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Abstract
 
This paper describes a GNSS software receiver 
architecture and the associated benefits in terms of 
algorithm flexibility and processing efficiency.  For the 
latter, different signal processing algorithms and 
implementations are considered including processing 
with a Graphics Processing Unit (GPU); a novel 
implementation in the GNSS community.  The massively 
parallel processing capability of the GPU is demonstrated 
relative to other processing optimizations.  Sample results 
of GPS processing are presented including centimetre 
level positioning.  Results obtained with some of the 
Galileo and GLONASS signals are also included to 
demonstrate the flexibility of the receiver. 
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1. Introduction  
 
Software-based GNSS receivers have been receiving 
considerable attention in the past several years.  Not only 
do such receivers provide an excellent research tool for 
investigating and improving GNSS receiver performance 
in a wide range of conditions, they are also gradually 
becoming commercially viable, with some companies 
having already released products to the market (IFEN 
2007, Morton 2007, NXP 2007, Scott 2007, CSR 2008, 
Fastrax 2008).  The above advantages are further 
highlighted by the proliferation of new systems and 
signals. In contrast, the primary drawback of software 
receivers is the computational requirements needed to 
implement the receiver in the first place.  In particular, 
with GNSS sampling rates generally exceeding 4 Msps 
(samples per second), processing requirements are indeed 
extreme for the receiver’s signal processing operations. 
 
The major objective of a software receiver is therefore to 
efficiently implement the high rate computations while 
maintaining the desired flexibility inherent in a software-
based approach.  Unfortunately, these two objectives are 
generally at odds with an improvement in one aspect 
often occurring at the expense of the other.  Traditional 

“hardware-based” GNSS receivers can be viewed as an 
extreme example of this where the most computationally 
intense processing is performed using very efficient 
hardware (i.e., application specific integrated circuits, or 
ASICs) which is inherently inflexible. 
 
This paper discusses the general design, implementation 
and testing of a software-based GNSS receiver that 
addresses the above challenges.  The software − 
GSNRx™ (GNSS Software Navigation Receiver) − was 
developed in C++ and is flexible enough to allow for a 
wide range of configurations involving different 
processors, receiver architectures, and acquisition and 
tracking strategies.  With this in mind, the objectives of 
the paper are two-fold; first, to describe and rationalize 
the general architecture of the software, and second, to 
show some sample results obtained with the receiver.  
 
There are two main contributions of the work.  First, by 
presenting the overall software architecture and the 
underlying motivation for it, it is hoped that readers will 
gain some insight into the practical implementation issues 
regarding software receivers.  Second, the 
implementation of a Graphics Processing Unit (GPU) for 
data processing is presented as a means of improving 
processing efficiency, even with high sample rates.  To 
the authors’ knowledge, this is the first time such an 
implementation has been used for GNSS software 
receivers. 
 
The paper begins with a general overview of the software 
receiver architecture and its corresponding benefits in 
terms of processing efficiency and algorithm flexibility.  
The paper discusses how different processors can be 
incorporated into the receiver and the benefits realized.  
For example, the receiver can be configured to use a 
“pure software” approach, or, if available, any other co-
processors such as an FPGA (Field Programmable Gate 
Array) or a GPU (Graphics Processing Unit).  The latter 
is discussed in detail, as this represents a novel 
implementation for software receivers.  It is also 
demonstrated how the choice of processor can be 
optimized by making use of any suitable instruction sets 
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available on Intel processors.  Following the description 
of the software, some sample results will be presented 
that demonstrate the software’s capability.   
 
2. GNSS Receiver Methodology 
 
This section describes the basic GNSS receiver 
methodology, as it applies to the software architecture 
described in this paper.  Algorithm details are available in 
the cited references.  Alternatively, several references on 
GNSS signal processing in general are available in the 
public literature including, for example, Van 
Dierendonck (1995), Misra & Enge (2001), Ma et al 
(2004), Tsui (2005), Ward et al (2006)and Borre et al 
(2007).  Sample results for more advanced receiver 
architectures are presented later on, but these 
architectures are not discussed in detail and the reader is 
referred to the cited material for more information. 
 
GNSS signal tracking is achieved by generating a local 
signal within the receiver that matches the incoming 
signal as closely as possible.  This process can be roughly 
broken down according to Fig. 1 (the acquisition process 
is roughly similar but some components are omitted for 
clarity).  The different color boxes correspond to the rate 
at which the operations are performed, as described 
below.  The signal is received at the antenna and is down 
converted to a lower intermediate frequency (IF) and 
sampled in the front-end.  The front-end and antenna are 
the only hardware that is strictly necessary in a GNSS 
receiver.  The samples are then passed to any number of 
individual channels in parallel, each of which is 
responsible for tracking a given signal that involves 
Doppler removal and correlation (DRC) − also called 
baseband mixing and de-spreading − tracking error 
determination and updating of the local signal generator.  
The remaining steps include the extraction of the 
navigation data bits (if present on the signal), 
measurement generation and computation of the 
navigation solution.  
 
The largest challenge associated with software based 
GNSS receivers is the computational requirements.  To 
this end, the various operations are divided into high, 
medium and low rate categories (respectively denoted as 
red, blue and green boxes in Fig. 1).  In this context, high 
rate refers to operations performed at the MHz level; 
typically 4-50 MHz.  Medium rate operations are 
generally performed at a rate of 50-1000 Hz.  Low rate 
operations are generally performed at 20 Hz or less.  The 
various operations are discussed briefly in the following 
sub-sections. 
 
High Rate Operations 
These operations are performed at the sampling rate of 
the incoming data; typically at 4 Msps or higher.  The 
local signal generation involves computing (i) the sine 

and cosine of a carrier wave at a particular frequency 
with a particular starting phase, and (ii) the ranging code 
starting from a particular code phase.  To minimize 
processing requirements, the sine and cosine of the carrier 
signals are often generated beforehand and stored in 
memory for later use (e.g., Ledvina et al 2003, Petovello 
& Lachapelle 2008).  The ranging code may also be 
computed ahead of time, but is often computed online.  It 
is noted that in most cases, several code phase-shifted 
versions of the ranging code are required for tracking. 
 

 
Fig. 1 General overview of GNSS signal tracking (boxes 
in red, blue and green represent processes performed at 
high, medium and low rates respectively) 
 
The DRC operation requires projecting the incoming 
signal on to the locally generated carrier and then 
correlating the result with the local ranging code.  Overall, 
this requires six multiplications and four additions per 
sample, per satellite, per code phase (Petovello & 
Lachapelle 2008).  Frequency domain methods (e.g., van 
Nee & Coenen 1991) are also commonly used for the 
DRC operation; although mostly used for acquisition, 
they are also sometimes used for signal tracking as well 
(Tsui 2005). 
 
The high rate operations, by far, represent the largest 
computational burden on the receiver.  The software 
architecture should therefore allow for many different 
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processing options in this regard, as will be discussed 
below. 
 
Medium Rate Operations 
The medium rate operations are well understood 
algorithms and are performed at rates of about 50 Hz to 
1 kHz.  These operations can be summarized as follows 
 
• Tracking error determination uses a discriminator 

and loop filter pair to first measure the error (offset) 
between the incoming and local signals and then 
filter the result to minimize noise (e.g., Ward et al 
2006).  Kalman filter-based algorithms may also be 
implemented here (e.g., Psiaki & Jung 2002, Ziedan 
& Garrison 2004, Petovello et al 2008a). 

 
• Navigation message extraction is performed only 

with those signals that broadcast navigation data.  
The entire operation can be further broken down into 
bit synchronization, navigation message (frame) 
synchronization and finally data extraction.  For 
signals that contain a secondary code instead of a 
navigation message (e.g., the new GPS L5 signal), 
synchronization with the secondary code is akin to 
the bit synchronization process. 

 
Low Rate Operations 
The low rate operations involve generation of the carrier 
phase, carrier Doppler and pseudorange measurements 
and the subsequent computation of the navigation 
solution.  Although some receivers output measurements 
at 100 Hz, typical rates for mass-market receivers are 
closer to 1 Hz. 
 
Except in the case of vector-based tracking or ultra-
integration with inertial measurement units (IMUs) (e.g., 
Petovello et al 2008a), the low rate operations are 
performed independent of the high and medium rate 
operations described above. 
3. Software Architecture 
 
The GSNRx™ software was developed in C++ using a 
highly modular object-oriented approach.  The software 
was originally written to acquire and track GPS L1 C/A 
code signals but has since been modified to track many 
other signals and to use more advanced receiver 
architectures (more details in the results section).  
Because of its class-based structure, the architecture will 
herein be described in terms of “objects” (i.e., instantiated 
classes).  
 
General Structure 
The general architecture adopted for the GSNRx™ 
software receiver is shown in Fig. 2.  As with Fig. 1, the 
boxes refer to the rate at which the operation is performed.  
Although Fig. 2 is a bit of an abstraction, the basic 
concept holds true.  Before describing the objects in more 

detail and discussing how they interact, a few things are 
worth pointing out.  First, the term “programmer” is used 
instead of “user”.  This is intentional because the purpose 
of the software is to allow for flexibility in developing 
and testing various signal tracking algorithms and 
receiver architectures.  That said, the user could 
effectively be given the same control as the programmer 
via an appropriate user interface.   
 
The second thing to notice is that in many cases the 
programmer has control over what objects are created 
and/or how objects are created.  In this way, the software 
favors an object composition approach.  In other words, 
all classes that adhere to a well defined interface can be 
used interchangeably allowing the programmer to 
“create” a particular receiver implementation by simply 
instantiating the objects with the desired functionality (at 
compile time or run time, whichever is preferred).   
 

 
Fig. 2 General Software Architecture of GSNRx™ 
(colors are used to represent the rate at which each 
operation is performed, as per Fig. 1) 
 
The third point of interest is that once the necessary 
objects are created, the programmer only interfaces with a 
single object ─ the receiver object.  Not only does this 
improve the readability of the code, but it also simplifies 
the debugging process because side-effects are avoided. 
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The final point is that the high, medium and low rate 
operations are now completely separate.  The importance 
of this will become evident as more details of the 
implementation are described, as below. 
 
Object Descriptions 
The main objects in Fig. 2 are described briefly below.  
The following section then describes how the objects 
interact. 
 
Sample Source: A general repository of IF data samples 
within a given frequency band.  The samples can be 
either real or complex and may be obtained from any 
practical source (e.g., read from file in post-mission or 
loaded directly from an analog to digital converter in real-
time). 
 
Signal Object: Although not shown in Fig. 2, a signal is 
described by its carrier frequency and a ranging code.  An 
example of a signal would be the GPS L1 C/A code, the 
Galileo E1b code or Galileo E1c code. 
 
Channel Object: A channel is an object that is solely 
responsible for tracking one or more signals.  The 
flexibility of the channel to handle a wide range of signal 
combinations (with some limitations) is a major 
advantage because it allows for more sophisticated 
tracking algorithms such as data/pilot combining (e.g., 
Mongrédien et al 2006, Muthuraman et al 2007, 
Muthuraman et al 2008) or multi-frequency tracking (e.g., 
Gernot et al 2008a, Gernot et al 2008b).  The inputs into 
the channel are the correlator outputs from the DRC 
objects (described below).   
 
Satellite Object: A satellite contains one or more channel 
objects.  Satellite objects are responsible for handling 
satellite-specific information (e.g., different ephemeris 
messages from different channels).  Satellites are created 
by the receiver on an as-needed basis. 
 
DRC Object: This is an object that performs the DRC 
operations for a given signal.  The algorithm used for this 
purpose is not defined (e.g., time-domain or frequency-
domain, etc.) so long as the interface specifications are 
met.  To this end, the input to the DRC is the sample 
source and the corresponding signal information from the 
channels.  The outputs are the desired correlator values 
(more details below). 
 
Processing Manager: The role of the processing manager 
is to manage the relationships between the channels, 
signals and sample sources.  In so doing, the processing 
manager has the ability to determine what DRC objects 
are used for processing.  This has major advantages as it 
allows for highly optimized processing to take place 
without any modifications to the rest of the code.  Several 
examples of this will be presented later. 

Navigation Solution: This object is responsible for 
computing the position, velocity and time solution (along 
with any other parameters of interest), typically using 
least-squares or Kalman filtering estimation algorithms.  
The navigation solution may also incorporate other sensor 
information, such as from an IMU, if desired.  Having the 
navigation solution separate from the signal processing 
components of the receiver (except is some advanced 
receiver architectures) allows different processing models 
to be used interchangeably.  This is important if an 
estimation algorithm is better suited to certain 
applications or operational conditions. 
 
Receiver Object: This is the class that encompasses the 
entire receiver functionality.  As described above, 
composing the receiver using a variety of objects allows 
different functionality to be included with only minimal 
modifications.  As stated previously, certain 
combinations of objects could potentially be selected by 
the user using an appropriate user interface.  The receiver 
performs all of the necessary high-level operations such 
as determining what satellites should be acquired and 
tracked, maintaining the receiver time and interfacing 
with the user.  To this end, the programmer can instruct 
the receiver how new satellite objects should be created.  
The receiver object is also responsible for the 
implementation of vector-based and ultra-tight receiver 
architectures (e.g., Petovello et al 2008a).  In this case, 
the navigation solution is used to drive the local signal 
generator directly; the difference between the 
architectures being that that ultra-tight receiver 
incorporates an IMU in the navigation solution (see 
details of navigation solution object) whereas the vector-
based receiver does not. 
 
Object Interaction 
The general flow of the software is to first create the 
necessary objects and compose the receiver.  The receiver 
object is informed of what sample sources are available 
and is also given access to the processing manager.  The 
receiver then creates (allocates) satellite objects as needed 
based on assumed satellite visibility.  As satellite objects 
are created, information about their channels (and 
corresponding signals) are passed to the processing 
manager, which, as described above, is responsible for 
maintaining the relationships amongst the sample sources, 
signals and DRC objects.  Similarly, as satellites are 
removed (e.g., because they fall below the local horizon), 
they are removed from the receiver and the processing 
manager is informed accordingly.   
 
As samples become available the receiver is told to 
process the samples, which it does by using the 
processing manager.  To this end, a more detailed view of 
the interaction of the processing manager, sample sources, 
channels and signals is shown in Fig. 3.  For clarity, only 
a single sample source, satellite, channel and signal are 
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shown although in practice there may be multiple of each.  
The processing manager uses the sample source and 
signal parameters to perform the DRC computations on 
each signal within the channel.  Once the DRC 
computations are complete, the processing manager 
forwards all correlator outputs to the channel for 
processing (tracking).  The channels are responsible for 
informing the processing manager of how many samples 
to process at a time. 
 
Also shown in Fig. 3 are correlator requests.  Correlator 
requests are initiated by the channel (which has full 
knowledge of the tracking status for each signal) and are 
used to request the necessary correlator outputs (code 
phase and/or frequency offsets relative to the prompt 
corrrelator) needed for acquisition or tracking.  The 
processing manager is responsible for satisfying the 
requests of the channels.  An example of when a 
correlator request would be necessary is if early and late 
correlator spacing is to be narrowed (to mitigate 
multipath effects) as the tracking status of a particular 
signal is improved.  The key point however, is that the 
channel completely determines what is needed for 
tracking the signals contained within it.  This is a highly 
modular structure that is readily modified to 
accommodate a very wide range of tracking scenarios. 
 
Advantages of the Proposed Architecture 
In addition to the flexibility associated with the 
“composition” approach used in the software and the 
“autonomous” nature of the channel objects, the proposed 
architecture offers one other major advantage in terms of 
processing efficiency.  Specifically, it was found that in 
order to best optimize DRC processing (the high rate 
computations) on a general processor, all of the data 
necessary for the DRC computations should be available 
simultaneously.  If this is possible, several optimization 
approaches can be considered including 
 
Using processor-specific optimizations such as the single 
instruction, multiple data (SIMD) instruction set available 
on x86 processors (Pany et al 2003, Heckler & Garrison 
2004, Charkhandeh 2007).  This is often termed 
“vectorizing” the processing.  Some processors and 
compilers do this automatically. 
 
• Implementing a multi-threaded architecture which is 

particularly well suited to multi-core processors. 
 
• Using co-processors such as a field programmable 

gate array (FPGA), digital signal processor (DSP) or 
graphical processing unit (GPU). 

 
To date, all of the above optimizations have been 
implemented (in terms of co-processors, only a GPU 
implementation is currently complete).  Of particular 
interest here is the use of a GPU which, to the authors’ 

knowledge, has not been previously applied to GNSS 
software receivers.  A GPU is typically used to do 
computationally expensive graphics coordinate 
transformations and color shading of polygons in real-
time for video games.  More recently, they have started to 
be used for general scientific simulations with great 
results.  A further benefit is that their price-to-
performance ratio is several orders of magnitude better 
than traditional supercomputers.   
 

 
Fig. 3 Interaction of processing manager and associated 
objects 
 
However, before discussing the GPU implementation in 
detail (see next section), we first look at different DRC 
algorithms and their performance using different 
optimization strategies.  In particular, to demonstrate the 
efficiency of different DRC algorithms, the GSNRx™ 
software was run using the “rigorous”, “table” and “new” 
DRC algorithms.  The “new” algorithm is proposed in 
Petovello & Lachapelle (2008), which also describes the 
other two algorithms.   
 
Table 1 shows the average time to perform the DRC 
processing on 1 ms of data for eight satellites using the 
different DRCs with different sampling rates.  The results 
were obtained using a single thread on an Intel Xeon 
quad-core processor.  Each processor runs at 1.6 GHz 
with a 1.066 GHz system bus and 32 kB of L1 cache.  
Furthermore, each processor has hyper-threading 
capability, for a total of eight virtual processors.  
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According to the processor manufacturer, hyper-
threading provides “more efficient use of processor 
resources” (Intel 2009), but in practice it has been 
observed to provide roughly twice the processing 
capability of a regular processor (i.e., equivalent to using 
only 50% of the processing core).  Comparing the 
different DRC algorithms, the “table” algorithm performs 
best.  This is somewhat surprising because Petovello & 
Lachapelle (2008) showed that the “new” algorithm has 
fewer computations.  The difference in performance is 
explained by the optimizations performed by the compiler 
and/or processor (different results have been obtained on 
different processors), and it is clear that these can be 
significant and should be considered when maximizing 
processing throughput.  Furthermore, for the “table” and 
“new” algorithms, vectorization provides roughly 50% 
improvement in processing time.   
 
Table 1 - Average Time to Perform the DRC Processing 
on 1 ms of Data for Eight Satellites Using Different DRC 
Algorithms 

DRC Algorithm 
Average Time (ms) 

5 Msps 
Data 

25 Msps 
Data 

Rigorous 1.58 8.06 
Rigorous Vectorized 1.29 6.64 

Table 1.13 5.54 
Table Vectorized 0.56 2.72 

New 1.45 6.35 
New Vectorized 0.67 3.39 

 
To improve the processing times shown in Table 1, multi-
threading was also implemented.  In Fig. 4, the average 
processing time for 1 ms of data for eight satellites is 
shown as a function of the number of threads used.  The 
performance of multi-threaded code scales well up to four 
threads, after which the performance increases are 
marginal.  This is likely due to the fact that, of the eight 
processors mentioned above, half can be considered 
“virtual” (i.e., they are not “real” processors).  It is 
expected that these results would scale if more processors 
were available. 
 
4. DRC Processing Using A GPU 
 
This section presents the details of the GPU 
implementation for the DRC processing.  To this end, 
two features of GPUs stand out as being particularly 
useful for the problem at hand.  First, they allow a very 
high degree of parallelism, typically several hundreds or 
thousands of threads running simultaneously.  This is in 
contrast to the several tens of threads found in a typical 
central processing unit (CPU).  The GPU architecture is 
limited to executing kernels which perform the same 
operation on a large data set.  While this is sufficient for 
digital signal processing (as is the case in the current 

context), it is not at all suitable for implementing general 
purpose software.  The second feature of interest is that 
GPUs have devoted more silicon area to computationally 
expensive arithmetic functions.  A typical CPU has more 
than 50% of its area devoted to memory controllers and 
cache memory.  In contrast, a GPU has very little on 
board cache, devoting extra silicon to arithmetic 
functions instead.  As a result, memory access latency is 
very high (200-300 clock cycles), but other traditionally 
expensive operations have been made extremely cheap; 
on the order of four clock cycles (e.g., sin/cos 
computations, thread context switching, floating point re-
sampling and interpolation).   
 

 
Fig. 4 Mean Time to Perform the DRC Processing on 
1 ms of Data for Eight Satellites Using Different DRC 
Algorithms and Data Rates 
 
5. DRC Processing Using A GPU 
 
This section presents the details of the GPU 
implementation for the DRC processing.  To this end, 
two features of GPUs stand out as being particularly 
useful for the problem at hand.  First, they allow a very 
high degree of parallelism, typically several hundreds or 
thousands of threads running simultaneously.  This is in 
contrast to the several tens of threads found in a typical 
central processing unit (CPU).  The GPU architecture is 
limited to executing kernels which perform the same 
operation on a large data set.  While this is sufficient for 
digital signal processing (as is the case in the current 
context), it is not at all suitable for implementing general 
purpose software.  The second feature of interest is that 
GPUs have devoted more silicon area to computationally 
expensive arithmetic functions.  A typical CPU has more 
than 50% of its area devoted to memory controllers and 
cache memory.  In contrast, a GPU has very little on 
board cache, devoting extra silicon to arithmetic 
functions instead.  As a result, memory access latency is 
very high (200-300 clock cycles), but other traditionally 
expensive operations have been made extremely cheap; 
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on the order of four clock cycles (e.g., sin/cos 
computations, thread context switching, floating point re-
sampling and interpolation).   
 
As mentioned above, relative to a standard CPU, a GPU 
has considerably more execution units, and each unit is 
also able to run considerably more threads 
simultaneously. For example, the NVIDIA 8800GTX 
GPU used in this work has 16 execution units, each able 
to run 768 threads simultaneously, for a (theoretical) total 
of over 12 thousand threads. However, sharing data 
between multiple processors requires that the processing 
be partitioned among the different processors and then 
merged back; a process that can also produce a 
bottleneck. 
 
In order to better explain how the GPU is used in the 
software receiver, we recall that to compute any given 
correlator value, every sample being processed must be 
multiplied by a local carrier and local code and then the 
results (one per sample) have to be added up.  Obviously, 
if all of this processing is performed in a single thread on 
a single processor, there is no benefit to be gained.  
Instead, within the GPU, the samples are divided into sN  
contiguous “slices”.  Then, for each slice of data, the 
DRC processing is divided into tN  threads, with each 
thread processing a subset of the samples within the slice.  
This concept is shown graphically in Fig. 5.  Both sN  

and tN  are design parameters, and for efficiency, should 
be selected to be powers of two.  Each thread then 
performs the following computations for each sample it is 
responsible for processing and sums the result: 
 
• Compute of the local code and carrier phase  
 
• Perform the Doppler removal and multiply by the 

local code 
 
Using the above approach, the GPU effectively divides 
the processing for a single correlator into a total of 

×s tN N  threads.  The result of each thread’s processing 
must then be “reduced”, that is, summed to get the final 
correlator value.  However, given the vast number of 
thread processors on a GPU, this can be highly inefficient 
and may result in a bottleneck.  Fortunately, the NVIDIA 
architecture provides a mechanism for guaranteeing that a 
group of threads all have access to a fast “shared” 
memory.  This group of threads is referred to as a 
“block”.  Within a block, the reduction process (i.e., 
adding the results of all the threads) is very efficient 
because of the shared memory.  In GSNRx™, each block 
is responsible for processing one slice of data for a single 
correlator, and has been optimized using the techniques 
of sequential addressing and loop unrolling described by 

Harris (2007).  Finally, because each block only 
processes a single slice of data, a second reduction is 
required to obtain the final correlator value by summing 
the results of all sN  blocks/slices.   

 
Fig. 5 Diagram Showing How a Group of Samples is 
Processed in the GPU 
 
The above description only applies to a single correlator 
value.  However, this can be easily extended to include 
multiple correlator values at once.  In this case, 
processing is performed across a two-dimensional grid of 
blocks, where the first dimension is the number of 
correlator outputs and the second dimension is the 
number of slices (as discussed above).  Conceptually, this 
is shown in Fig. 6.  From the figure, it should be clear 
that the GPU processing paradigm is highly flexible and 
scales easily with the number of correlators required and 
the number of slices the data is divided into (but not the 
number of samples).  In fact, once these parameters are 
determined (e.g., based on tracking algorithms employed, 
number of satellites in view, etc.) the GPU takes care of 
dividing the processing in the most efficient manner 
possible.  In other words, the programmer is allowed to 
determine the inputs and desired outputs, and then, by 
using the same kernel function, the GPU handles the core 
processing steps in a transparent manner. 
 
Prior to executing the above processing, all of the 
samples have to be loaded onto the GPU along with the 
ranging codes, and the tracking parameters for each 
correlator to be computed.  The transfer of data to the 
GPU can be executed asynchronously, meaning that the 
CPU can continue to operate as the samples are loaded 
onto the GPU.  Once this is complete, the execution of 
the processing is initiated by specifying the kernel 
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function to run, in addition to the grid of blocks and slices 
discussed above and shown in Fig. 6.   
 

 
Fig. 6 Computation Grid for GPU Processing 

 
Two final points regarding the GPU implementation are 
in order before presenting some results.  First, GPU 
programming philosophy is quite distinct from that of 
CPU programming.  In particular, the local code and 
carrier values are calculated independently for each 
sample, rather than by incrementing previous values. 
Second, these local replica values are calculated “on-the-
fly” rather than being pre-computed and stored.  
Specifically, for the local carrier, sin/cos function calls 
are made explicitly.  For a standard CPU, this approach is 
computationally inefficient, however, due to its design, 
the GPU executes these function calls much more 
efficiently.  For the local code replica, the code phase 
(i.e., index into the ranging code that is uploaded to the 
GPU) is computed independently for each sample using 
the initial code phase (i.e., at the beginning of the samples 
to be processed), the code Doppler and sample period.  
Although this requires more computations than using a 
lookup table, for example, this is computationally feasible 
because of the highly parallel structure of the GPU. 
 
To demonstrate the benefit of the GPU, Fig. 7 shows the 
average DRC processing time for 1 ms of data on eight 
satellites as a function of the number of threads and slices 
using 25 Msps data. As can be seen from the plot, there is 
a tradeoff between the number of slices and the number 
of threads with the best performance occurring, in this 
case, with 16 slices and 64 threads per block (although 
other combinations provide nearly the same 
performance). Of greater interest however, is that most 
combinations can process the data in less than 1 ms, 
suggesting that real-time capability is possible. In 

contrast, with reference to Fig. 4 (note the different y-axis 
scales), none of the DRC algorithms were able to process 
the 25 Msps data in real-time on a general CPU.  In other 
words, the GPU offers the possibility of processing 
higher data rates in less time, and thus realizing the 
benefits of the increased signal bandwidths, and at the 
same time doing it more quickly than with a CPU.   
 

 
Fig. 7 Mean Time to Perform the DRC Processing on 
1 ms of 25 MHz Data for Eight Satellites Using a GPU 
with Different Numbers of Threads and Slices 
 
6. Software Status and Sample Results 
 
The GSNRx™ software is currently able to acquire and 
track several signals, as summarized in Table 2.  A GPS 
L1 and Galileo E1 receiver is also working.  To date, the 
navigation solution is only enabled for the GPS L1 signal 
and the two GLONASS signals because these are the only 
signals available on a sufficient number of satellites.  
However, the capability to compute a solution using the 
other signals is ready and requires final testing with live 
satellites.  In addition, Kalman filter-based, vector-based 
and ultra-tight architectures (e.g., Petovello et al 2008a) 
are available for GPS L1 and work is ongoing to 
incorporate the other signals as well.   
 

Table 2 - Current Status of GSNRx™ Software 
Signal Status within GSNRx™ 
GPS Signals 
 L1 Acquire, Track and Navigation Solution 
 L1C Work is ongoing 
 L2C Acquire and Track 
 L5 Acquire and Track 
Galileo Signals 
 E1b/c Acquire and Track 
 E5a Acquire and Track 
 E5b Acquire and Track 
GLONASS Signals 
 L1 Acquire, Track and Navigation Solution 
 L2 Acquire, Track and Navigation Solution 
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The software was designed to be able to interface with 
samples from any front-end hardware, but has not, as yet, 
been tested in a real-time configuration for any specific 
front-end.  However, given that the results of the previous 
section show that real-time processing is possible, work 
is ongoing to have the software work in real-time with a 
commercially available L1 front-end.   
An exhaustive list of references related to the GSNRx™ 
software (and GNSS signal acquisition and tracking 
algorithms in general) is beyond the scope of this paper.  
Interested readers are referred to the PLAN Group 
website (http://plan.geomatics.ucalgary.ca), which 
provides access to papers and theses involving software 
receiver development and testing (as well as all other 
research topics). 
 
The following sub-sections present some sample results 
to demonstrate the flexibility of the GSNRx™ software.  
All of the data processed was collected using a National 
Instruments front-end system that allows for collection of 
data on up to three frequency bands at a time (the actual 
frequency bands used will be clear in the following 
discussions) using a selectable bandwidth and sampling 
rate.  That said, similar results would be expected with 
other front-ends.  Finally, the results are included mostly 
to show the flexibility of the software and are therefore 
presented with minimal explanation.    
 
GPS Results 
The most fundamental assessment of a receiver is the 
standalone positioning error.  To this end, Table 3 shows 
the L1 C/A Code position error statistics for a 15-minute 
data set collected in open sky conditions.  The position 
solution is accurate to the metre level, as expected given 
the low level of ionospheric activity during the test and 
the relatively benign multipath environment in which the 
data was collected.   
 

Table 3 - GPS L1 Standalone Position Error Statistics 
Direction Mean (m) RMS (m) 

North -1.4 2.5 
East 1.2 1.7 

Vertical -1.1 3.0 
 
The GSNRx™ software is also able to accurately track 
the carrier phase of the signal, thus allowing high 
accuracy carrier phase positioning.  To illustrate, Fig. 8 
shows the RTK position errors as a function of time for a 
pedestrian-based DGPS test (described in Petovello et al 
2007a).  For the portion of data shown, the signals were 
collected in an open sky environment.  It is worth noting 
that the antenna was experiencing peak-to-peak 
accelerations of about 10 m/s2 in each coordinate 
direction throughout the test.  In spite of this relatively 
large level of acceleration, the position errors are still at 
the centimetre level, as is typical with RTK systems.  The 

error statistics for the data shown in Fig. 8 are given in 
Table 4. 
 

 
Fig. 8 DGPS L1 RTK Positioning Errors in Open Sky 
Environment 
 
Table 4 - DGPS L1 RTK Position Error Statistics in Open 
Sky Environment 

Direction Mean (cm) RMS (cm) 
North 0.2 1.6 
East 0.1 1.1 

Vertical -0.6 1.5 
 
In addition to the traditional signal tracking algorithms 
used to generate the above results, considerable work has 
also gone into testing new receiver architectures (e.g., 
Petovello et al 2007a, Petovello et al 2007b, Petovello et 
al 2008a, Petovello et al 2008b).  Two of the most 
promising architectures are the Kalman filter-based 
architecture and the ultra-tight integration of GNSS and 
inertial measurement units (IMUs).  A Kalman filter-
based receiver replaces the conventional 
discriminator/loop filter pair with a Kalman filter 
(although other estimation algorithms could also be used).  
In an ultra-tight architecture, the IMU measures and 
compensates for the user’s motion, allowing the tracking 
loops to have a narrower bandwidth.  Both the Kalman 
filter-based and ultra-tight integrations have proven 
useful when tracking weak GNSS signals.  To illustrate 
this, data was collected on a pedestrian and a variable 
attenuator was used to slowly reduce the received signal 
power by 1 dB every 4 s.  As the signal power was 
reduced, different receiver architectures failed at different 
times.  Fig. 9 shows a “histogram” of the horizontal 
position error as a function of attenuation for different 
receivers (again, for DGPS L1 RTK positioning).  The 
plot shows the number of epochs whose horizontal 
position error exceeds a given threshold for all 
attenuation values up to that shown on the x-axis.  
Initially, all solutions are able to provide highly accurate 
solutions, so the number of epochs where the position 
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error exceeds the thresholds is zero.  Then, at some point 
in time (level of attenuation) the receiver “fails” such that 
corresponding position error exceeds the specified 
thresholds and never recovers.  In this context, “failure” 
consists of a cycle slip at best, or complete lock of loss at 
worst.  When this happens, the number of epochs where 
the position exceeds a given threshold increases linearly 
(with a few minor exceptions).  With this in mind, for 
epochs with an attenuation of 20 dB or less, the standard 
receiver has about 24 epochs where the horizontal error 
exceeds 0.1 m.  In contrast, for the same level of 
attenuation, the Kalman filter-based and ultra-tight 
architectures have one and zero epochs respectively 
where the horizontal error exceeds 0.1 m.  The reason for 
the improvement with the ultra-tight approach is because 
in an ultra-tight architecture, the inertial data is used to 
compensate for receiver motion, thus improving the 
tracking capabilities of the receiver (ibid.). 

 
Fig. 9 Horizontal Position Error Histogram for Standard, 
Kalman Filter-Based and Ultra-Tight Receiver 
Architectures during Signal Attenuation (lines are plotted 
in order of increasing position error and thus lines for 
larger errors may hide those for smaller errors) 
 
New GNSS Signals 
As mentioned above, only the GPS L1 signal is fully 
deployed.  The other signals in Table 2 are still not fully 
available and a fully operational receiver for these signals 
is not yet feasible (except for the GLONASS signals). 
Nevertheless, GSNRx™ offers the opportunity to develop, 
implement and test the acquisition and tracking 
algorithms for these new signals prior to their full 
deployment.  In so doing, once the signals are available 
on orbit, the software receiver can be easily extended to 
take full advantages of these signals, thus reducing 
product lead time.  Included below are some sample 
results from some ongoing testing and development 
associated with new GNSS signals and/or systems.   

 
To begin, Fig. 10 shows the acquisition plot for the 
GIOVE-A (Galileo test satellite) E1b signal employing a 
BOC(1,1) ranging code.  The characteristic side peaks of 
the signal are clearly visible on each side of the main 
peak.  Also, the sin(x)/x shape is visible in the frequency 
domain.  The results were obtained using two 4-ms 
coherent integration intervals which are then added non-
coherently.  Following acquisition, the signal is also able 
to be tracked (results not shown due to space limitations). 
 

 
Fig. 10 Acquisition Plot for GIOVE-A E1b Signal with 
BOC(1,1) Ranging Code (blue line is the projection of 
the peak in the code phase domain and the green line is 
the projection of the peak in the frequency domain) 
 
The GSNRx™ software has also been used to acquire and 
track the GIOVE-A E5b signal.  The E5b signal was 
selected because the Calgary International Airport’s 
distance measuring equipment (DME) falls in this band 
and it was desired to see if the resulting interference 
could be effectively mitigated within the receiver.  To 
this end, the upper plot in Fig. 11 shows the power 
spectral density (PSD) of the original signal as well as the 
PSD after applying a notch filter inside the receiver.  The 
effect of the DME interference is effectively eliminated 
by the notch filter.  The lower plot in Fig. 11 shows the 
estimated C/N0 for the two signals and it is obvious that 
the notch filter allows for better signal tracking.  The 
average improvement in C/N0 is about 2 dB, which is 
significant.  
 
As a final example, the GSNRx™ software has been used 
to track signals from the Russian GLONASS system.  
More specifically, algorithms have been developed to 
track the civilian signal on both L1 and L2 (Abbasian Nik 
& Petovello 2008).  Table 5 shows the position error 
statistics for the L1 and L2 position solutions.  No GPS 
measurements were included in these results.  For the L1 
solution, the position error is very similar to the solution 
obtained using data collected from a NovAtel OEMV2 
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receiver (using the same five satellites in both solutions).  
For the L2-only solution, only four L2-capable satellites 
were available and the position errors are larger because 
of satellite geometry degradation, but are still of 
reasonable magnitude and compare favorably with those 
of the L1-only solution computed using the same 
satellites (to remove the effect of satellite geometry). 
 

 
Fig. 11 Power Spectral Density and Estimated C/N0

Table 5 - Standalone GLONASS L1 and L2 Position 
Error Statistics  

 for 
GIOVE-A E5b Signal with and without a Notch Filter to 
Mitigate DME Interference 
 

Solution RMS Error (m) 
North East Vertical 

5 Satellite Solution 
GSNRx™ (L1-

Only) 2.1 m 2.8 m 7.5 m 

NovAtel (L1-
Only) 0.5 m 1.7 m 2.8 m 

4 Satellite Solution 
GSNRx™ (L1-

Only) 3.6 m 2.2 m 7.8 m 

GSNRx™ (L2-
Only) 4.6 m 4.2 m 14.2 m 

 
Summary 
 
From the above, the software architecture clearly 
provides considerable flexibility to acquire and track new 
signals and to implement different receiver 
implementations.  This capability is critical in a research 
environment but is also of interest to agencies wishing to 
test various algorithms prior to finalizing an 
implementation in hardware.  Another application is 
products with low replacement rates (e.g., vehicles) that 
want to incorporate positioning capability now and in the 
future but would like to easily upgrade functionality in 
the future as new technologies become available. 

7. Summary and Future Work 
 
This paper presented the overall architecture of the 
GSNRx™ software receiver.  The primary benefit of the 
architecture was shown to be the flexibility it provides for 
implementing advanced receiver architectures such as 
ultra-tight integration with an IMU, and for developing 
and testing algorithms to acquire and test new signals.   
In addition, the software is structured to allow processing 
optimizations to be implemented using whatever 
resources may be available.  Herein, the use of 
vectorization, multi-threading and a GPU were shown to 
provide various levels of processing improvements.  In 
particular, the GPU was shown to provide considerable 
processing improvements, and these are expected to 
become more significant as more signals need to be 
tracked simultaneously. 
 
Future work will focus on refining existing algorithms 
while at the same time incorporating functionality to 
acquire and track the new signals that will soon be 
available. 
 
For licensing information, please contact the authors. 
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