 527 68 191 150 532 65 
MH, acc 194 165 433 51 182 148 468 52 197 167 491 53 
GN, N 183 150 445 73 169 132 495 74 184 148 500 71 
GN, acc 196 180 426 46 181 151 459 46 197 158 498 52 
CA 210 188 486 84 207 158 559 78     

 
 

Table 3: Static outdoor positioning results with cell and WLAN in Lukonmäki 
 

 WLAN-CA WLAN-CA&RSS WLAN-RSS 

Solver Mean 
(m) 

Med 
(m) 

95%err 
(m) 

Cons 
(%) 

Mean 
(m) 

Med 
(m) 

95%err 
(m) 

Cons 
(%) 

Mean 
(m) 

Med 
(m) 

95%err 
(m) 

Cons 
(%) 

MH, N 82 41 318 25 82 43 316 25 122 65 403 90 
MH, acc 83 39 345 26 80 42 323 25 115 70 399 80 
GN, N 81 41 303 32 81 41 303 31 106 53 376 85 
GN, acc 82 40 319 31 82 42 319 28 109 57 386 69 
CA 84 42 318 34         
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Table 4: Filtering results for the real data tests in the indoor case. WKNN not filtered. 

 Full learning data Pruned learning data Generic PL parameters, 
full learning data 

Solver Mean 
(m) 

Med 
(m) 

95%err 
(m) 

Cons 
(%) 

Mean 
(m) 

Med 
(m) 

95%err 
(m) 

Cons 
(%) 

Mean 
(m) 

Med 
(m) 

95%err 
(m) 

Cons 
(%) 

Grid, N 6.6 5.8 15.4 93 7.4 6.2 17.9 96 9.3 8.1 27.4 85 
Grid, acc 6.6 5.6 15.6 80 7.0 5.2 18.7 82 8.7 7.1 28.5 71 
MH, N 7.1 6.2 15.9 85 7.5 6.2 18.7 92 9.8 8.8 27.2 74 
MH, acc 6.6 5.9 16.3 77 7.3 5.4 19.6 80 8.6 7.0 27.1 68 
GN, N 6.7 6.0 15.5 93 8.4 6.4 22.9 82 9.3 6.7 29.4 80 
GN, acc 7.1 6.2 15.3 60 8.8 6.9 24.3 51 9.5 6.2 32.1 58 
CN 9.6 8.6 20.0 44 11.6 9.9 25.0 31 9.4 8.6 17.2 42 
WKNN 4.5 3.2 10.5  9.5 8.4 17.6      
             

 
Table 5: Filtering results for the real data tests in the 
indoor case, positioning data being about 1.5 years 
newer than the learning data. WKNN not filtered. 

Solver Mean 
(m) 

Med 
(m) 

95%err 
(m) 

Cons 
(%) 

Grid, N 7.6 6.6 13.5 96 
Grid, acc 7.5 6.1 13.9 90 
MH, N 9.4 8.6 17.8 75 
MH, acc 8.0 7.2 16.9 83 
GN, N 7.6 6.7 15.6 92 
GN, acc 6.8 6.4 15.3 82 
CN 9.3 9.0 18.3 63 
WKNN 8.3 4.9 31.4  

 
In terms of the error statistics presented in Table 4, the 
proposed RSS methods seem to perform better than the 
coverage area solution but worse than the WKNN 
solution in positioning accuracy. Note, however, that 
both Gauss–Newton solutions are computationally much 
more efficient and the requirements for the database are 
much lower for the parametric algorithms, since only the 
PL parameter estimates and their variances have to be 
stored for each AP instead of all the measurement points. 
Moreover, pruning the database seems to influence the 
fingerprint solution much more than the parametric 
methods; WKNN cannot interpolate the radiomap 
between the learning measurements like the physics-
based statistical PL models. Based on the right column 
of Table 4, the generic parameters result in at least 20 % 
increase in the mean and median errors and in even 
larger differences in 95 % errors. According to aged 
radiomap results of Table 5, especially the WKNN 
method's performance suffers from the aged radiomap. 
By the low median error and large 95 % error, the 
performance of the WKNN is good most of the time with 
the aged radiomap, but deteriorates at certain areas. 
 
The parameter uncertainties seem to be essential from 
the consistency's viewpoint also in the indoor case. In 
practice WLAN positioning in indoor spaces is 
complemented by additional, more refined sources such 
as map information, inertial navigation systems or 

Bluetooth. When several types of measurements are 
combined, it is crucial to be able to determine the 
accuracy of each measurement, and so the improvement 
in consistency is a good reason for taking the parameter 
uncertainties into account in indoor positioning. 
 
8. Conclusions 
 
This article presented statistical methods for dynamic 
path loss parameter estimation and positioning using 
received signal strength measurements. According to the 
tests performed using cellular and WLAN networks in 
outdoor spaces and WLAN networks in indoor spaces, 
RSS positioning based on dynamically estimated base 
station specific path loss parameters outperforms cell- 
 
ID-based coverage area positioning and positioning with 
a generic path loss model. The accuracy is also 
comparable with the k-nearest neighbour method. The 
database requirements of path loss model methods are 
lighter than those of the k-nearest neighbour method, and 
the path loss model methods are less sensitive to 
inadequate database coverage and database aging. It was 
also shown that taking the parameter uncertainties into 
account in the positioning phase improves positioning 
accuracy and especially consistency of error estimates 
compared to the methods in which the path loss 
parameters are assumed accurately known. The 
differences are emphasized if some of the BSs have been 
estimated using a pruned learning database. Furthermore, 
it was shown that Gauss–Newton optimization algorithm 
provides satisfactory accuracy and consistency compared 
with grid and Metropolis–Hastings methods, being also 
computationally feasible for many real-time applications. 
Adding other sources of navigation information such as 
maps or inertia-based information and showing the 
influence of the parameter uncertainties in a hybrid 
positioning system in outdoor and indoor spaces is a 
topic for future research. Additional future topic is 
expanding the presented methods into 3D position space 
especially in indoor spaces, in which floor detection is an 
interesting and essential part of navigation. 
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