

Journal of Global Positioning Systems (2008)
Vol. 7, No. 2 : 156-168

Architecture and Benefits of an Advanced GNSS Software Receiver

Mark G. Petovello, Cillian O’Driscoll, Gérard Lachapelle, Daniele Borio and Hasan Murtaza
Position, Location And Navigation (PLAN) Group, Department of Geomatics Engineering
University of Calgary

Abstract

This paper describes a GNSS software receiver
architecture and the associated benefits in terms of
algorithm flexibility and processing efficiency. For the
latter, different signal processing algorithms and
implementations are considered including processing
with a Graphics Processing Unit (GPU); a novel
implementation in the GNSS community. The massively
parallel processing capability of the GPU is demonstrated
relative to other processing optimizations. Sample results
of GPS processing are presented including centimetre
level positioning. Results obtained with some of the
Galileo and GLONASS signals are also included to
demonstrate the flexibility of the receiver.

Key words: GNSS, Software Receiver

1. Introduction

Software-based GNSS receivers have been receiving
considerable attention in the past several years. Not only
do such receivers provide an excellent research tool for
investigating and improving GNSS receiver performance
in a wide range of conditions, they are also gradually
becoming commercially viable, with some companies
having already released products to the market (IFEN
2007, Morton 2007, NXP 2007, Scott 2007, CSR 2008,
Fastrax 2008). The above advantages are further
highlighted by the proliferation of new systems and
signals. In contrast, the primary drawback of software
receivers is the computational requirements needed to
implement the receiver in the first place. In particular,
with GNSS sampling rates generally exceeding 4 Msps
(samples per second), processing requirements are indeed
extreme for the receiver’s signal processing operations.

The major objective of a software receiver is therefore to
efficiently implement the high rate computations while
maintaining the desired flexibility inherent in a software-
based approach. Unfortunately, these two objectives are
generally at odds with an improvement in one aspect
often occurring at the expense of the other. Traditional

“hardware-based” GNSS receivers can be viewed as an
extreme example of this where the most computationally
intense processing is performed using very efficient
hardware (i.e., application specific integrated circuits, or
ASICs) which is inherently inflexible.

This paper discusses the general design, implementation
and testing of a software-based GNSS receiver that
addresses the above challenges. The software −
GSNRx™ (GNSS Software Navigation Receiver) − was
developed in C++ and is flexible enough to allow for a
wide range of configurations involving different
processors, receiver architectures, and acquisition and
tracking strategies. With this in mind, the objectives of
the paper are two-fold; first, to describe and rationalize
the general architecture of the software, and second, to
show some sample results obtained with the receiver.

There are two main contributions of the work. First, by
presenting the overall software architecture and the
underlying motivation for it, it is hoped that readers will
gain some insight into the practical implementation issues
regarding software receivers. Second, the
implementation of a Graphics Processing Unit (GPU) for
data processing is presented as a means of improving
processing efficiency, even with high sample rates. To
the authors’ knowledge, this is the first time such an
implementation has been used for GNSS software
receivers.

The paper begins with a general overview of the software
receiver architecture and its corresponding benefits in
terms of processing efficiency and algorithm flexibility.
The paper discusses how different processors can be
incorporated into the receiver and the benefits realized.
For example, the receiver can be configured to use a
“pure software” approach, or, if available, any other co-
processors such as an FPGA (Field Programmable Gate
Array) or a GPU (Graphics Processing Unit). The latter
is discussed in detail, as this represents a novel
implementation for software receivers. It is also
demonstrated how the choice of processor can be
optimized by making use of any suitable instruction sets

Petovello et al: Architecture and Benefits of an Advanced GNSS Software Receiver
157

available on Intel processors. Following the description
of the software, some sample results will be presented
that demonstrate the software’s capability.

2. GNSS Receiver Methodology

This section describes the basic GNSS receiver
methodology, as it applies to the software architecture
described in this paper. Algorithm details are available in
the cited references. Alternatively, several references on
GNSS signal processing in general are available in the
public literature including, for example, Van
Dierendonck (1995), Misra & Enge (2001), Ma et al
(2004), Tsui (2005), Ward et al (2006)and Borre et al
(2007). Sample results for more advanced receiver
architectures are presented later on, but these
architectures are not discussed in detail and the reader is
referred to the cited material for more information.

GNSS signal tracking is achieved by generating a local
signal within the receiver that matches the incoming
signal as closely as possible. This process can be roughly
broken down according to Fig. 1 (the acquisition process
is roughly similar but some components are omitted for
clarity). The different color boxes correspond to the rate
at which the operations are performed, as described
below. The signal is received at the antenna and is down
converted to a lower intermediate frequency (IF) and
sampled in the front-end. The front-end and antenna are
the only hardware that is strictly necessary in a GNSS
receiver. The samples are then passed to any number of
individual channels in parallel, each of which is
responsible for tracking a given signal that involves
Doppler removal and correlation (DRC) − also called
baseband mixing and de-spreading − tracking error
determination and updating of the local signal generator.
The remaining steps include the extraction of the
navigation data bits (if present on the signal),
measurement generation and computation of the
navigation solution.

The largest challenge associated with software based
GNSS receivers is the computational requirements. To
this end, the various operations are divided into high,
medium and low rate categories (respectively denoted as
red, blue and green boxes in Fig. 1). In this context, high
rate refers to operations performed at the MHz level;
typically 4-50 MHz. Medium rate operations are
generally performed at a rate of 50-1000 Hz. Low rate
operations are generally performed at 20 Hz or less. The
various operations are discussed briefly in the following
sub-sections.

High Rate Operations
These operations are performed at the sampling rate of
the incoming data; typically at 4 Msps or higher. The
local signal generation involves computing (i) the sine

and cosine of a carrier wave at a particular frequency
with a particular starting phase, and (ii) the ranging code
starting from a particular code phase. To minimize
processing requirements, the sine and cosine of the carrier
signals are often generated beforehand and stored in
memory for later use (e.g., Ledvina et al 2003, Petovello
& Lachapelle 2008). The ranging code may also be
computed ahead of time, but is often computed online. It
is noted that in most cases, several code phase-shifted
versions of the ranging code are required for tracking.

Fig. 1 General overview of GNSS signal tracking (boxes
in red, blue and green represent processes performed at
high, medium and low rates respectively)

The DRC operation requires projecting the incoming
signal on to the locally generated carrier and then
correlating the result with the local ranging code. Overall,
this requires six multiplications and four additions per
sample, per satellite, per code phase (Petovello &
Lachapelle 2008). Frequency domain methods (e.g., van
Nee & Coenen 1991) are also commonly used for the
DRC operation; although mostly used for acquisition,
they are also sometimes used for signal tracking as well
(Tsui 2005).

The high rate operations, by far, represent the largest
computational burden on the receiver. The software
architecture should therefore allow for many different

Petovello et al: Architecture and Benefits of an Advanced GNSS Software Receiver
158

processing options in this regard, as will be discussed
below.

Medium Rate Operations
The medium rate operations are well understood
algorithms and are performed at rates of about 50 Hz to
1 kHz. These operations can be summarized as follows

• Tracking error determination uses a discriminator

and loop filter pair to first measure the error (offset)
between the incoming and local signals and then
filter the result to minimize noise (e.g., Ward et al
2006). Kalman filter-based algorithms may also be
implemented here (e.g., Psiaki & Jung 2002, Ziedan
& Garrison 2004, Petovello et al 2008a).

• Navigation message extraction is performed only

with those signals that broadcast navigation data.
The entire operation can be further broken down into
bit synchronization, navigation message (frame)
synchronization and finally data extraction. For
signals that contain a secondary code instead of a
navigation message (e.g., the new GPS L5 signal),
synchronization with the secondary code is akin to
the bit synchronization process.

Low Rate Operations
The low rate operations involve generation of the carrier
phase, carrier Doppler and pseudorange measurements
and the subsequent computation of the navigation
solution. Although some receivers output measurements
at 100 Hz, typical rates for mass-market receivers are
closer to 1 Hz.

Except in the case of vector-based tracking or ultra-
integration with inertial measurement units (IMUs) (e.g.,
Petovello et al 2008a), the low rate operations are
performed independent of the high and medium rate
operations described above.
3. Software Architecture

The GSNRx™ software was developed in C++ using a
highly modular object-oriented approach. The software
was originally written to acquire and track GPS L1 C/A
code signals but has since been modified to track many
other signals and to use more advanced receiver
architectures (more details in the results section).
Because of its class-based structure, the architecture will
herein be described in terms of “objects” (i.e., instantiated
classes).

General Structure
The general architecture adopted for the GSNRx™
software receiver is shown in Fig. 2. As with Fig. 1, the
boxes refer to the rate at which the operation is performed.
Although Fig. 2 is a bit of an abstraction, the basic
concept holds true. Before describing the objects in more

detail and discussing how they interact, a few things are
worth pointing out. First, the term “programmer” is used
instead of “user”. This is intentional because the purpose
of the software is to allow for flexibility in developing
and testing various signal tracking algorithms and
receiver architectures. That said, the user could
effectively be given the same control as the programmer
via an appropriate user interface.

The second thing to notice is that in many cases the
programmer has control over what objects are created
and/or how objects are created. In this way, the software
favors an object composition approach. In other words,
all classes that adhere to a well defined interface can be
used interchangeably allowing the programmer to
“create” a particular receiver implementation by simply
instantiating the objects with the desired functionality (at
compile time or run time, whichever is preferred).

Fig. 2 General Software Architecture of GSNRx™
(colors are used to represent the rate at which each
operation is performed, as per Fig. 1)

The third point of interest is that once the necessary
objects are created, the programmer only interfaces with a
single object ─ the receiver object. Not only does this
improve the readability of the code, but it also simplifies
the debugging process because side-effects are avoided.

Petovello et al: Architecture and Benefits of an Advanced GNSS Software Receiver
159

The final point is that the high, medium and low rate
operations are now completely separate. The importance
of this will become evident as more details of the
implementation are described, as below.

Object Descriptions
The main objects in Fig. 2 are described briefly below.
The following section then describes how the objects
interact.

Sample Source: A general repository of IF data samples
within a given frequency band. The samples can be
either real or complex and may be obtained from any
practical source (e.g., read from file in post-mission or
loaded directly from an analog to digital converter in real-
time).

Signal Object: Although not shown in Fig. 2, a signal is
described by its carrier frequency and a ranging code. An
example of a signal would be the GPS L1 C/A code, the
Galileo E1b code or Galileo E1c code.

Channel Object: A channel is an object that is solely
responsible for tracking one or more signals. The
flexibility of the channel to handle a wide range of signal
combinations (with some limitations) is a major
advantage because it allows for more sophisticated
tracking algorithms such as data/pilot combining (e.g.,
Mongrédien et al 2006, Muthuraman et al 2007,
Muthuraman et al 2008) or multi-frequency tracking (e.g.,
Gernot et al 2008a, Gernot et al 2008b). The inputs into
the channel are the correlator outputs from the DRC
objects (described below).

Satellite Object: A satellite contains one or more channel
objects. Satellite objects are responsible for handling
satellite-specific information (e.g., different ephemeris
messages from different channels). Satellites are created
by the receiver on an as-needed basis.

DRC Object: This is an object that performs the DRC
operations for a given signal. The algorithm used for this
purpose is not defined (e.g., time-domain or frequency-
domain, etc.) so long as the interface specifications are
met. To this end, the input to the DRC is the sample
source and the corresponding signal information from the
channels. The outputs are the desired correlator values
(more details below).

Processing Manager: The role of the processing manager
is to manage the relationships between the channels,
signals and sample sources. In so doing, the processing
manager has the ability to determine what DRC objects
are used for processing. This has major advantages as it
allows for highly optimized processing to take place
without any modifications to the rest of the code. Several
examples of this will be presented later.

Navigation Solution: This object is responsible for
computing the position, velocity and time solution (along
with any other parameters of interest), typically using
least-squares or Kalman filtering estimation algorithms.
The navigation solution may also incorporate other sensor
information, such as from an IMU, if desired. Having the
navigation solution separate from the signal processing
components of the receiver (except is some advanced
receiver architectures) allows different processing models
to be used interchangeably. This is important if an
estimation algorithm is better suited to certain
applications or operational conditions.

Receiver Object: This is the class that encompasses the
entire receiver functionality. As described above,
composing the receiver using a variety of objects allows
different functionality to be included with only minimal
modifications. As stated previously, certain
combinations of objects could potentially be selected by
the user using an appropriate user interface. The receiver
performs all of the necessary high-level operations such
as determining what satellites should be acquired and
tracked, maintaining the receiver time and interfacing
with the user. To this end, the programmer can instruct
the receiver how new satellite objects should be created.
The receiver object is also responsible for the
implementation of vector-based and ultra-tight receiver
architectures (e.g., Petovello et al 2008a). In this case,
the navigation solution is used to drive the local signal
generator directly; the difference between the
architectures being that that ultra-tight receiver
incorporates an IMU in the navigation solution (see
details of navigation solution object) whereas the vector-
based receiver does not.

Object Interaction
The general flow of the software is to first create the
necessary objects and compose the receiver. The receiver
object is informed of what sample sources are available
and is also given access to the processing manager. The
receiver then creates (allocates) satellite objects as needed
based on assumed satellite visibility. As satellite objects
are created, information about their channels (and
corresponding signals) are passed to the processing
manager, which, as described above, is responsible for
maintaining the relationships amongst the sample sources,
signals and DRC objects. Similarly, as satellites are
removed (e.g., because they fall below the local horizon),
they are removed from the receiver and the processing
manager is informed accordingly.

As samples become available the receiver is told to
process the samples, which it does by using the
processing manager. To this end, a more detailed view of
the interaction of the processing manager, sample sources,
channels and signals is shown in Fig. 3. For clarity, only
a single sample source, satellite, channel and signal are

Petovello et al: Architecture and Benefits of an Advanced GNSS Software Receiver
160

shown although in practice there may be multiple of each.
The processing manager uses the sample source and
signal parameters to perform the DRC computations on
each signal within the channel. Once the DRC
computations are complete, the processing manager
forwards all correlator outputs to the channel for
processing (tracking). The channels are responsible for
informing the processing manager of how many samples
to process at a time.

Also shown in Fig. 3 are correlator requests. Correlator
requests are initiated by the channel (which has full
knowledge of the tracking status for each signal) and are
used to request the necessary correlator outputs (code
phase and/or frequency offsets relative to the prompt
corrrelator) needed for acquisition or tracking. The
processing manager is responsible for satisfying the
requests of the channels. An example of when a
correlator request would be necessary is if early and late
correlator spacing is to be narrowed (to mitigate
multipath effects) as the tracking status of a particular
signal is improved. The key point however, is that the
channel completely determines what is needed for
tracking the signals contained within it. This is a highly
modular structure that is readily modified to
accommodate a very wide range of tracking scenarios.

Advantages of the Proposed Architecture
In addition to the flexibility associated with the
“composition” approach used in the software and the
“autonomous” nature of the channel objects, the proposed
architecture offers one other major advantage in terms of
processing efficiency. Specifically, it was found that in
order to best optimize DRC processing (the high rate
computations) on a general processor, all of the data
necessary for the DRC computations should be available
simultaneously. If this is possible, several optimization
approaches can be considered including

Using processor-specific optimizations such as the single
instruction, multiple data (SIMD) instruction set available
on x86 processors (Pany et al 2003, Heckler & Garrison
2004, Charkhandeh 2007). This is often termed
“vectorizing” the processing. Some processors and
compilers do this automatically.

• Implementing a multi-threaded architecture which is

particularly well suited to multi-core processors.

• Using co-processors such as a field programmable

gate array (FPGA), digital signal processor (DSP) or
graphical processing unit (GPU).

To date, all of the above optimizations have been
implemented (in terms of co-processors, only a GPU
implementation is currently complete). Of particular
interest here is the use of a GPU which, to the authors’

knowledge, has not been previously applied to GNSS
software receivers. A GPU is typically used to do
computationally expensive graphics coordinate
transformations and color shading of polygons in real-
time for video games. More recently, they have started to
be used for general scientific simulations with great
results. A further benefit is that their price-to-
performance ratio is several orders of magnitude better
than traditional supercomputers.

Fig. 3 Interaction of processing manager and associated
objects

However, before discussing the GPU implementation in
detail (see next section), we first look at different DRC
algorithms and their performance using different
optimization strategies. In particular, to demonstrate the
efficiency of different DRC algorithms, the GSNRx™
software was run using the “rigorous”, “table” and “new”
DRC algorithms. The “new” algorithm is proposed in
Petovello & Lachapelle (2008), which also describes the
other two algorithms.

Table 1 shows the average time to perform the DRC
processing on 1 ms of data for eight satellites using the
different DRCs with different sampling rates. The results
were obtained using a single thread on an Intel Xeon
quad-core processor. Each processor runs at 1.6 GHz
with a 1.066 GHz system bus and 32 kB of L1 cache.
Furthermore, each processor has hyper-threading
capability, for a total of eight virtual processors.

Petovello et al: Architecture and Benefits of an Advanced GNSS Software Receiver
161

According to the processor manufacturer, hyper-
threading provides “more efficient use of processor
resources” (Intel 2009), but in practice it has been
observed to provide roughly twice the processing
capability of a regular processor (i.e., equivalent to using
only 50% of the processing core). Comparing the
different DRC algorithms, the “table” algorithm performs
best. This is somewhat surprising because Petovello &
Lachapelle (2008) showed that the “new” algorithm has
fewer computations. The difference in performance is
explained by the optimizations performed by the compiler
and/or processor (different results have been obtained on
different processors), and it is clear that these can be
significant and should be considered when maximizing
processing throughput. Furthermore, for the “table” and
“new” algorithms, vectorization provides roughly 50%
improvement in processing time.

Table 1 - Average Time to Perform the DRC Processing
on 1 ms of Data for Eight Satellites Using Different DRC
Algorithms

DRC Algorithm
Average Time (ms)

5 Msps
Data

25 Msps
Data

Rigorous 1.58 8.06
Rigorous Vectorized 1.29 6.64

Table 1.13 5.54
Table Vectorized 0.56 2.72

New 1.45 6.35
New Vectorized 0.67 3.39

To improve the processing times shown in Table 1, multi-
threading was also implemented. In Fig. 4, the average
processing time for 1 ms of data for eight satellites is
shown as a function of the number of threads used. The
performance of multi-threaded code scales well up to four
threads, after which the performance increases are
marginal. This is likely due to the fact that, of the eight
processors mentioned above, half can be considered
“virtual” (i.e., they are not “real” processors). It is
expected that these results would scale if more processors
were available.

4. DRC Processing Using A GPU

This section presents the details of the GPU
implementation for the DRC processing. To this end,
two features of GPUs stand out as being particularly
useful for the problem at hand. First, they allow a very
high degree of parallelism, typically several hundreds or
thousands of threads running simultaneously. This is in
contrast to the several tens of threads found in a typical
central processing unit (CPU). The GPU architecture is
limited to executing kernels which perform the same
operation on a large data set. While this is sufficient for
digital signal processing (as is the case in the current

context), it is not at all suitable for implementing general
purpose software. The second feature of interest is that
GPUs have devoted more silicon area to computationally
expensive arithmetic functions. A typical CPU has more
than 50% of its area devoted to memory controllers and
cache memory. In contrast, a GPU has very little on
board cache, devoting extra silicon to arithmetic
functions instead. As a result, memory access latency is
very high (200-300 clock cycles), but other traditionally
expensive operations have been made extremely cheap;
on the order of four clock cycles (e.g., sin/cos
computations, thread context switching, floating point re-
sampling and interpolation).

Fig. 4 Mean Time to Perform the DRC Processing on
1 ms of Data for Eight Satellites Using Different DRC
Algorithms and Data Rates

5. DRC Processing Using A GPU

This section presents the details of the GPU
implementation for the DRC processing. To this end,
two features of GPUs stand out as being particularly
useful for the problem at hand. First, they allow a very
high degree of parallelism, typically several hundreds or
thousands of threads running simultaneously. This is in
contrast to the several tens of threads found in a typical
central processing unit (CPU). The GPU architecture is
limited to executing kernels which perform the same
operation on a large data set. While this is sufficient for
digital signal processing (as is the case in the current
context), it is not at all suitable for implementing general
purpose software. The second feature of interest is that
GPUs have devoted more silicon area to computationally
expensive arithmetic functions. A typical CPU has more
than 50% of its area devoted to memory controllers and
cache memory. In contrast, a GPU has very little on
board cache, devoting extra silicon to arithmetic
functions instead. As a result, memory access latency is
very high (200-300 clock cycles), but other traditionally
expensive operations have been made extremely cheap;

Petovello et al: Architecture and Benefits of an Advanced GNSS Software Receiver
162

on the order of four clock cycles (e.g., sin/cos
computations, thread context switching, floating point re-
sampling and interpolation).

As mentioned above, relative to a standard CPU, a GPU
has considerably more execution units, and each unit is
also able to run considerably more threads
simultaneously. For example, the NVIDIA 8800GTX
GPU used in this work has 16 execution units, each able
to run 768 threads simultaneously, for a (theoretical) total
of over 12 thousand threads. However, sharing data
between multiple processors requires that the processing
be partitioned among the different processors and then
merged back; a process that can also produce a
bottleneck.

In order to better explain how the GPU is used in the
software receiver, we recall that to compute any given
correlator value, every sample being processed must be
multiplied by a local carrier and local code and then the
results (one per sample) have to be added up. Obviously,
if all of this processing is performed in a single thread on
a single processor, there is no benefit to be gained.
Instead, within the GPU, the samples are divided into sN
contiguous “slices”. Then, for each slice of data, the
DRC processing is divided into tN threads, with each
thread processing a subset of the samples within the slice.
This concept is shown graphically in Fig. 5. Both sN

and tN are design parameters, and for efficiency, should
be selected to be powers of two. Each thread then
performs the following computations for each sample it is
responsible for processing and sums the result:

• Compute of the local code and carrier phase

• Perform the Doppler removal and multiply by the

local code

Using the above approach, the GPU effectively divides
the processing for a single correlator into a total of

×s tN N threads. The result of each thread’s processing
must then be “reduced”, that is, summed to get the final
correlator value. However, given the vast number of
thread processors on a GPU, this can be highly inefficient
and may result in a bottleneck. Fortunately, the NVIDIA
architecture provides a mechanism for guaranteeing that a
group of threads all have access to a fast “shared”
memory. This group of threads is referred to as a
“block”. Within a block, the reduction process (i.e.,
adding the results of all the threads) is very efficient
because of the shared memory. In GSNRx™, each block
is responsible for processing one slice of data for a single
correlator, and has been optimized using the techniques
of sequential addressing and loop unrolling described by

Harris (2007). Finally, because each block only
processes a single slice of data, a second reduction is
required to obtain the final correlator value by summing
the results of all sN blocks/slices.

Fig. 5 Diagram Showing How a Group of Samples is
Processed in the GPU

The above description only applies to a single correlator
value. However, this can be easily extended to include
multiple correlator values at once. In this case,
processing is performed across a two-dimensional grid of
blocks, where the first dimension is the number of
correlator outputs and the second dimension is the
number of slices (as discussed above). Conceptually, this
is shown in Fig. 6. From the figure, it should be clear
that the GPU processing paradigm is highly flexible and
scales easily with the number of correlators required and
the number of slices the data is divided into (but not the
number of samples). In fact, once these parameters are
determined (e.g., based on tracking algorithms employed,
number of satellites in view, etc.) the GPU takes care of
dividing the processing in the most efficient manner
possible. In other words, the programmer is allowed to
determine the inputs and desired outputs, and then, by
using the same kernel function, the GPU handles the core
processing steps in a transparent manner.

Prior to executing the above processing, all of the
samples have to be loaded onto the GPU along with the
ranging codes, and the tracking parameters for each
correlator to be computed. The transfer of data to the
GPU can be executed asynchronously, meaning that the
CPU can continue to operate as the samples are loaded
onto the GPU. Once this is complete, the execution of
the processing is initiated by specifying the kernel

Petovello et al: Architecture and Benefits of an Advanced GNSS Software Receiver
163

function to run, in addition to the grid of blocks and slices
discussed above and shown in Fig. 6.

Fig. 6 Computation Grid for GPU Processing

Two final points regarding the GPU implementation are
in order before presenting some results. First, GPU
programming philosophy is quite distinct from that of
CPU programming. In particular, the local code and
carrier values are calculated independently for each
sample, rather than by incrementing previous values.
Second, these local replica values are calculated “on-the-
fly” rather than being pre-computed and stored.
Specifically, for the local carrier, sin/cos function calls
are made explicitly. For a standard CPU, this approach is
computationally inefficient, however, due to its design,
the GPU executes these function calls much more
efficiently. For the local code replica, the code phase
(i.e., index into the ranging code that is uploaded to the
GPU) is computed independently for each sample using
the initial code phase (i.e., at the beginning of the samples
to be processed), the code Doppler and sample period.
Although this requires more computations than using a
lookup table, for example, this is computationally feasible
because of the highly parallel structure of the GPU.

To demonstrate the benefit of the GPU, Fig. 7 shows the
average DRC processing time for 1 ms of data on eight
satellites as a function of the number of threads and slices
using 25 Msps data. As can be seen from the plot, there is
a tradeoff between the number of slices and the number
of threads with the best performance occurring, in this
case, with 16 slices and 64 threads per block (although
other combinations provide nearly the same
performance). Of greater interest however, is that most
combinations can process the data in less than 1 ms,
suggesting that real-time capability is possible. In

contrast, with reference to Fig. 4 (note the different y-axis
scales), none of the DRC algorithms were able to process
the 25 Msps data in real-time on a general CPU. In other
words, the GPU offers the possibility of processing
higher data rates in less time, and thus realizing the
benefits of the increased signal bandwidths, and at the
same time doing it more quickly than with a CPU.

Fig. 7 Mean Time to Perform the DRC Processing on
1 ms of 25 MHz Data for Eight Satellites Using a GPU
with Different Numbers of Threads and Slices

6. Software Status and Sample Results

The GSNRx™ software is currently able to acquire and
track several signals, as summarized in Table 2. A GPS
L1 and Galileo E1 receiver is also working. To date, the
navigation solution is only enabled for the GPS L1 signal
and the two GLONASS signals because these are the only
signals available on a sufficient number of satellites.
However, the capability to compute a solution using the
other signals is ready and requires final testing with live
satellites. In addition, Kalman filter-based, vector-based
and ultra-tight architectures (e.g., Petovello et al 2008a)
are available for GPS L1 and work is ongoing to
incorporate the other signals as well.

Table 2 - Current Status of GSNRx™ Software
Signal Status within GSNRx™
GPS Signals
 L1 Acquire, Track and Navigation Solution
 L1C Work is ongoing
 L2C Acquire and Track
 L5 Acquire and Track
Galileo Signals
 E1b/c Acquire and Track
 E5a Acquire and Track
 E5b Acquire and Track
GLONASS Signals
 L1 Acquire, Track and Navigation Solution
 L2 Acquire, Track and Navigation Solution

Petovello et al: Architecture and Benefits of an Advanced GNSS Software Receiver
164

The software was designed to be able to interface with
samples from any front-end hardware, but has not, as yet,
been tested in a real-time configuration for any specific
front-end. However, given that the results of the previous
section show that real-time processing is possible, work
is ongoing to have the software work in real-time with a
commercially available L1 front-end.
An exhaustive list of references related to the GSNRx™
software (and GNSS signal acquisition and tracking
algorithms in general) is beyond the scope of this paper.
Interested readers are referred to the PLAN Group
website (http://plan.geomatics.ucalgary.ca), which
provides access to papers and theses involving software
receiver development and testing (as well as all other
research topics).

The following sub-sections present some sample results
to demonstrate the flexibility of the GSNRx™ software.
All of the data processed was collected using a National
Instruments front-end system that allows for collection of
data on up to three frequency bands at a time (the actual
frequency bands used will be clear in the following
discussions) using a selectable bandwidth and sampling
rate. That said, similar results would be expected with
other front-ends. Finally, the results are included mostly
to show the flexibility of the software and are therefore
presented with minimal explanation.

GPS Results
The most fundamental assessment of a receiver is the
standalone positioning error. To this end, Table 3 shows
the L1 C/A Code position error statistics for a 15-minute
data set collected in open sky conditions. The position
solution is accurate to the metre level, as expected given
the low level of ionospheric activity during the test and
the relatively benign multipath environment in which the
data was collected.

Table 3 - GPS L1 Standalone Position Error Statistics
Direction Mean (m) RMS (m)

North -1.4 2.5
East 1.2 1.7

Vertical -1.1 3.0

The GSNRx™ software is also able to accurately track
the carrier phase of the signal, thus allowing high
accuracy carrier phase positioning. To illustrate, Fig. 8
shows the RTK position errors as a function of time for a
pedestrian-based DGPS test (described in Petovello et al
2007a). For the portion of data shown, the signals were
collected in an open sky environment. It is worth noting
that the antenna was experiencing peak-to-peak
accelerations of about 10 m/s2 in each coordinate
direction throughout the test. In spite of this relatively
large level of acceleration, the position errors are still at
the centimetre level, as is typical with RTK systems. The

error statistics for the data shown in Fig. 8 are given in
Table 4.

Fig. 8 DGPS L1 RTK Positioning Errors in Open Sky
Environment

Table 4 - DGPS L1 RTK Position Error Statistics in Open
Sky Environment

Direction Mean (cm) RMS (cm)
North 0.2 1.6
East 0.1 1.1

Vertical -0.6 1.5

In addition to the traditional signal tracking algorithms
used to generate the above results, considerable work has
also gone into testing new receiver architectures (e.g.,
Petovello et al 2007a, Petovello et al 2007b, Petovello et
al 2008a, Petovello et al 2008b). Two of the most
promising architectures are the Kalman filter-based
architecture and the ultra-tight integration of GNSS and
inertial measurement units (IMUs). A Kalman filter-
based receiver replaces the conventional
discriminator/loop filter pair with a Kalman filter
(although other estimation algorithms could also be used).
In an ultra-tight architecture, the IMU measures and
compensates for the user’s motion, allowing the tracking
loops to have a narrower bandwidth. Both the Kalman
filter-based and ultra-tight integrations have proven
useful when tracking weak GNSS signals. To illustrate
this, data was collected on a pedestrian and a variable
attenuator was used to slowly reduce the received signal
power by 1 dB every 4 s. As the signal power was
reduced, different receiver architectures failed at different
times. Fig. 9 shows a “histogram” of the horizontal
position error as a function of attenuation for different
receivers (again, for DGPS L1 RTK positioning). The
plot shows the number of epochs whose horizontal
position error exceeds a given threshold for all
attenuation values up to that shown on the x-axis.
Initially, all solutions are able to provide highly accurate
solutions, so the number of epochs where the position

http://plan.geomatics.ucalgary.ca/�

Petovello et al: Architecture and Benefits of an Advanced GNSS Software Receiver
165

error exceeds the thresholds is zero. Then, at some point
in time (level of attenuation) the receiver “fails” such that
corresponding position error exceeds the specified
thresholds and never recovers. In this context, “failure”
consists of a cycle slip at best, or complete lock of loss at
worst. When this happens, the number of epochs where
the position exceeds a given threshold increases linearly
(with a few minor exceptions). With this in mind, for
epochs with an attenuation of 20 dB or less, the standard
receiver has about 24 epochs where the horizontal error
exceeds 0.1 m. In contrast, for the same level of
attenuation, the Kalman filter-based and ultra-tight
architectures have one and zero epochs respectively
where the horizontal error exceeds 0.1 m. The reason for
the improvement with the ultra-tight approach is because
in an ultra-tight architecture, the inertial data is used to
compensate for receiver motion, thus improving the
tracking capabilities of the receiver (ibid.).

Fig. 9 Horizontal Position Error Histogram for Standard,
Kalman Filter-Based and Ultra-Tight Receiver
Architectures during Signal Attenuation (lines are plotted
in order of increasing position error and thus lines for
larger errors may hide those for smaller errors)

New GNSS Signals
As mentioned above, only the GPS L1 signal is fully
deployed. The other signals in Table 2 are still not fully
available and a fully operational receiver for these signals
is not yet feasible (except for the GLONASS signals).
Nevertheless, GSNRx™ offers the opportunity to develop,
implement and test the acquisition and tracking
algorithms for these new signals prior to their full
deployment. In so doing, once the signals are available
on orbit, the software receiver can be easily extended to
take full advantages of these signals, thus reducing
product lead time. Included below are some sample
results from some ongoing testing and development
associated with new GNSS signals and/or systems.

To begin, Fig. 10 shows the acquisition plot for the
GIOVE-A (Galileo test satellite) E1b signal employing a
BOC(1,1) ranging code. The characteristic side peaks of
the signal are clearly visible on each side of the main
peak. Also, the sin(x)/x shape is visible in the frequency
domain. The results were obtained using two 4-ms
coherent integration intervals which are then added non-
coherently. Following acquisition, the signal is also able
to be tracked (results not shown due to space limitations).

Fig. 10 Acquisition Plot for GIOVE-A E1b Signal with
BOC(1,1) Ranging Code (blue line is the projection of
the peak in the code phase domain and the green line is
the projection of the peak in the frequency domain)

The GSNRx™ software has also been used to acquire and
track the GIOVE-A E5b signal. The E5b signal was
selected because the Calgary International Airport’s
distance measuring equipment (DME) falls in this band
and it was desired to see if the resulting interference
could be effectively mitigated within the receiver. To
this end, the upper plot in Fig. 11 shows the power
spectral density (PSD) of the original signal as well as the
PSD after applying a notch filter inside the receiver. The
effect of the DME interference is effectively eliminated
by the notch filter. The lower plot in Fig. 11 shows the
estimated C/N0 for the two signals and it is obvious that
the notch filter allows for better signal tracking. The
average improvement in C/N0 is about 2 dB, which is
significant.

As a final example, the GSNRx™ software has been used
to track signals from the Russian GLONASS system.
More specifically, algorithms have been developed to
track the civilian signal on both L1 and L2 (Abbasian Nik
& Petovello 2008). Table 5 shows the position error
statistics for the L1 and L2 position solutions. No GPS
measurements were included in these results. For the L1
solution, the position error is very similar to the solution
obtained using data collected from a NovAtel OEMV2

Petovello et al: Architecture and Benefits of an Advanced GNSS Software Receiver
166

receiver (using the same five satellites in both solutions).
For the L2-only solution, only four L2-capable satellites
were available and the position errors are larger because
of satellite geometry degradation, but are still of
reasonable magnitude and compare favorably with those
of the L1-only solution computed using the same
satellites (to remove the effect of satellite geometry).

Fig. 11 Power Spectral Density and Estimated C/N0

Table 5 - Standalone GLONASS L1 and L2 Position
Error Statistics

 for
GIOVE-A E5b Signal with and without a Notch Filter to
Mitigate DME Interference

Solution RMS Error (m)
North East Vertical

5 Satellite Solution
GSNRx™ (L1-

Only) 2.1 m 2.8 m 7.5 m

NovAtel (L1-
Only) 0.5 m 1.7 m 2.8 m

4 Satellite Solution
GSNRx™ (L1-

Only) 3.6 m 2.2 m 7.8 m

GSNRx™ (L2-
Only) 4.6 m 4.2 m 14.2 m

Summary

From the above, the software architecture clearly
provides considerable flexibility to acquire and track new
signals and to implement different receiver
implementations. This capability is critical in a research
environment but is also of interest to agencies wishing to
test various algorithms prior to finalizing an
implementation in hardware. Another application is
products with low replacement rates (e.g., vehicles) that
want to incorporate positioning capability now and in the
future but would like to easily upgrade functionality in
the future as new technologies become available.

7. Summary and Future Work

This paper presented the overall architecture of the
GSNRx™ software receiver. The primary benefit of the
architecture was shown to be the flexibility it provides for
implementing advanced receiver architectures such as
ultra-tight integration with an IMU, and for developing
and testing algorithms to acquire and test new signals.
In addition, the software is structured to allow processing
optimizations to be implemented using whatever
resources may be available. Herein, the use of
vectorization, multi-threading and a GPU were shown to
provide various levels of processing improvements. In
particular, the GPU was shown to provide considerable
processing improvements, and these are expected to
become more significant as more signals need to be
tracked simultaneously.

Future work will focus on refining existing algorithms
while at the same time incorporating functionality to
acquire and track the new signals that will soon be
available.

For licensing information, please contact the authors.

REFERENCES

Abbasian Nik, S. and M.G. Petovello (2008)

Multichannel Dual Frequency GLONASS
Software Receiver, Proceedings of ION GNSS
2008, Savannah, GA, Institute of Navigation, In
press.

Borre, K., D. Akos, N. Bertelsen, P. Rinder and S.H.

Jenson (2007) A Software-Defined GPS and
Galileo Receiver, A Single-Frequency Approach,
Boston, Birkhäuser.

Charkhandeh, S. (2007) X86-Based Real Time L1 GPS

Software Receiver, M.Sc. Thesis, Geomatics
Engineering, University of Calgary.

CSR (2008) CSR eGPS: Fast and reliable positioning -

everywhere, Retrieved March 5, 2009, from
http://www.csr.com/egps/.

Fastrax (2008) Smart Positioning with Fastrax Software

GPS Receiver, Fastrax Ltd. 2008.

Gernot, C., K. O'Keefe and G. Lachapelle (2008a)

Combined L1 / L2C Tracking Scheme for Weak
Signal Environment, Proceedings of ION GNSS
2008, Savannah, GA, Institute of Navigation, In
press.

http://www.csr.com/egps/�

Petovello et al: Architecture and Benefits of an Advanced GNSS Software Receiver
167

Gernot, C., K. O'Keefe and G. Lachapelle (2008b)
Comparison of L1 C/A-L2C Combined
Acquisition Techniques, Proceedings of European
Navigation Conference, Toulouse, France.

Harris, M. (2007) Optimizing CUDA,

SUPERCOMPUTING 2007 Tutorial, Retrieved
March 5, 2009, from
http://www.gpgpu.org/sc2007/.

Heckler, G.W. and J.L. Garrison (2004) Architecture of a

Reconfigurable Software Receiver, Proceedings
of ION GNSS 2004, Long Beach, CA, Institute of
Navigation, 947-955.

IFEN (2007) NavX®-NSR - GPS/GALILEO

NAVIGATION SOFTWARE RECEIVER, IFEN,
GmbH. 2007, Brochure for NavX®-NSR.

Intel (2009) Hyper-Threading Technology, Retrieved 24

March, 2009, from
http://www.intel.com/technology/platform-
technology/hyper-
threading/index.htm?iid=tech_product+ht.

Ledvina, B.M., S.P. Powell, P.M. Kintner and M.L.

Psiaki (2003) A 12-Channel Real-Time GPS L1
Software Receiver, Proceedings of ION National
Technical Meeting, Anaheim, CA, Institute of
Navigation, 767-782.

Ma, C., G. Lachapelle and M.E. Cannon (2004)

Implementation of a Software GPS Receiver,
Proceedings of ION GNSS 2004, Long Beach,
CA, Institute of Navigation, 956-970.

Misra, P. and P. Enge (2001) Global Positioning System

Signals, Measurement, and Performance,
Lincoln, MA, Ganga-Jamuna Press.

Mongrédien, C., G. Lachapelle and M.E. Cannon (2006)

Testing GPS L5 Acquisition and Tracking
Algorithms Using a Hardware Simulator,
Proceedings of ION GNSS 2006, Fort Worth, TX,
Institute of Navigation, 2901-2913.

Morton, J. (2007) Expert Advice: Software Defines

Future, GPS World System Design and Test
News, Retrieved January 7, 2008, from
http://sidt.gpsworld.com/gpssidt/Expert+Advice+
%26+Leadership+Talks/Expert-Advice-mdash-
Software-Defines-
Future/ArticleStandard/Article/detail/445464?cont
extCategoryId=35358&searchString=software%20
receiver.

Muthuraman, K., R. Klukas and G. Lachapelle (2008)
Performance Evaluation of L2C Data/Pilot
Combined Carrier Tracking, Proceedings of ION
GNSS 2008, Savannah, GA, Institute of
Navigation, 9 pages.

Muthuraman, K., S.K. Shanmugam and G. Lachapelle

(2007) Evaluation of Data/Pilot Tracking
Algorithms for GPS L2C Signals Using Software
Receiver, Proceedings of ION GNSS 2007, Fort
Worth, TX, Institute of Navigation, 11 pages.

NXP (2007) NXP Software teams with Mango Research

on high performance Personal Navigation
Device, Retrieved March 5, 2009, from
http://www.software.nxp.com/?pageid=140.

Pany, T., S.W. Moon, M. Irsigler, B. Eissfeller and K.

Fürlinger (2003) Performance Assessment of an
Under Sampling SWC Receiver for Simulated
High-Bandwidth GPS/Galileo Signals and Real
Signals, Proceedings of ION GPS/GNSS 2003,
Portland, OR, Institute of Navigation, 103-116.

Petovello, M.G. and G. Lachapelle (2008) Centimeter-

Level Positioning Using an Efficient New
Baseband Mixing and De-Spreading Method for
Software GNSS Receivers, Journal on Advances
in Signal Processing (JASP), In Press.

Petovello, M.G., C. O'Driscoll and G. Lachapelle (2007a)

Ultra-Tight GPS/INS for Carrier Phase
Positioning In Weak-Signal Environments,
Proceedings of NATO RTO SET-104 Symposium
on Military Capabilities Enabled by Advances in
Navigation Sensors, Antalya, Turkey, NATO, 18
pages.

Petovello, M.G., C. O'Driscoll and G. Lachapelle (2008a)

Carrier Phase Tracking of Weak Signals Using
Different Receiver Architectures, Proceedings of
ION National Technical Meeting, San Diego, CA,
Institute of Navigation, 781-791.

Petovello, M.G., C. O'Driscoll and G. Lachapelle (2008b)

Weak Signal Carrier Tracking Using Extended
Coherent Integration with an Ultra-Tight
GNSS/IMU Receiver, Proceedings of European
Navigation Conference, Toulouse, France, 11
pages.

Petovello, M.G., K. O'Keefe, G. Lachapelle and M.E.

Cannon (2007b) Consideration of Time-
Correlated Errors in a Kalman Filter Applicable
to GNSS, Journal of Geodesy, In Press.

http://www.gpgpu.org/sc2007/�
http://www.intel.com/technology/platform-technology/hyper-threading/index.htm?iid=tech_product+ht�
http://www.intel.com/technology/platform-technology/hyper-threading/index.htm?iid=tech_product+ht�
http://www.intel.com/technology/platform-technology/hyper-threading/index.htm?iid=tech_product+ht�
http://sidt.gpsworld.com/gpssidt/Expert+Advice+%26+Leadership+Talks/Expert-Advice-mdash-Software-Defines-Future/ArticleStandard/Article/detail/445464?contextCategoryId=35358&searchString=software%20receiver�
http://sidt.gpsworld.com/gpssidt/Expert+Advice+%26+Leadership+Talks/Expert-Advice-mdash-Software-Defines-Future/ArticleStandard/Article/detail/445464?contextCategoryId=35358&searchString=software%20receiver�
http://sidt.gpsworld.com/gpssidt/Expert+Advice+%26+Leadership+Talks/Expert-Advice-mdash-Software-Defines-Future/ArticleStandard/Article/detail/445464?contextCategoryId=35358&searchString=software%20receiver�
http://sidt.gpsworld.com/gpssidt/Expert+Advice+%26+Leadership+Talks/Expert-Advice-mdash-Software-Defines-Future/ArticleStandard/Article/detail/445464?contextCategoryId=35358&searchString=software%20receiver�
http://sidt.gpsworld.com/gpssidt/Expert+Advice+%26+Leadership+Talks/Expert-Advice-mdash-Software-Defines-Future/ArticleStandard/Article/detail/445464?contextCategoryId=35358&searchString=software%20receiver�
http://sidt.gpsworld.com/gpssidt/Expert+Advice+%26+Leadership+Talks/Expert-Advice-mdash-Software-Defines-Future/ArticleStandard/Article/detail/445464?contextCategoryId=35358&searchString=software%20receiver�
http://www.software.nxp.com/?pageid=140�

Petovello et al: Architecture and Benefits of an Advanced GNSS Software Receiver
168

Psiaki, M.L. and H. Jung (2002) Extended Kalman Filter
Methods for Tracking Weak GPS Signals,
Proceedings of ION GPS 2002, Portland, OR,
Institute of Navigation, 2539-2553.

Scott, L. (2007) Directions 2008: Software-Defined

Radio Role to Grow, GPS World System Design
and Test News, Retrieved January 7, 2008, from
http://sidt.gpsworld.com/gpssidt/Receiver+Design/
Directions-2008-Software-Defined-Radio-Role-to-
Gro/ArticleStandard/Article/detail/476704.

Tsui, J.B.-Y. (2005) Fundamentals of Global

Positioning System Receivers: A Software
Approach, Hoboken, NJ, John Wiley & Sons, Inc.

Van Dierendonck, A.J. (1995) GPS Receivers, Global

Positioning System: Theory and Applications, B.
W. Parkinson and J. J. Spilker, Jr., American
Institute of Aeronautics and Astronautics, Inc. I,
329-407.

van Nee, D.J.R. and A.J.R.M. Coenen (1991) New fast

GPS code-acquisition technique using FFT,
Electronics Letters, 27(2), 158-160.

Ward, P.W., J.W. Betz and C.J. Hegarty (2006) Satellite

Signal Acquisition, Tracking, and Data
Demodulation, Understanding GPS Principles and
Applications, E. D. Kaplan and C. J. Hegarty,
Norwood, MA, Artech House, Inc., 153-241.

Ziedan, N.I. and J.L. Garrison (2004) Extended Kalman

Filter-Based Tracking of Weak GPS Signals
under High Dynamic Conditions, Proceedings of
ION GNSS 2004, Long Beach, CA, Institute of
Navigation, 20-31.

http://sidt.gpsworld.com/gpssidt/Receiver+Design/Directions-2008-Software-Defined-Radio-Role-to-Gro/ArticleStandard/Article/detail/476704�
http://sidt.gpsworld.com/gpssidt/Receiver+Design/Directions-2008-Software-Defined-Radio-Role-to-Gro/ArticleStandard/Article/detail/476704�
http://sidt.gpsworld.com/gpssidt/Receiver+Design/Directions-2008-Software-Defined-Radio-Role-to-Gro/ArticleStandard/Article/detail/476704�

	Introduction
	GNSS Receiver Methodology
	High Rate Operations
	Medium Rate Operations
	Low Rate Operations

	Software Architecture
	General Structure
	Object Descriptions
	Object Interaction
	Advantages of the Proposed Architecture

	DRC Processing Using A GPU
	DRC Processing Using A GPU
	Software Status and Sample Results
	New GNSS Signals
	Summary

	Summary and Future Work
	REFERENCES

