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QR Implementation of GNSS Centralized ApproahesA. LannesCNRS/LSS/1 (Frane)S. GrattonCNES/OMP/1 (Frane)Abstrat. When proessing times series of global po-sitioning data, one is led to introdue `loal variables,'whih depend on the suessive epohs of the time series,and a `global variable' whih remains the same all overthese epohs with however possible state transitions fromtime to time. For example, the latter our when somesatellites appear or disappear. In the period de�ned bytwo suessive transitions, the problem to be solved inthe least-square sense is governed by a linear equationin whih the key matrix has an angular blok struture.This struture is well suited to reursive QR fatoriza-tion. The orresponding tehniques prove to be very ef-�ient for GNSS data proessing and quality ontrol inreal-time kinematis. The main objetive of this paper isto show how the QR implementation of GNSS entralizedapproahes ombines the advantages of all the methodsdeveloped hitherto in this �eld. The study is ondutedby onsidering the simple ase of ontinuous observationswith a loal-sale single baseline. The extension to net-works is simply outlined.Keywords. GNSS, DGPS, RTK. PPP. DIA. RAIM.LLL. Undi�erential entralized data, redued di�erene.Reursive Least Square (RLS). Quality ontrol. Integerambiguity resolution.1 IntrodutionIn the traditional approah to di�erential GNSS, the satel-lite error terms are eliminated by forming the so-alledsingle di�erenes (SD). One then gets rid of the reeivererror terms by omputing, for eah reeiver to be on-sidered, the orresponding double di�erenes (DD): thedisrepanies between the single di�erenes (SD) and oneof them taken as referene. Note that a similar situ-ation arises in preise point positioning (PPP) with asingle reeiver. To handle the SD's in a homogeneous1This work was also supported by the CERFACS (Frane): theEuropean Centre for Researh and Advaned Training in Sienti�Computation.

manner, one may equally well onsider the disrepan-ies between the SD's and their mean value. By adopt-ing the terminology introdued by Shi and Han (1992),one may then speak of `entralized di�erenes' (CD). At�rst sight, the ambiguities to be raised are then rationalnumbers (whih are not neessarily integers). The GNSSommunity therefore onsidered that this idea ould notbe implemented easily. Fifteen years later, this prini-ple was reintrodued in an independent manner (Lannes2007a). In the orresponding approah, whih referredto the same onept, but with another terminology, thatof `redued di�erene' (RD), the di�ulty related to ra-tional ambiguities was overome. The onnetion withthe entralized undi�erential method was then lari�ed(Lannes 2007b, 2008). In partiular, it was shown thatat any stage of the data assimilation proedure, it waspossible to pass from the RD mode to the DD mode,and vie-versa. Shortly, the RD mode is well suited toquality ontrol (see Sets. 6 in Lannes 2007b and 2008),while solving the rational-ambiguity problem amounts tosolving a nearest-lattie-point problem of DD type (seeSet. 5.2 in Lannes 2007b).When proessing times series of global positioning data,one is led to introdue `loal variables' ui whih depend onthe suessive epohs ti of the time series to be proessed,and a `global variable' v whih remains the same all overthese epohs with however possible state transitions fromtime to time. For example, the latter our when somereeiver-satellite signals appear or disappear. In the pe-riod de�ned by two suessive transitions, the problem tobe solved in the least-square (LS) sense is governed by asystem of linear equations of the form
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A1u1 +B1v = b1
A2u2 +B2v = b2...
Aiui +Biv = bi

(1)The de�nition of the variables ui and v depends on theGNSS system under onsideration. The omponents of uiand v are real numbers, some omponents of v being inte-gers (lying in Z): the integer ambiguities of the problem.
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(2)As spei�ed in Set. 6.3 of Björk 1996 (see also Goluband van Loan 1989, Bierman 1977), the angular blokstruture of matrix [A B] is well suited to reursive QR fa-torization. When dealing with large-sale problems, nu-merial auray an thereby be improved.More interestingly, the orresponding tehniques proveto be very e�ient for GNSS data proessing and qualityontrol; see, e.g., Tiberius (1998), Loehnert et al (2000),Chang and Guo (2005). As lari�ed in this paper, this ispartiularly the ase for the GNSS entralized approahes,even when dealing with small-sale systems. In partiu-lar, in the quality-ontrol proedures, the identi�ationof biases is then made easier (see Sets. 4.3 and 3.3).To introdue the reader to the QR implementation ofthese approahes, we now onentrate on the simple aseof ontinuous observations in RTK mode with a loal-sale single baseline (see, e.g., Table 1 in Feng and Li 2008).This problem an of ourse be dealt with as a speial aseof multiple-baseline networks with possibly missing data.In this paper, we will not proeed that way. Indeed, theorresponding theoretial framework would then maskthe main guidelines of our ontribution.The RD approah presented in Lannes 2007ab addressedthis partiular GNSS system. The orresponding data-assimilation proedure was based on reursive least-square(RLS) �ltering. In partiular, the normal equation asso-iated with Eq. (2) was solved with the aid of lassialRLS tehniques. The QR implementation of this proe-dure therefore remained to be done.As revealed by the ontents of the present paper, this im-plementation led us to larify some important points. Forexample, the RD onept was revisited and generalized.The quality-ontrol proedure was thereby strongly sim-pli�ed. At last but not the least, the advantages of theRD and DD approahes were onjugated in a straight-forward manner. As a result, the extension to generalnetworks presented in Lannes 2008 is to be revisited a-ordingly. This will be done in a forthoming paper.1.1 Observational equationsThe partiular GNSS system examined in this paper isgoverned by the following observational equations (see,e.g., Set. 14 in Strang and Borre 1997). For eah fre-queny fν , for eah reeiver-satellite pair (r, s), and ateah epoh t, the arrier-phase and ode relations are re-

spetively of the form
φν,t(r, s) = ρt(r, s) + c[δtν,t(r) − δtν,t(s)]

+ λν [ϕν,0(r) − ϕν,0(s)] + λνNν(r, s) + εν,t(r, s)
(3)

pν,t(r, s) = ρt(r, s) + c[dtν,t(r) − dtν,t(s)] + ǫν,t(r, s) (4)In these equations, whih are expressed in length units,
ρt(r, s) is the reeiver-satellite range: the distane be-tween satellite s (at the time t − τ where the signal isemitted) and reeiver r (at the time t of its reeption).The λν 's denote the wavelengths of the arrier waves; theintegers Nν(r, s) are the integer arrier-phase ambigui-ties. The instrumental delays and lok errors that for agiven (ν, t) depend only on r and s are lumped togetherin the reeiver and satellite error terms δtν,t(r), δtν,t(s)for the phase, and dtν,t(r), dtν,t(s) for the ode (c is thespeed of light); ϕν,0(r) and ϕν,0(s) are the initial phases(expressed in yles) in reeiver r and satellite s, respe-tively. The phase and ode errors εν,t(r, s) and ǫν,t(r, s)inlude both noise and residual model errors. Here, forlarity, the ionospheri and tropospheri delays are ig-nored (see Set. 1.2 with a loal-sale system).For larity, we now restrit ourselves to the single-frequenyase. Equations (3) and (4) then redue to
φt(r, s) = ρt(r, s) + c[δtt(r) − δtt(s)]

+ λ[ϕ0(r) − ϕ0(s)] + λN(r, s) + εt(r, s)
(5)

pt(r, s) = ρt(r, s) + c[dtt(r) − dtt(s)] + ǫt(r, s) (6)It may be onvenient to onsider that a funtion ϑ(r, s),suh as ρt(r, s) for example, takes its values on a retan-gular grid. When the system inludes two reeivers and
n satellites (as it is the ase here), this grid inludes twolines and n olumns; the values ϑ(r, s) then de�ne a ve-tor ϑ of the `observational spae' R

2n. These values arethe omponents of ϑ in the standard basis of R
2n.The variane-ovariane matrix of the data vetor ψ = φ(for the phase) or ψ = p (for the ode) is denoted by Vψ.Let [ϑ] now be the olumn matrix whose entries are theomponents of ϑ. The size ‖ϑ‖ψ of a vetor ϑ of type ψ(for example, that of an observational residual of type ψ)is de�ned via the relation

‖ϑ‖2
ψ := [ϑ]TV −1

ψ [ϑ] (7)1.2 SD equationsLet r1 be the referene reeiver, and r2 be that of theuser. Denote by s1, s2, . . . , sn the satellites involved inthe GNSS devie at epoh t. A quantity suh as
ϑ(j) := ϑ(r2 , sj) − ϑ(r1 , sj) (8)is then referred to as a single di�erene (SD) in ϑ. (Inthis paper, a notation suh as a := b means `a is equalto b by de�nition.')



Lannes and Gratton: QR Implementation of GNSS Centralized Approahes 135Adopting the notation de�ned in Eq. (8), we then obtainfrom Eq. (5) the SD phase equations
φ

(j)
t = ρ

(j)
t + λv(j) + αt + ε

(j)
t (j = 1, . . . , n) (9)where

v(j) := N (j) −N (1) (10)and
αt := c[δtt(r2) − δtt(r1)]

+ λ[ϕ0(r2) − ϕ0(r1)] + λN (1)
(11)Aording to its de�nition, αt is an unknown reeiverparameter shifted by an unknown number of wavelengths.The n− 1 integers

v(2), v(3), . . . , v(n)are the DD ambiguities of the problem; here, the latterare de�ned with regard to the �rst satellite of the list ofvisible satellites at the initialization epoh: v(1) = 0. Thispointed out, in the present approah, no `usual doubledi�erene' is omputed: the SD data are dealt with in ahomogeneous manner (see Set. 1.4).The SD ode equations are obtained from Eq. (6) in asimilar manner:
p
(j)
t = ρ

(j)
t + at + ǫ

(j)
t (j = 1, . . . , n) (12)where

at := c[dtt(r2) − dtt(r1)] (13)1.3 Linearized SD equationsThe position variable at epoh t, ξt, appears via the lin-earization of the single di�erenes ρ(j)
t with respet tothe position variable ξ2;t of the user reeiver r2. Here, weimpliitly refer to the relation ξ2;t = ξ̃2;t + ξt. As

ρ
(j)
t = ρt(r2, sj) − ρt(r1, sj)the linear expansion of ρ(j)

t is of the form
ρ
(j)
t = ρ̃

(j)
t +

(

κ
(j)
t · ξt

) (14)where κ(j)
t is the unitary vetor that haraterizes thediretion sj → r2 of the signal reeived at epoh t. Thegeometry-free SD equations (9) and (12) then yield thelinearized SD equations

(

κ
(j)
t · ξt

)

+ λv(j) + αt + ε
(j)
t = φ̃

(j)
t (15)

(

κ
(j)
t · ξt

)

+ at + ǫ
(j)
t = p̃

(j)
t (16)where (for j = 1, . . . , n)

φ̃
(j)
t := φ

(j)
t − ρ̃

(j)
t (17)

p̃
(j)
t := p

(j)
t − ρ̃

(j)
t (18)

We now show how to express these equations in a moreonise form. Denoting by {ej}nj=1 the standard basisof R
n, let us onsider the vetor

ϑ :=

n
∑

j=1

ϑ(j)ej (19)where the ϑ(j) 's are the SD's de�ned in Eq. (8); R
n isthen regarded as the `SD spae.' Throughout this paper,to avoid any onfusion, a funtion suh as ϑ(r, s) is neverdenoted by the isolated symbol ϑ.Let Γt be the operator de�ned by the relations

(Γtξt)
(j) :=

(

κ
(j)
t · ξt

)

(j = 1, . . . , n) (20)By onstrution, the elements of the jth line of the matrixof Γt are the omponents of κ(j)
t , i.e., the diretion osinesof κ(j)

t ; this matrix inludes n lines. Let us now denoteby ζ be the vetor of R
n whose omponents are all equalto unity. In terms of vetors, the linearized SD equa-tions (15) and (16) an then be written as follows:

Γtξt + λv + ζαt + εt = φ̃t (21)
Γtξt + ζat + ǫt = p̃t (22)Note that ξt, αt and at are loal variables, whereas v is aglobal variable.Let [ϑ] now be the olumn matrix whose entries are theomponents of ϑ. The size ‖ϑ‖ψ of a vetor ϑ of type ψ(for example, that of an observational residual of type ψ)is de�ned via the relation
‖ϑ‖2

ψ := [ϑ]TV −1
ψ [ϑ] (23)where Vψ is variane-ovariane matrix of ψ:

Vψ = SVψST (24)Here, S is the matrix of the SD operator (see Eq. (8))
S[ϑ] := [ϑ] (25)Let us now introdue the Cholesky fatorization
V −1
ψ = UT

ψ Uψ (26)where Uψ is an invertible upper-triangular matrix. FromEq. (23), we then have
‖ϑ‖2

ψ = [ϑ]TUT
ψ Uψ[ϑ] = [Uψϑ]T[Uψϑ]i.e.,

‖ϑ‖2
ψ = [ϑψ ]T[ϑψ] (27)where

[ϑψ ] := Uψ[ϑ] (28)Aording to these equations, the size of a vetor ϑ oftype ψ is equal to the size of ϑψ in R
n:

‖ϑ‖2
ψ = ‖ϑψ‖2 (29)As lari�ed in Set. 1.4, this trik proves to play a keyrole in the approah presented in this paper.



136 Journal of Global Positioning Systems1.4 Statement of the problemLet t1 be the initialization epoh of the `urrent run'
[t1, . . . , ti]. Aording to Eqs. (21) and (22), the problemis to minimize the objetive funtional
f(ξ1, . . . , ξi; v;α1, . . . , αi; a1, . . . , ai)

:=
∑i

ι=1 ‖φ̃ι − (Γιξι + λv) − ζαι‖2
φι

+ ‖p̃ι − Γιξι − ζaι‖2
pι

(30)where ξι ≡ ξtι , and likewise for αι, aι, φ̃ι, p̃ι and Γι. Inour approah, this is done in two steps. The �rst stepis to minimize f in αι and aι for ι = 1, . . . , i. As lar-i�ed below, this operation orresponds to the notion of`redution.'1.4.1 Redued equationsLet us �rst onentrate on the phase terms. For larity,let us then set ϑ := φ̃ι−(Γιξι+λv). The optimal estimateof αι is then the real number α◦ for whih the minimumof ‖ϑ− ζα‖φ in α is attained. From Eq. (29), we have
‖ϑ− ζα‖2

φ = ‖ϑφ − ζφα‖2where φ stands for φι. As a result, α◦ is the solution ofthe normal equation
[ζφ]

T[ζφ]α = [ζφ]
T[ϑφ]i.e.,

α◦ =
[ζφ]

T[ϑφ]

[ζφ]T[ζφ]It follows that
ϑφ − ζφα◦ = Rφϑwhere (here, for ψ = φ ≡ φι)
Rψϑ := ϑψ − [ζψ ]T[ϑψ]

[ζψ ]T[ζψ ]
ζψ (31)Consequently (see Eq. (30)):

min
αι∈R

‖φ̃ι−(Γιξι+λv)−ζαι‖2
φι = ‖Rφι [φ̃ι−(Γιξι+λv)]‖2Likewise, for the ode terms,

min
aι∈R

‖p̃ι − Γιξι − ζaι‖2
pι = ‖Rpι(p̃ι − Γιξι)‖2We are thus led to minimize the `redued funtional'

fr(ξ1, . . . , ξi; v)

:=
∑i

ι=1 ‖Rφι [φ̃ι − (Γιξι + λv)]‖2

+ ‖Rpι(Γιξι − p̃ι)‖2

(32)The `redued equations' to be solved in the usual LS sensean therefore be displayed as follows:
Rφι(Γιξι + λv) = Rφι φ̃ι (33)
RpιΓιξι = Rpι p̃ι (34)

1.4.2 Redution operatorLet us onentrate on the `redution operator' (31). Forlarity, let us set
ϑr;ψ := Rψϑ (35)To give a more onrete idea of the ation of this oper-ator, let us now onsider the typial situation where thevariane-ovariane matrix of the observational data oftype ψ is of the form (see Liu 2002)
Vψ = diag(η(r, s)σ2

ψ

) (36)Here, σ2
ψ is a `referene variane;' η(r, s) is a nonnegativeweight funtion. The variane-ovariane matrix of theSD data is then given by the relation (see Eq. (24))

Vψ = diag(ηjσ2
ψ) ηj := η(r1 , sj) + η(r2 , sj) (37)From Eq. (26), we then have

Uψ = diag(

1
√
ηj σψ

) (38)hene, from Eq. (28),
ϑ

(j)
ψ =

1
√
ηj σψ

ϑ(j) ζ
(j)
ψ =

1
√
ηj σψ

ζ(j)As ζ(j) = 1 for all j, we then have
[ζψ ]T[ϑψ ] =

1

σ2
ψ

n
∑

j=1

1

ηj
ϑ(j) [ζψ]T[ζψ ] =

1

σ2
ψ

n
∑

j=1

1

ηjIt then follows from Eqs. (35) and (31) that the ompo-nents of ϑr;ψ are given by the formula
ϑ

(j)
r;ψ =

ϑ(j) − ϑ(0)

σψj
σψj :=

√
ηj σψ (39)where

ϑ(0) :=

n
∑

j=1

µjϑ
(j) µj :=

1
ηj

∑n
k=1

1
ηk

(40)Note that σψj is the standard deviation of the single-di�erene ψ(j). With regard to the SD weights 1/ηjor 1/σ2
ψj , ϑ(0) is a `baryentri single di�erene:'

n
∑

j=1

ϑ(j) − ϑ(0)

σ2
ψj

= 0Aording to its notation, this virtual single di�ereneis assoiated with a virtual satellite s0. The n `virtualdouble di�erenes' ϑ(j) − ϑ(0) an thus be regarded as the`entralized values' of the ϑ(j) 's (Shi and Han 1992), orequally well, as the `redued values' of the ϑ(j) 's (Lannes2007ab). Indeed, the minimum of
n

∑

j=1

(ϑ(j) − ω)2

σ2
ψj

(ω ∈ R)is obtained for ω = ϑ(0). In other terms, in a onretemanner, the ation ofRψ onsists in performing this typeof redution.



Lannes and Gratton: QR Implementation of GNSS Centralized Approahes 1371.5 ContentsAs spei�ed in Set. 2, the redued equations (33) and (34)lead to a linear system of type (2). The blok matries Ai,
Bi and bi are then de�ned, and likewise for the loal vari-ables u1, u2, . . . , ui and the global variable v. The ompo-nents of v are then the �oat ambiguities of the problem.The �oat solution v̂ is re�ned reursively, epoh-by-epoh,with the aid of the QR method. This method is intro-dued in Set. 3.1, and fully desribed in Set. 3.2. The se-leted QR implementation is based on `Givens rotations'(see, e.g., Björk 1996); the orresponding operations anthus be stored in memory very easily. This is very usefulfor the variational method presented in Set. 3.3. As thelatter is basially involved in the quality-ontrol proe-dures (see Set. 4), the e�ieny of the DIA method pre-sented in Lannes 2007b is thereby improved. The statetransitions indued by the appearane and/or the dis-appearane of some satellites are examined in Sets. 3.4and 3.5, respetively. As spei�ed in Set. 3.6, the in-verse of the variane-ovariane matrix of v̂ is diretlyprovided by the QR method. The proedure that yieldsthe integer-ambiguity solution v̇ is desribed in that se-tion.This study is illustrated with dual-frequeny examples(Set. 5). Some omments on the key points of our on-tribution, and its extension to GNSS networks are to befound in Set. 6.2 Blok matries of the globalRD equationThe redued equations (33) and (34) lead to an equationof type (2). We now larify this point expliitly. Theextension to the dual-frequeny ase is straightforward(see Set. 5).The loal variable ui then redues to the position vari-able ξi. The blok matrix Ai is then de�ned as follows:
Ai =

[

RφiΓi

RpiΓi

] (41)Note that RψΓi is obtained by applying the redutionoperator Rψ to eah olumn vetor of Γi (see Eq. (31)and Set. 1.4.2). The orresponding data blok of Eq. (2)is then
bi =

[

Rφi φ̃i

Rpi p̃i

] (42)Let S̄i := {s1 , s2 , . . . , sn̄i} be the series of satellites in-volved in the observational proess until epoh ti inluded.A given satellite may disappear and reappear in the samerun. Suh a satellite is then regarded as a new satellite. In

other words, whenever this ours, a new satellite is addedat the end of this series. The ni satellites of epoh ti forma subset Si of S̄i: ni ≤ n̄i.To introdue the reader to what is essential, we �rst re-strit ourselves to the ase where no satellite appears ordisappears in the urrent run [t1, . . . , ti]: no state transi-tion in this interval. The entries of the global variable vare then the ambiguities v(2), v(3), . . . , v(ni) with ni = n̄i(see Eq. (10)). As lari�ed in Set. 3.4, it is reommendedto lass these ambiguities in reverse order. For example,for ni = 7, the global variable v is then expliitly de�nedas the olumn matrix (with 6 entries)
v =















v(7)

v(6)...
v(3)

v(2)















(43)The phase blok of Bi is then of the form (see Eq. (33)):
[

Bi
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= R[ni]
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(ni = 7) (44)Here, the dots stand for 0. This matrix inludes ni lines(orresponding to the ni visible satellites of the system),and ni− 1 olumns (orresponding to the ni− 1 ambigu-ities of the problem). The notation R[ni]
φi

means that theredution operation is performed on vetors of R
ni . Here,as the referene satellite s1 of the urrent run is visible,the �rst line is nought (see Eqs. (9) and (10)).Note that the ode blok of Bi is nought: [

Bi
]

pi
= 0.3 QR methodWe �rst introdue the reader to the notion of QR fator-ization (Set. 3.1). We then show how to solve Eq. (2) ina reursive manner (Set. 3.2). The orresponding varia-tional aspets are presented in Set. 3.3. We then speifyhow to handle the ambiguities when some satellites ap-pear and/or disappear (Sets. 3.4 and 3.5, respetively).Finally, Set. 3.6 is devoted to the QR aspets onerningthe integer ambiguity problem.3.1 QR fatorizationLet us onsider the following general LS problem: mini-mize, with the Eulidean norm,

‖Ax− y‖2
Rm (A ∈ R

m×n, m ≥ n, rank A = n)
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A y

R z

z′

0

0

QTy

Fig. 1 LS solution via QR fator-ization. The ation of QT on Aand y yields the basi QR strutureskethed here: the upper-triangularmatrix R and the olumn matrix z.The solution of the equation Ax = yin the LS sense is then given by theformula x = R−1z (see Eq. (46)).With regard to numerial auray, the best way to solvethis problem is to use a method based on the QR fator-ization of A (see, e.g., Björk 1996):
A = Q

[

R
0

] (45)where R ∈ R
n×n is an upper triangular matrix with pos-itive diagonal terms, and Q ∈ R

m×m is an orthogonalmatrix: QTQ = Im (the identity matrix on R
m). We thushave

‖Ax− y‖2
Rm = ‖QT(Ax − y)‖2

Rm

=

∥

∥

∥

∥

QTQ

[

R
0

]

x− QTy

∥

∥

∥

∥

2

RmSetting QTy = z+ z′ where z ∈ R
n (see Fig. 1), it followsthat

‖Ax− y‖2
Rm = ‖Rx− z‖2

Rn + ‖z′‖2
Rm−n (46)The LS solution is therefore given by the relation

x̂ = R−1z (47)The problem an thereby be solved by bak substitution.In the ase where x is on�ned to Z
n, the solution of theproblem is therefore de�ned as follows:

ẋ = argmin
x∈Zn

‖R(x− x̂)‖2
Rn (48)Indeed, Rx− z = R(x− x̂).Aording to Eq. (45), QR fatorization onsists in �nd-ing an operator QT (and thereby an operator Q) suhthat QTA has the blok struture [R 0]T skethed inFig. 1. This operator is de�ned as a produt of elemen-tary orthogonal transformations. In the implementationpresented in this paper, the latter are Givens rotations

(see Eqs. (2.3.10) to (2.3.13) in Björk 1996). Premul-tipliation of A and y by suh a rotation matrix a�etsonly rows k and ℓ of A and d. This matrix is de�ned sothat, for (a2
k + a2

ℓ) 6= 0,
[

c s

−s c

] [

ak
aℓ

]

=

[

a

0

] (49)where
a = (a2

k + a2
ℓ)

1/2 (50)It is easy to hek that the osine and sinus values  and sare then given by the following formulas
c = ak/a s = aℓ/a (51)Note that m−1 Givens rotations are required for the �rstolumn of A, m−2 for the seond, and so on (see Fig. 1).It is important to point out that that the ation of QTan be stored in memory as the sequene of the sues-sive (osine, sinus) pairs (c, s) haraterizing the sues-sive Givens rotations involved in this operation.3.2 Reursive QR fatorizationWe now show how to solve, in the LS sense and reur-sively, the equation (2) indued by the redued equations(33) and (34).Let us �rst onsider the initialization epoh: epoh 1.The problem is then solved in two steps (see Fig. 2). TheGivens rotations of the �rst step are those required for�nding the upper triangular matrix K1. The modi�edversion of B1 thus obtained inludes an upper blok L1and a lower blok L′

1. Likewise, the modi�ed version of b1inludes two olumn submatries: c1 and c′1. The Givensrotations of the seond step yield the upper triangularmatrix R1; c′1 then yields (d1 , d
′
1); see Fig. 2. Note that

K1, L1 and c1 are not a�eted by these rotations. Theglobal solution is then obtained by bak substitution viathe formula v̂ = R−1
1 d1. The loal solution an then bealso omputed by bak substitution: û1 = K−1

1 (c1−L1v̂).The �rst step of the next epoh (epoh 2) is similar tothat of epoh 1: one thus obtains the upper triangularmatrix K2. The modi�ed version of B2 then inludes anupper blok L2 and a lower blok L′
2. Likewise, the mod-i�ed version of b2 inludes two olumn submatries: c2and c′2 (see Fig. 2). The Givens rotations of the seondstep then operate on (R1 , L

′
2) and (d1 , c

′
2) so as to trans-form L′

2 into a zero blok matrix. One thus gets R2 and
(d2 , d

′
2); v̂ is then updated via the relation v̂ = R−1

2 d2.The loal solution at epoh 2 an then be omputed:
û2 = K−1

2 (c2 − L2v̂).In summary, one thus operates, reursively, with the keystruture shown in Fig. 3: Ki, (Li , L
′
i) and (ci , c

′
i) areomputed from Ai, Bi and bi, Ri and (di , d

′
i) being thenomputed from (Ri−1 , L

′
i) and (di−1 , c

′
i). We then have

[

Ki Li
· Ri

] [

ûi
v̂

]

=

[

ci
di

] (52)
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K1 L1 c1

R1 , R2

K2 L2

L′
2

A1 B1

A2 B2

b1

b2

c′1

c2

c′2 d′2

d1

d′1

d2

Fig. 2 LS solution via reursive QR fatorization.The priniple of the reursive QR method is skethedhere for the �rst two epohs: epoh 1 with the in-put blok matries A1 , B1 and the data olumn ma-trix b1; epoh 2 with the input blok matries A2 , B2and the data olumn matrix b2. The initializationproess is performed in two steps: K1 , (L1 , L′

1),
(c1 , c′1) are built in the �rst step (see text for L′

1),whereas R1 , (d1 , d′

1) are built in the seond. Theglobal �oat solution is then found by bak substitu-tion: v̂ = R−1

1
d
1
. The loal solution is then givenby the formula û1 = K−1

1
(c1 − L1v̂). Likewise, at thenext epoh, one �rst builds K2 , (L2 , L′

2), (c2 , c′2),and then R2, (d2 , d′

2); v̂ is then updated via the re-lation v̂ = R−1

2
d
2
. The loal solution at epoh 2 anthen be omputed: û2 = K−1

2
(c2 − L2v̂).hene v̂ = R−1

i di and ûi = K−1
i (ci − Liv̂). The detailedimplementation of this proess must of ourse take a-ount of the fat the ode blok of Bi is nought.3.3 Variational alulationWe now answer to the following question: what are thevariations∆ûi and ∆v̂ indued by a variation∆bi of bi (atepoh ti)? From Eq. (2), these variations are the u-v om-ponents at epoh ti of the LS solution of the equation
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[

∆v
]By onstrution, the quantities ∆d1, . . . , ∆di−1 induedby this equation are nought. The problem is therefore

Ki Li ci

Ri di

Fig. 3 Reursive QR triangularstruture. Aording to the prin-iple of the reursive QR methodskethed in Fig. 2, the alulationof Ri and di requires to have keptin memory the upper triangularmatrix Ri−1 and the olumn ma-trix di−1 (see text).the same as previously, ∆di being then omputed from
∆c′i with ∆di−1 = 0. This is why it is reommended tostore in memory the sequene of the suessive pairs (c, s)haraterizing the Givens operators involved in the twoQR steps of epoh ti (see Fig. 2 and Eqs. (51) & (50)).3.4 Handling the ambiguities when somesatellites appearAs shown in Eq. (43), the ambiguities are put in reverseorder. When some satellites appear at epoh ti, the �rstolumns of Bi an then be proessed as the last olumnsof Ai (see Fig. 2). To get Ri and di, one then proeedsas illustrated in Fig. 4.

K L c

d

R
di

RiFig. 4 Handling additional ambiguities.When satellites appear at epoh ti, the�rst olumns of Bi are proessed asthe last olumns of Ai. The reursiveQR operation then yields the quantities
K, L, c, R and d. To get Ri and di, onethen proeeds as illustrated here.3.5 Handling the ambiguities when somesatellites disappearLet us �rst onsider the ase where the referene satelliteof the urrent run disappears at epoh ti. For example,



140 Journal of Global Positioning Systemswith regard to the situation orresponding to Eq. (44),the phase blok of Bi then beomes
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(ni = 6) (53)The alulation of Ri and di is then performed as usually.Indeed, as the ambiguities to be onsidered remain thesame, Ri−1 and di−1 must not be modi�ed.Let us now onsider the ase where, for example, thesatellites s7 and s6 disappear at epoh ti. The ambiguities
v7 and v6 of Eq. (43) an then be removed. The phaseblok of Bi is then of the form (see Eq. (44))
[
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(ni = 5) (54)In the alulation of the upper triangular matrix Ri,
Ri−1 is then simply updated by removing its �rst twolines and �rst two olumns. Likewise, in the alulationof di, the �rst two entries of di−1 are then to be removed.Let us now onsider the ase where, for example, satel-lites s5 and s3 disappear at epoh ti, the phase blokof Bi is then of the same as that de�ned in Eq. (54);
Ri−1 and di−1 must then be modi�ed as spei�ed below.One �rst performs the permutation
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(55)The olumns of Ri−1 are then permuted aordingly. Asthe matrix thus obtained, R′
i−1, is no longer upper trian-gular, one then performs Givens rotations on R′

i−1 and
di−1 so that R′

i−1 beomes upper triangular:R′
i−1→R′′

i−1,
di−1 → d′′i−1. To omplete the proess, one then removesthe �rst two lines and �rst two olumns of R′′

i−1, as wellas the �rst two entries of d′′i−1.3.6 Integer-ambiguity resolutionLet v̂ be the �oat solution at epoh ti, and n be the num-ber of its omponents. In single-frequeny mode, depend-ing on whether the referene satellite of the run [t1, ti] isvisible or not, n is equal to ni − 1 or ni (respetively).The ambiguity solution is then de�ned by the relation(see Eq. (48))
v̇ = argmin

v∈Zn

‖Ri(v − v̂)‖2
Rn (56)

Aording to this formula, v̇ is the point of Z
n losestto v̂, the distane being that indued by the quadratiform

q(υ) := ‖Riυ‖2
Rn = υT[RT

i Ri]υ (57)Note that RT
i Ri is the inverse of the variane-ovarianematrix of v̂:

RT
i Ri = V −1

v̂ (58)The QR method thus provides the Cholesky fator Ri ofthe matrix of q diretly. This is not the ase in the usualRLS �ltering tehniques. Indeed, the latter provide Vv̂whih is then to be inverted.The nearest-lattie-point problem (56) is solved in twosteps (see, e.g., Agrell et al. 2002). One �rst searhesa `redued basis' of Z
n in whih the matrix of q is asdiagonal as possible. The problem is then solved in thisbasis by using the orresponding `redued form' of Ri:

R̄i; the integer-valued solution v̇ is then expressed in theoriginal basis.The �rst step orresponds to a deorrelation proess. Thedeorrelation methods to be implemented must somehowrefer to the priniples of the LLL algorithm (an algo-rithm devised by Lenstra, Lenstra and Lovàsz in 1982).Here, as the QR reursive proess provides Ri diretly,the LLL implementations of Luk and Tray (2008) arewell suited to the problem. Denoting by r̄k,ℓ's the ma-trix elements of R̄i, the following onditions an thus beimposed:(i) r̄k,k > 2|r̄k,ℓ| (for 1 ≤ k < ℓ ≤ n)(ii) r̄2k,k ≥ (ω − 1/4)r̄2k−1,k−1 (for 2 ≤ k ≤ n)with 1/4 < ω < 1. In pratie, to speed up the seond-step proedure, ω is set equal to 0.999. Note that Condi-tion (ii) is not neessarily imposed in other deorrelationmethods (see, e.g., Xu 2001).When in the data assimilation proess, v̇ beomes onsis-tent with the model, the ambiguities are said to be �xed.The loal variable ûi is then re�ned via a �xed least-squares (FLS) proess, i.e., a proess in whih the ambi-guities are �xed at these values. Again, the QR methodis well suited to solving these problems.4 Quality ontrolTo prevent that biases on the SD data propagate unde-teted into the ambiguity solution and the positioningresults, partiular methods have been developed. The bi-ases are �rst `deteted,' then `identi�ed,' and �nally theresults are `adapted' onsequently (e.g., Teunissen 1990,Hewitson et al. 2004). Note that these DIA methods areto be implemented in all the modes to be onsidered: LS,RLS and FLS.The DIA method presented in this setion is a simpli�edversion of that presented in Lannes 2007b. Its identi�a-tion priniple is `loal,' in the sense that the biases thus



Lannes and Gratton: QR Implementation of GNSS Centralized Approahes 141identi�ed onern only the data of the urrent epoh. Inthe present version, the orresponding analysis is basedon the results provided by the QR proess at that epoh.When the ambiguities are not �xed, the adaptation prin-iple is global: the loal position, the urrent biases, theurrent �oat ambiguities and the urrent QR triangularstruture (skethed in Fig. 3) are updated in the globalframe of the QR reursive proess, without any approx-imation. This was not ompletely the ase in Lannes2007b.4.1 Loal identi�ationThe identi�ation priniple is based on the analysis of theresidual at epoh ti:
wi := bi − (Aiûi +Biv̂) (59)Note that ûi and v̂ depend on bi in a linear manner. Let usnow denote by yi the olumn matrix of the SD data or-reted from the terms due to linearization (see Eqs. (42))
yi :=

[

φ̃i
p̃i

] (60)In what follows, Hi is the operator that yields wi from yi(see Eqs. (42) and (59)):
wi = Hiyi (61)For larity, we now omit subsript i. Denoting by wpand wφ the ode and phase omponents of w (respe-tively), we then have, in single-frequeny mode,
‖w‖2 := ‖wφ‖2 + ‖wp‖2 (62)where ‖wψ‖2 =

∑n
jψ=1 |wjψ|2 for ψ = p or φ. When ‖w‖2is too large (see Set. 4.3), we then searh to identify, inthe SD data y, a global bias of the form

z =





∑

jφ∈Ωφ
βjφejφ

∑

jp∈Ωp
βjpejp



 (63)The `outlier sets' Ωφ and Ωp are some `small subsets'of {1, . . . , n}. With regard to the phase (for example) theorresponding SD model is the following (see Eq. (9)):
ρ(j) + λv(j) + α+ ε(j) =

∣

∣

∣

∣

∣

φ(j) − βjφ if j ∈ Ωφ

φ(j) otherwiseThe problem is to identify Ωφ and Ωp while getting least-squares estimates of the orresponding biases βjφ and βjp .The guiding idea is to the onsider the ontribution ofthese biases to w.As ∆w = H ∆y (see Eq. (61)), we must �rst see whatis the ontribution of these biases to y. At this level,the orretion terms indued by ejφ and ejp are denotedby zjφ and zjp :
y

set

= y − zjψ zjφ :=

[

ejφ
0

]

zjp :=

[

0

ejp

] (64)

A notation suh as a set

= a+ b means `a is set equal to theurrent value of a+b.' The variations of w indued by ejφand ejp are therefore haraterized by the quantities fjφand fjp de�ned below:
w

set

=w −Hzjψ fjφ := Hzjφ fjp := Hzjp (65)As a result, the variation of w indued by the global bias zis haraterized by the vetor
Mz :=

∑

jφ∈Ωφ

βjφfjφ +
∑

jp∈Ωp

βjpfjp (66)We are then led to solve, in the least-square sense, theequation w−Mz `=' 0, in whih the olumn vetors ofM ,the fjφ 's and fjp 's, have to be thoroughly seleted. Aslari�ed in Set. 4.3, this operation is performed via a par-tiular Gram-Shmidt orthogonalization proess whih isinterrupted as soon as the orreted data are onsistentwith the model.4.2 Global adaptationOne the outlier sets Ωφ and Ωp have been identi�ed, themodel is to be updated onsequently: Ai is ompletedby adding the olumns assoiated with the orrespondingbias variables βjφ and βjp . From Eqs. (42) and (64), theseolumn matries are respetively of the form
[ Rφejφ

0

] [

0
Rpejp

] (67)The global QR reursive proess is then updated aord-ingly. The position variable, the SD biases and the �oatambiguities are thus re�ned, as well as Ri and di in par-tiular (see Fig. 3). When the QR proess is initialized,or when the ambiguities are �xed, the SD biases providedby the adaptation proess oinide with those provided bythe identi�ation proedure (see Set. 4.1 and steps 2.4& 2.5 in Set. 4.3). The LS problem to be solved, whihis then the same, is simply handled in a di�erent manner.4.3 ImplementationIn the proedure desribed in this setion (see the �owdiagram shown in Fig. 6), we denote by Ω the set ofidenti�ed outliers. At the beginning of this proedure,
Ω is therefore empty: Ω := Ωφ ∪ Ωp = ∅. For simpli-ity, we now restrit ourselves to the limit ase de�ned inSet. 1.4.2). We then set
|w|max = max

jψ /∈Ω
|wjψ | (68)i.e. here: |w|max = max |wjψ |. Given some probability offalse alarm θ0, we de�ne χ0 as the upper θ0/2 probabilitypoint of the entral normal distribution: χ0 := Nθ0/2(0, 1).For example, when θ0 is equal to 0.001, χ0 is of the orderof 3.



142 Journal of Global Positioning Systems1. Entrane loal testFrom Eqs. (59), (42) and (35), w is a redued quantity.Aording to Eq. (39), in the absene of any bias, |w|maxmust therefore be smaller than χ0. In other terms, if
|w|max < χ0, no outlier is to be searhed: one then goesto step 4. Conversely, if |w|max is very large omparedto χ0 (say larger than 1000 for example), the QR proessis to be reinitialized (see Set. 3). In the other ases, theDIA proedure is initialized by setting r = 1 and Π = ∅;
r is a reursive index; the meaning of the auxillary set Π isde�ned in step 2.2 as soon as it begins to be built. At thisstage, in the single-frequeny ase and in FLS mode (forexample), the loal redundany is given by the formula
m = 2(n− 1) − 3.2. Reursive identi�ation of the outliers2.1. Current set of potential outliersGiven some nonnegative onstant κ ≤ 1, form the urrentset of potential outliers (see Fig. 5):

Πr :=
{

jψ /∈ Ω : |wjψ| ≥ κ|w|max

}

r r r r

3φ 5φ 3p 5p

|w5φ |

Phase CodeFig. 5 Notion of potential outliers in reduedmode. The quantities |wjψ| shown here (insingle-frequeny mode) are the absolute val-ues of the omponents of the (updated) resid-ual w (see step 2.7 ). In this illustration,
n = 7, κ = 0.5 and Ω = ∅; four potential out-liers are identi�ed: 3φ, 5φ, 3p and 5p. Here,the phase outlier 5φ is likely to be the domi-nant potential outlier (see step 2.3 ).2.2. For eah potential outlier jψ ∈ ΠrPerform the following suessive operations:a) When jψ /∈ Π, ompute (see the ontext of Eqs. (64),(65), (61), (42) & (59) and Set. 3.3)
fjψ := H ·

∣

∣

∣

∣

∣

zjφ if ψ = φ

zjp if ψ = pThen, set
gjψ := fjψ Π

set

=

{ {jψ} if Π = ∅
Π ∪ {jψ} otherwiseBy onstrution, Π is the set of potential outliers jψfor whih fjψ has already been omputed.

b) If r = 1 go to step 2.2. Otherwise, at this level,
{g◦q}q<r is an orthonormal set. (This set is built, pro-gressively, via step 2.4.) Then, for eah integer q < r,onsider the inner produt de�ned as follows:

ςq,jψ := (g◦q · gjψ )

:=
∑

ψ′=φ,p

(g◦q;ψ′ · gjψ ;ψ′)This sum inludes two terms. Depending on what
ψ′ refers to (φ or p), g◦

q;ψ′ denotes the phase or odeomponent of g◦
q
, and likewise for gjψ;ψ′ . If ςq,jψ hasnot been omputed yet, ompute it, store it in mem-ory, and perform the Gram-Shmidt orthogonalizationoperation

gjψ
set

= gjψ − ςq,jψg
◦
qBy onstrution, ςq,jψ = (g◦q · fjψ). At the end of allthese operations, gjψ is orthogonal to g◦q for any q < r.) Consider the projetion of w on the one-dimensionalspae generated by gjψ , i.e., (hjψ · w)hjψ where

hjψ := gjψ/‖gjψ‖. The norm of this projetion is equalto |(hjψ · w)|, the absolute value of the quantity
γjψ := (gjψ · w)/̺jψ ̺jψ := ‖gjψ‖Expliitly,
(gjψ · w) :=

∑

ψ′=φ,p

(gjψ;ψ′ · wψ′)

‖gjψ‖2 :=
∑

ψ′=φ,p

‖gjψ;ψ′‖22.3. Dominant potential outlierThe identi�ed outlier ̄ψ̄ is de�ned as the dominant po-tential outlier, i.e., the potential outlier for whih |γjψ | ismaximal:
̄ψ̄ := arg max

jψ∈Πr

|γjψ |We then set
ωr := ̄ψ̄ Ω

set

=

{ {ωr} if r = 1

Ω ∪ {ωr} if r > 1

γ◦
r

:= γωr
g◦

r
:= gωr

/̺ωrSupersript ◦ stands for omega (and outlier). At thislevel, Ω is the urrent set of identi�ed outliers:
Ω = {ωq}r

q=1By onstrution, {g◦
q
}r

q=1 is an orthonormal basis of theurrent range of M ; ∑r

q=1 γ
◦
q
g◦

q
is the projetion of w onthis spae. With regard to Eq. (66), we then set

β◦
r

:= βωr
f◦

r
:= fωr



Lannes and Gratton: QR Implementation of GNSS Centralized Approahes 143QR solutionResidual wEntrane teston |w|maxReinitializationPotential outliersDominant potential outlierUpdate SD biasesUpdate redundanyUpdate wInner teston |w|maxGlobal adaptation
Fig. 6 Flow diagram of the DIA proedure in reduedmode. At eah step of the identi�ation proess, the (up-dated) residual w is analyzed on the grounds of Eq. (68):see steps 1, 2.7 and 2.8. This allows the potential outliersto be seleted (see Fig. 5). The outliers an thus be iden-ti�ed, in a reursive manner, via a partiular orthogonal-ization Gram-Shmidt proess. This QR Gram-Shmidtproess also provides the SD biases, and thereby the y-le slips if any. When the ambiguity are not �xed, thesebiases are slightly re�ned through the global adaptationproess desribed in Set. 4.2.2.4. Components of g◦

r
in the basis of the f◦

q
'sThese omponents are denoted by uq,r:

g◦
r

=
r

∑

q=1

uq,rf
◦
qThey are omputed via the QR Gram-Shmidt formulas(see, e.g., Björk 1996)

uq,r =























− 1

̺ωr

∑

q≤q′<r

uq,q′ ςq′,ωr
if q < r

1

̺ωr

if q = rfor 1 ≤ q ≤ r. The uq,r's are the entries of the r
th olumnof an upper triangular matrix U.

2.5. Update the SD biasesAording to Eq. (66), the SD biases β◦
q are the ompo-nents of ∑r

q=1 γ
◦
qg

◦
q in the basis of the f◦

q 's:
r

∑

q=1

γ◦
q
g◦

q
=

r
∑

q=1

β◦
q
f◦

qDenoting by [γ◦] the olumn matrix with entries γ◦q (from
q = 1 to r), and likewise for [β◦], we have

[β◦] = U[γ◦]The SD biases are therefore to be updated as follows:
β◦

q

set

=

{

β◦
q

+ uq,rγ
◦
r

if q < r

ur,rγ
◦
r

if q = r

(for 1 ≤ q ≤ r)2.6. Update the loal redundany
m

set

=m− 1If m = 0 go to step 3.2.7. Update w and |w|max

w
set

=w − γ◦r g
◦
r |w|max

set

= max
jψ /∈Ω

|wjψ |2.8. Inner loal testIf |w|max > χ0, update the reursive index: r
set

= r + 1.Then, go to step 2.3. Global adaptationUpdate the global QR reursive proess by taking aountof the identi�ed bias variables (see Set. 4.2).4. End5 ExamplesThe QR implementation presented in this paper was vali-dated by proessing two GPS-data sets in dual-frequenymode (L1-C/A, L2-P). Shortly, these sets orrespond tothe following ases:
• Stati ase. Stati referene reeiver; stati userreeiver; 4907 epohs at 1Hz; baseline size of theorder of 250m.
• Kinemati ase. Stati referene reeiver; mo-bile user's ar reeiver; 973 epohs at 2Hz; maximalbaseline size of the order of 850m.The stati ase was studied to hek our programs. Inboth ases, the standard deviations σφ and σp were of theorder of 3 mm and 55 m, respetively (see Eq. (36)).



144 Journal of Global Positioning SystemsThe redued data were therefore entralized di�erenesof type (39) with ηj = 2 for all j; χ0 was set equal to 3.These data were proessed in fored RLS mode (with ini-tializations in LS mode).As illustrated in Eq. (43), the �oat ambiguities were putin reverse order. Furthermore, to bene�t from the anal-ysis presented in Sets. 3.4 and 3.5, the L1 and L2 ambi-guities were interwoven, as well as the L1 and L2 data intheir phase and ode olumn submatries.The optimal and suboptimal ambiguity solutions, v̇ and ˙̇vrespetively, were obtained (at eah RLS epoh) by solv-ing the nearest-lattie point problem de�ned in Set. 3.6.It was thus possible to ontrol the value of the `globalambiguity-resolution parameter'
̺1 :=

‖v̇ − v̂‖2
V −1

v̂

‖ ˙̇v − v̂‖2
V −1

v̂

(69)The `loal ambiguity-resolution parameter'
̺2 :=

|ẇ|max

| ˙̇w|max

(70)was also omputed. Here, ẇ and ˙̇w denote the values ofthe optimal and suboptimal residuals, respetively; notethat the bias variables are then inluded in the loal vari-able ui. When
̺1 <∼ 0.5 or ̺2 <∼ 0.4 (validation riterion) (71)the ambiguities an be regarded as �xed.All the programs were written in C language, inludingthe LLL algorithm and the nearest-lattie point setion.The �rst data set of 4907 epohs was thus proessed, with
κ = 0, in about �ve seonds on a standard personal om-puter. With κ = 1, this CPU time was redued to threeseonds with exatly the same results. The seond dataset of 973 epohs was proessed in about two seonds for
κ = 0, and in about one seond for κ = 1.5.1 Stati aseIn this ase, due to major data-frame problems, the pro-ess was reinitialized at the following epohs: 1301, 3010and 4689. As spei�ed below for the �rst run, the ambi-guities were �xed immediately. The position of the userreeiver was thus retrieved, up to one or two entimeters,exept for the initialization epohs of the four runs to beonsidered: 1, 1301, 3010 and 4689 (see Fig. 7).We now onentrate on the �rst run. Seven or eight satel-lites were then visible: satellites 2, 5, 7, 8, 9, 23, 26 andsometimes 21. The latter appears and disappears (in analternate manner) at the following epohs: 365, 878, 883,884, 887, 888, 892, 896, 911, 936, 1004, 1098, 1130.
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Fig. 7 Stati ase (4907 epohs). Relative oordinates(expressed in meters) of the user and referene reeiversin the Earth-entred Earth-�xed (ECEF) frame: x, y, z(from the top to the bottom); see text and Fig. 8.
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Fig. 8 Stati ase (4907 epohs). Ambiguity resolutionparameters ̺1 (at the top) and ̺2 (at the bottom); see theontext of Eqs. (69) to (71). The ambiguities are �xed,exept at the initialization epoh 1 and at the reinitial-ization epohs 1301, 3010 and 4689 (see Fig. 7 and theorresponding red tiks). The other red tiks orrespondto the epohs where a new satellite appears or reappears.At epoh 1 (in LS mode), a ode bias was identi�edon satellite 2 at frequeny f1; see steps 2.4 and 2.5 inSet. 4.3. Its value, 7.02 m, was of ourse the same asthat found by the adaptation proess; see Set. 4.2 andFig. 6. The data of epoh 2 were of ourse proessed inRLS mode. Again, a ode bias was identi�ed on satel-lite 2. As expeted, its value, 6.70 m, was very lose tothat provided by the global adaptation proess: 6.77 m.The ambiguities proved then to be �xed (see Table 1):
̺1 was smaller than 0.16 with ̺2 smaller than 0.65 (seeFig. 8 and Eqs. (69) to (71)). The ode bias thus foundwas 5.42 m. Here, |ẇ|max = 3.22 and | ˙̇w|max = 5.07.



Lannes and Gratton: QR Implementation of GNSS Centralized Approahes 145Table 1: Stati ase. Dual-frequenyDD ambiguities. The ambiguities shownhere were �xed at epoh 2, just after theinitialization epoh (see text).satellite f1 f2

2 0 0

5 995 532 783 561

7 1 585 927 329 961

8 −1 542 232 −893 259

9 13 115 987 10 232 032

23 6 934 437 4 872 157

26 10 017 404 7 778 866As soon as satellite 21 appeared (at epoh 365), the or-responding ambiguities were immediately �xed:satellite f1 f2

21 −1 632 504 −777 230At epoh 1093, large phase biases were identi�ed on theL2 and L1 SD phase data of that satellite: 0.143m and
0.107m, respetively. As shown by the results obtainedat the next epoh, these biases announed e�etive yleslips. Indeed, at epoh 1094, one yle slip was identi-�ed on the L2 SD phase of satellite 21, and likewise forthe L1 SD phase of that satellite. More preisely, the bi-ases identi�ed by the RLS DIA proedure were then thefollowing:

βf2,21φ = 0.227m ≃ λ2

βf1,21φ = 0.195m ≃ λ1

βf1,21p = −4.861m
βf2,21p = 3.974mAt that epoh, the entrane value of |w|max was largeompare to 3 : 28.40. The outliers were then identi�edas spei�ed below: Outlier |w|max

(f2 ; 21φ) 29.64

(f1 ; 21φ) 5.49

(f1 ; 21p) 4.49

(f2 ; 21p) 2.30Here, the value in the right-hand side olumn is the or-responding residual value of |w|max. Correted from theyles slips thus identi�ed, the data were then proessedwithout any large phase biases until the disappearane ofsatellite 21 at epoh 1098, and then without any di�ultyuntil the major data-frame problem at epoh 1301.In the seond run, from epoh 1301 to epoh 2060 in-luded, all the previous 8 satellites were visible. The ref-erene satellite s1 (satellite 2) then disappeared at epoh2061. A similar situation oured in the fourth run with

nine satellites: the referene satellite s1 (satellite 1 in thatrun) disappeared at epoh 4743. To hek the setion ofthe program orresponding to the disappearane of othersatellites in RLS mode (see Set. 3.5), the SD data ofsatellite s2 (then satellite 5) were disarded at epoh 4775.As expeted, the orresponding results were orret.From epoh 4897 to the end of the fourth run, the optimaland suboptimal sets of L1 ambiguities oinide up to aninteger onstant: the unity for all j; the optimal andsuboptimal sets of L2 ambiguities are then idential. Asat those epohs, the referene satellite is not visible, theredued values of v̇ and ˙̇v are the same (see Eq. (53) andEqs. (39) & (40) with ηj = 2 for all j). It then followsthat ẇ = ˙̇w, hene ̺2 = 1 (see Fig. 8). The ambiguitiesare however �xed. Indeed ̺1 is then less than 0.04 (seeEq. (71)).5.2 Kinemati aseIn this ase, nine to eleven satellites were visible: satel-lites 4, 9, 16, 18, 19, 22, 23, 24, 28, 29 and 32. The ambi-guities were immediately �xed with ̺1 less than 0.15 and
̺2 less than 0.33 (see Table 2 and Figs. 9 & 10; satellite 9was not then visible).Table 2: Kinemati ase. Dual-frequeny DD ambiguities. The ambigu-ities shown here were �xed at epoh 2,just after the initialization epoh (seetext).satellite f1 f2

4 0 0

16 −577 343 −425 713

18 −489 386 −357 110

19 16 040 40 057

22 187 137 178 615

23 −611 408 −448 519

24 −188 663 −122 172

28 −1 651 396 −1 238 734

29 363 726 308 953

32 −19 687 2 051A major data problem appeared at epoh 222. The pro-ess was then reinitialized by the RLS DIA proedure.Indeed, the entrane value of |w|max was greater than 106(see step 1 in Set. 4.3). The ambiguities were then �xedagain, but only eleven seonds later (after epoh 244; seeFig. 10 and Eq. (71)).Just to show the e�ieny of our approah, yles slipswere imposed at epoh 960: −1 yle in the reeption ofthe f1-signal oming from the referene satellite; 2 ylesin the reeption of the f2-signal oming from satellite 23;
1 yle in the reeption of the f2-signal oming from satel-lite 29.
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Fig. 9 Kinemati ase (973 epohs). Relative positions(in meters) of the user and referene reeivers in theECEF frame: x, y, z (from the top to the bottom); seetext and Fig. 10.
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Fig. 10 Kinemati situation (973 epohs). Ambiguityresolution parameters ̺1 (at the top) and ̺2 (at the bot-tom); see the ontext of Eqs. (69) to (71). The ambi-guities are �xed, exept at the initialization epoh andfrom epohs 222 to 244 inluded (see text and the or-responding red tiks). The other red tiks orrespond tothe epohs where a new satellite appears or reappears.At that epoh, the entrane value of |w|max was then ofthe order of 69. In the RLS DIA proedure, the outlierswere then identi�ed as follows:Outlier |w|max

(f2 ; 23φ) 46.57

(f2 ; 29φ) 29.06

(f1, 4φ) 2.66The SD biases �nally obtained by the proess were then

the following:
βf2,23φ = 0.488m ≃ 2λ2

βf2 ;29φ = 0.239m ≃ λ2

βf1 ; 4φ = −0.196m ≃ −λ1Correted from the yles slips thus identi�ed, the datawere proessed without any di�ulty until the end of therun (epoh 973).6 Conluding ommentsAs lari�ed in Set. 1.4, the notions of redution and en-tralization orrespond to the same onept. The variane-ovariane matrix of the redued or entralized data isthe identity. For example, in the single-baseline ase, thereferene formulas are Eqs. (39) and (40). In the entral-ized approahes, the QR method an therefore be applieddiretly. This not the ase in the usual DD approah.Indeed, the Cholesky fatorization of the inverse of thevariane-ovariane matrix of the DD data must then beperformed. Moreover, in the entralized approahes, allthe SD data are handled in the same manner. The or-responding numerial odes are therefore more readablethan those of their DD versions.The QR implementation of GNSS entralized approahesis also well suited to quality ontrol. The searh for thepotential outliers is performed by simple inspetion ofthe absolute value of the omponents of the suessiveupdated residuals (see Fig. 5 and step 2.7 in Set. 4.3).The statistial tests are thereby very simple (see steps 1and 2.8 in Set. 4.3). Moreover, as the Givens rota-tions of the QR reursive proesses an easily be storedin memory, the variational alulations involved in theDIA method an be performed in a very e�ient man-ner; see Set. 3.3 and step 2.2 in Set. 4.3. Furthermore,the QR global adaptation step of the DIA method nielyompletes the QR Gram-Shmidt step 2.4 of the loalidenti�ation proess desribed in Set. 4.3. The SD bi-ases, among whih the yles slips (if any), are thus de-termined in two di�erent ways.For simpliity, the study presented in this paper was re-strited to the ase of RTK observations with a singlebaseline of loal sale. The extension to multiple-baselinenetworks with possibly missing data follows the guidelinesof the present ontribution. The main points to be devel-oped onern the following topis:� Handling the integer ambiguities;� Redution of the undi�erential optimization problem(equivalent of Set. 1.4 for the undi�erential data);� QR solution of the redued optimization problem;� Integer-ambiguity resolution;� Identi�able biases;� Related DIA method.
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