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Abstract 
 
This paper adapts Helmert’s simplified variance 
component estimation (VCE) algorithm for static and 
kinematic GPS single point positioning (SPP). First, the 
VCE algorithm for a static GPS SPP is formulated. 
Second, the concept of redundancy contribution of 
observations is developed in Kalman filtering so that the 
VCE algorithm is further delivered in Kalman filtering. 
The proposed VCE approach in Kalman filtering allows 
the variance components for individual measurement 
noises and individual independent process noises to be 
estimated. Some VCE numerical results from static and 
kinematic GPS datasets are presented and discussed.  
 
Key words: variance component estimation, Kalman filter, 
redundancy contribution, GPS, static/kinematic point 
positioning.  
 
1. Introduction 
 
The algorithms for variance and covariance estimation 
(VCE) have attracted considerable research attentions over 
the 30 years. Examples include Helmert, 1907; Förstner, 
1979; Grafarend, et al, 1980; Li, 1983; Koch, 1986; Jeudy, 
1988; Qu, 1989; Yu, 1996; Xu, et al, 2006, 2007; 
Teunissen and Amiri-Simkooei, 2008; Amiri-Simkooei, 
2007; etc.. Recently, more and more application-based 
studies have been presented [Sieg and Hirsch, 2000; Wang 
& Rizos, 2002; Tiberius, 2003; Rietdorf, 2004; Tesmer, 
2004; Zhou, et al, 2006; Amiri-Simkooei, 2007; Bähr, et 
al, 2007; Böckmann, 2008; Milbert, 2008; etc.]. The VCE 
in Kalman filtering has been also studied because of its 
peculiar model architecture [Sage and Husa, 1969; Mehra 
and Peschon, 1971; Tsang, et al, 1981]. [Wang, 1997, 
Caspary, Wang, 1998] proposed a practical VCE algorithm 
for Kalman filtering that can be applied not only to the 
variance components of the independent measurements 
and also to the variance components of the independent 
process noises. An adaptive Kalman filter based on VCE 
was developed and applied to GPS kinematic positioning 
[Hu & Liu, 2002; Hu, et al, 2003].  

Many different methods have been developed for VCE 
based on different estimation principles. Usually VCE is 
associated with the complicated theoretical derivation and 
the complexity of the calculations. This manuscript 
addresses a more practical aspect of VCE. 
 
Among various simplified VCE algorithms, the one based 
on the measurement redundancy contribution, is probably 
the most commonly used practical approach [Förstner, 
1979]. Theoretically, it is a simplification of the rigorous 
Helmert method. This approach was well developed in the 
least squares adjustment and found applications in geodetic 
and navigation data processing [Li, 1984; Wang, 1997; 
Caspary and Wang, 1998; Sieg and Hirsch, 2000; Rietdorf, 
2004; Tesmer, 2004; Zhou, et al, 2006; Bähr, et al, 2007; 
Böckmann, 2008; Milbert, 2008; etc.]. Experience has 
shown that it performs as good as the rigorous Helmert 
method wherever enough redundant measurements are 
available, and does not involves significant amount of 
computation. 
 
The present contribution focuses on using simplified VCE 
algorithm for the determination of stochastic models for 
static and kinematic GPS SPP problems. Section 2 starts 
with an overview of the rigorous VCE methods since 
Helmert, the simplified VCE algorithm based on the 
measurement redundancy contribution is then outlined,  
followed by a VCE approach for sequential least squares. 
Section 3 gives a similar VCE algorithm in Kalman 
filtering. The introduction of the concept of the 
measurement redundancy contribution to Kalman filtering 
ensures the realization of this practical VCE algorithm. 
The proposed VCE algorithm allows for analysis of the 
measurement residuals and the estimated residuals of 
process noise other than the system innovations. As a 
result, the variance components can be grouped into the 
individual measurements and the components in the 
process noise vector.  Section 4 and Section 5 present VCE 
results from static and kinematic GPS SPP data and 
necessary discussions. 
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2. Helmert variance component estimation 
 
2.1 Rigorous Algorithm after Helmert 
The analysis starts with a generic linearized system of 
observation equations 
 

)(ˆ )(0xFxBvL +δ=+                      (1) 
 
where L  is the 1×n  observation vector; v  is the 1×n  
residual vector of L ; x  is the 1×t  parameter vector with 
a vector )(0x of known approximate values and the 
correction vector x̂δ  for )(0x ;  )(xF  is the 1×n  vector 
as nonlinear mathematical function of x  for L ; B  is the 

tn ×  design matrix that is composed of the partial 
derivatives of )(xF  with respect to x  at )(0x . The 
observation vector L  is normally distributed as 

),~(~ LLDLNL  with its expectation vector L~  and its 
variance matrix LLD . In practice, LLD  is given as 
 

12
0

−σ= PDLL                       (2) 
 
where 2

0σ  is the variance of unit weight and P  is the 
weight matrix of L . The inverse of a weight matrix is 
called as a cofactor matrix and interchangeably used 
together with the weight matrix.  
 
The least-squares (LS) solution of (1) is 
 

PlBNx T1−=δ ˆ                                             (3) 
 
with its variance matrix 
 

12
0

−σ= ND xx ˆˆˆ                                                 (4) 
 
where 
 

PBBN T=                                    (5) 

tn
PvvT

−
=σ 2

0ˆ  )( tn >                                   (6) 

)( )(0xFLl −=                                      (7) 
 
The model from (1) to (7) only deals with the variance of 
unit weight 2

0σ  because P  is assumed known and most 
likely diagonal that represents L  being composed of n  
independent measurements. 
 
The a priori measurement weight or variance matrix is 
determined on the basis of the available stochastic 
information about the measurements. In general, the 
available stochastic information is limited and needs to be 
improved. Fortunately, the variances for individual 

measurements or the variance components for the grouped 
measurements can posteriorly be estimated based on the 
measurement residuals in addition to achieving the LS 
solution of the parameters.  
 
The Helmert method is probably the most popular VCE 
algorithm [Förstner, 1979; Koch, 1986; Cui et al, 2001; 
Bähe, et al, 2007; etc.]. Consider m types of measurements 
as the 1×in  vector iL  for m,...,,21=i . The equation 
system (1) can be partitioned as follows         
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with (2) partitioned in 
 

( )12
0

12
0

1
1

2
01

−−− σσσ= mmiiLL PPPdiagD        (9) 
 
(9) indicates that mi LLL ,...,,...,1  do not share the same 

variance of unit weight 2
0σ . The purpose of the variance 

component estimation is to estimate the variance factors 
2
0iσ  ( m,...,,21=i ) and iteratively or adaptively adjust the 

measurement weights or variances using the available 
measurements. They can be estimated from the following 
equation [Förstner, 1979; Cui, et al, 2001; Bähr, et al, 
2007]: 
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where  
 

)()( iiiiii NNNNtrNNtrns 1112 −−− +−=             (11) 

)( jijiij NNNNtrss 11 −−==  )( ji ≠                  (12) 

ii
T
ii BPBN =                                  (13) 

for mji ,,1, = . 
 
2.2. The simplified algorithm 
The inverse of the mm × coefficient matrix in (10) makes 
the method inconvenient. Correspondingly, a number of 
simplified formulas have been developed [Förstner, 1979; 
Cui et al, 2001; Bähr, et al, 2007]. The most popular 
simplification was developed on the basis of the 
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measurement redundant contribution by Förstner [1979]. 
For more details about Förstner’s algorithm along with its 
important characteristics refer to [Förstner, 1979; Cui et al, 
2001; Bähr, et al, 2007; etc.]. For the needs of further 
development in this manuscript, a brief overview is given 
in the following.   
 
By applying the law of the error propagation to the least 
squares solution of (8) and (9), the variance matrix of the 
measurement residual vector iv  can be obtained  
 

)( T
iiiivvivv BNBPQD

iiii

112
0

2
0

−− −σ=σ=            (14) 
 
wherein 

ii vvQ is the cofactor matrix of iv . The expected 
value of the weighted sum of squared residuals from the 
group i is  
 
 )]([)( iiiii

T
i NNtracenvPvE 12

0
−−σ=            (15) 

 
where in  is the number of the measurements in the group 
i. It can be proved that the following equation is satisfied 
 

ivviii rQPtraceNNtracen
vv

==− − )()( 1    (16) 
 
Herewith ir  is equal to the redundancy contribution made 
by iL  to the system (1) and called as the redundant index 

of iL . Hence, the estimated variance factor 2
0iσ  is 

 

i

ii
T
i

i r
vPv

=σ 2
0  ),,1( mi =            (17) 

 
Obviously, (17) is easy to be applied because it does not 
introduce extra calculations since the redundant 
contribution of measurements is always required in data 
processing for the purpose of outlier detection or reliability 
analysis. In general, all of the VCE algorithms need 
enough redundant measurements to provide reliable 
results, so does (17). 
 
Based on the fact that there are usually a large number of 
redundant measurements in GPS positioning, the authors 
confidently propose adopting Förstner’s algorithm for 
VCE in GPS SPP. Accordingly, the practical algorithms 
are developed for static GPS SPP in Section 2.3 and for 
kinematic GPS SPP in Section 3. 
 
2.3. The VCE in Sequential Least Squares Method 
The focus now is turned to construct the simplified 
algorithm in sequential LS. Given an equation system for n 
groups of measurements as 
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with the variance matrix for all the measurements together 
is assumed as  
 

}{ 11 nnkk DDDdiagD =  
    }{ 12

0
12

0
1

1
2
01

−−−= nnkk PPPdiag σσσ               (19) 
 
in which there are n-group measurements and the sub-
vector 0x  is the common parameters in the individual 
groups, kv  is the measurement residual vector in the group 
k, kx  is the parameter vector owned only by the group k, 
and kkB  is the coefficient matrix.  
 
Equation (18) is a typical structure for the multiple epochs 
of static GPS SPP where 0x  contains the three receiver 
coordinates and kx  is the receiver clock error at epoch k 
( nk ,...,,21= ). At an arbitrary epoch k, the measurement 
variance matrix is a diagonal positive matrix 
 

}{ 222
1 kknkikkk diagD σσσ =          (20) 

 
Accordingly, the variance factors can be grouped, for 
example, to associate the pseudorange measurements with 
the same satellite in a group within these n epochs in (19).  
Rather than for (18) as a whole, one usually runs a 
sequential solution. Without giving the detailed algorithm 
derivation, it here relies upon the VCE for the individual 
groups in a sequential LS fashion analogous to (17). The 
accumulative variance factor is estimated as: 
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2σ̂    ( ,...2,1=i )           (21) 

 
where ikv  and ikr  denote the residual and redundant index 
of the i-th measurement at epoch k, respectively. Basically, 
the estimated 0x  from the past epoch will be integrated 
with the measurements at the current epoch as pseudo-
measurements.    
 
3. THE VCE IN KALMAN FILTERING 
 
The simplified algorithm in Section 2.2 is now introduced 
for the VCE in Kalman filtering since it is expected that a 
large number of measurement epochs could be available to 
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provide enough redundant measurements. The key is still 
to compute the redundancy contribution and the residuals 
of the measurements. These are not usual quantities 
explicitly given in Kalman filtering, but are referred to 
[Wang, 1997; Caspary, Wang, 1998]. 
 
3.1. The Kalman Filter 
A linear or linearized system with state-space notation is 
considered with the data available over a discrete time 
series },,,{ 10 Nttt  , which will often be simplified to 

},,1,0{ N . Without loss of generality, a deterministic 
system input vector will be removed from the expression. 
Hence, at any time instant k ( Nk ≤≤1 ) the system can 
be written as follows: 
 

)()()()()( 1111 −−+−−= kwkBkxkAkx      (22) 
)()()()( kkxkCkz ∆+=             (23) 

 
where )(kx  is the n state-vector; )(kz  is the p observation 
vector, )( 1−kw  is the m-process noise vector, )(k∆  is the 
p measurement noise vector; )( 1−kA  is the nn×  
coefficient matrix of )(kx ; )( 1−kB  is the 

mn × coefficient matrix of )(kw ; )(kC  is the np×  
coefficient matrix of )(kx  in the observation equation. 
The random vectors )( 1−kw  and )(k∆  are generally 
assumed to be Gaussian with zero-mean: 

))(,(~)( 11 −− kQoNkw  and ))(,(~)( kRoNk∆  with 
)( 1−kQ  and )(kR  positive definite, respectively. Further 

assumptions about the random noise are specified as 
follows: OjwiwCov =))(),(( , OjiCov =))(),(( ∆∆  and 

OjiwCov =))(),(( ∆  for ji ≠ . Commonly, one also 
assumes to have the initial mean and variance-covariance 
matrix )0(x  and )0(xxD  for the system state at the time 
epoch 0 available and to have )0(x  independent of 

)( 1−kw  and )(k∆  at any epoch k.  
 
Under the assumptions given above, the optimal estimate 

)(ˆ kx of )(kx  can straightforward be derived in the sense 
of unbiasedness and minimum variance. However, there is 
no necessity to provide any further detail here.   
 
3.2. An Alternate Prospect of Kalman Filter 
Let us analyze the stochastic information in Kalman 
filtering in a different way. The optimal estimate )(ˆ kx  of 

)(kx at the instant k is always associated with the 
stochastic information that may be divided into three 
independent groups: 
 

a. The observation noise )(k∆ , 
b. The system noise )1( −kw , 

c. The noise on the predicted )1/(ˆ −kkx  through 
)1(ˆ −kx , on which )}1(,),2(),1({ −k∆∆∆   and 

)}2(,),1(),0({ −kwww   are propagated into the 
current state vector. 

 
Traditionally, “b” and “c” will be considered together in 

)/(ˆ 1−kkx , where )/( 1−kk  means the one step 
prediction from time 1−k  to k . In fact, these three 
different error resources can be studied separately. Along 
with this line of thinking, the system model with (22) and 
(23) can be reformulated through three groups of the 
observation residual equations as follows [Wang, 1997; 
Caspary & Wang, 1998; Wang, 2008]: 
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where the independent (pseudo-)observation groups are 
defined by 
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with their variance-covariance matrices 
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         (26) 

 
where )( 1−kDxx  is the variance matrix of the estimated 
state vector )(ˆ 1−kx  at time 1−k . )(klx , )(klw  and 

)(klz  are the n-, m- and p-dimentional measurement or 
pseudo-measurement vectors, respectively. Usually, one 
has okw =)(0 . 
 
By applying the principle of least squares to (24)~(26), the 
identical )(ˆ kx  can be obtained for )(kx  as in Kalman 
filtering [Wang, 1997, 2008; Caspary & Wang, 1998]. 
 
This alternate formulation directly makes the measurement 
residual vectors available for error analysis. The 
measurement residual vectors are the following functions 
of the system innovation vector at each epoch 
 

)()()/()()( kdkKkkDkDkv xxllll xxxx
11 −= −     (27) 

)()()/()()()( kdkKkkDkBkQkv xx
T

ll ww
111 1 −−−= −   (28) 
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)(})()({)( kdEkKkCkv
zz ll −=     (29) 

 
where 
 

 )()()()/( 1111 −−−=− kAkDkAkkD T
xxxx  

               )1()1()1( −−−+ kBkQkB T   (30) 

)()()/()( kDkCkkDkK dd
T

xx
11 −−=    (31) 

)(ˆ)()()( 11 −−−= kxkAkzkd      (32) 

)()()/()()( kRkCkkDkCkD T
xxdd +−= 1              (33) 

 
The variance matrices for (27), (28) and (29) are 
 

→−−−= )()()()()( kCkAkDkAkD TT
xxv xlxl

111     

                  )()()()()( 111 −−− kAkDkAkCkD T
xxdd         (32) 

→−−= − )()()()()( kDkCkBkQkD dd
TT

v wlwl

111  

)()()( 11 −− kQkBkC      (33) 
)()}()({)( kRkKkCEkD

zlzlv −=          (34) 

 
In Kalman filter, )(kd  and )(kK  are called as the system 
innovation vector and the gain matrix, respectively. The 
measurement residuals are characterized as an uncorrelated 
series epochwise  
 

OjvivCov =)}(),({ ( ji ≠ )    (35) 
 
3.3. The Redundancy Contribution in Kalman 

Filtering 
The redundant index for each of the measurement 
components in )(kz  and )1( −kw  is given by 
 

iiz kKkCkr
i

)}()({)( −= 1      (36) 

iidd
TT

w kBkCkDkCkBkQkr
i

)]()()()()()([)( 111 1 −−−= −

      (37) 
 
under the assumption that )( 1−kQ  and )(kR  are 
diagonal. The total redundancy contribution of )(kl x  
cannot be decomposed to its individual redundant indices 
because their components are correlated in general. 
 
For three independent measurement groups as in (25), the 
individual group redundant indices are: 
 

)]()()()()()([)( kCkDkCkAkDkAtracekr dd
TT

xxx
111 −−−=

       (38) 
)]()()()()()([)( 11 −= − kBkCkDkCkBkQtracekr dd

TT
w (39) 

)]()([)( kKkCItracekrz −=      (40) 
 
One can easily prove: 

 
)()()()()( kpkrkrkrkr zwx =++=    (41) 

 
where )(kp  is the number of the total redundant 
measurements at epoch k and equal to the dimension of the 
real measurement vector )(kz . 
 
3.4. The Variance Component Estimation 
For an arbitrary epoch k , the individual variance factors 
for )(kz  can be estimated by 
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The accumulative individual variance factor in )(kz can be 
estimated from the past k epochs: 
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For )( 1−kw , the similar formulas can be given by: 
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4.  VCE in static GPS SPP 
 
The VCE approach proposed in this paper is suitable for 
situations where the individual measurements are 
uncorrelated. In GPS SPP this is an appropriate 
assumption for the raw measurements and combinations 
of two different types of measurements, for example the 
ionosphere free combination of L1 C/A code and L1 
carrier phase. 
 
A software utility has been implemented for the 
algorithms described in Section 2 for GPS SPP 
processing. A 2-hour dataset from a receiver collected on 
July 1, 2008 is used to show the numerical performance. 
The ionosphere free combination using L1 C/A and L1 
carrier phases was used as the measurements. The precise 
orbits and clocks were employed. The slant troposphere 
delay was corrected with a Saastamonien model for 
zenith troposphere delay and a Neil mapping function.  
An integrated solution for the whole dataset was obtained 
by applying the least squares method as in Figure 1.  
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The initial variance matrix for all of the measurements 
was assigned to be identity that is equivalent to a 
measurement accuracy of 1m. The variance components 
were grouped against the satellite elevation angles of 
every 5-degree and 10-degree intervals, respectively. The 
upper plot in Fig. 1 shows the VCE results from the 
rigorous Helmert algorithm tagged as “HM” and from the 
simplified algorithm tagged as “SM”. The simplified 

algorithm VCE fits closely to that from the rigorous 
Helmert algorithm. The lower plot in Fig. 1 gives the 
number of the total available measurements 
corresponding to the individual elevation intervals. For 
further analysis on these results, an exponential curve can 
be fitted to study how these variances are related to the 
elevation angles.    

 

Fig. 1: VCE: LS Simplified vs. Helmuts 
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Fig. 2: The standard deviations from sequential LS VCE at the 5th run  



Wang et al. Simplified Algorithms of Variance Component Estimation for  
Static and Kinematic GPS Single Point Positioning                                                                                         

49 

 

The sequential algorithm from Section 3.2 was applied to 
the same dataset in terms of the variance components 
with respect to individual satellites. Here the initial 
variances were assigned to be identity for each of the 
measurements at each epoch.  The estimated global 
variances were taken as the next initial variances to 
iteratively run the data processing five times for the 
purpose of the analysis. Fig. 2 gives a group of VCE 
results with individual accumulative standard deviations 
corresponding to the available satellites and their 
elevation angles from the 5th iteration whilst Fig. 3 shows 
the global posteriori VCE results for 6 of 12 available 
satellites from 5 iterations.  
 
The purpose of this example is to show the convergence 
of the proposed VCE algorithm. As can be seen in Fig. 3, 
each of the estimated standard deviation factors has 
converged well. However, the results in Fig. 3 do not 
exhibit dependency on the elevation angles for long time 
periods as one might expect because the variance 
components were selected for each of the satellites 
without having considered the effects of their elevation 
changes. An alternate way is to set up the elevation 
interval in which the measurements are assumed to have 
the same accuracy and to perform VCE not only for each 
of the measurements over the entire time duration, but 
also taking different elevation angle intervals into 
account. 
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Fig. 3: The results from sequential LS VCE[m] 
 
5. VCE in kinematic GPS SPP 
 
A kinematic dataset (courtesy of Applanix Corp.) with 
the date rate 1Hz for 95 minutes on March 08, 2009 from 
Richmond Hill, Ontario, was analyzed using the VCE 
approach in Section 3. Similarly to the static dataset, the 
ionosphere free combination using L1 C/A and L1 carrier 
phases were used as the measurements. The troposphere 
delay was corrected with a Neil mapping function applied 
to a Saastamonien model for the zenith troposphere delay. 
The precise orbits and clocks were employed. 
 
A position-velocity filter was used to estimate the 
receiver position, velocity, receiver clock bias and drift. 
Three acceleration components and the receiver clock 
drift change are modeled as the process noise vector. The 
variance components for each of the satellites and each of 
the process noise factors were estimated. All of the initial 
values were assigned to be identity that is equivalent to a 
priori accuracy of 1m, and process noise standard 

deviations of 1m/s2 for three accelerations and 1s/s2 for 
the clock drift change. The estimated global variances 
were taken as the next initial variances to iteratively run 
the data processing five times. Fig. 4 shows the VCE 
results. The results for 13 available satellites have 
converged well (Fig. 4(a)), so have the ones for three 
acceleration components and the change of the clock drift 
for the receiver position as process noises (Fig. 4(b)).  
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Fig. 4: The VCE results from kinematic SPP 

 
However, the estimated variance for one of the process 
noise factors, the change of the clock drift, is relatively 
small because the used receiver does not exhibit a 
significant clock drift variation. This may result in the 
divergence of the estimated variance while its redundancy 
contribution becomes increasingly small if the variance 
factor becomes very small (the equivalent of a high 
leverage random variable as in linear regression). In order 
to avoid a potential divergence of this type of variance 
component, once can simply exclude it from the VCE 
process by fixing its value. Fig. 5 summarized the results 
with the fixed standard deviation ( 095.0=

tρδσ  ) for the 
change of the clock drift. No significant differences can 
be found between Fig. 4 and Fig. 5. 
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Fig. 5: The VCE results from kinematic SPP 
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Fig. 6: The standard deviations from Kalman filter VCE at the 5th run 

 

 

 
 
6. Remarks and conclusions 
 
This manuscript proposed simplified algorithms for the 
static and kinematic GPS SPP wherever the 
measurements are not correlated. The results from real 
datasets were given to show their feasibility and 
practicality. With them one can easily group the variance 
components based on the nature of the applications and 
user’s objectives. 
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First, the proposed algorithm for the sequential least-
squares method allows dealing with a low dimensioned 
parameter vector. Second, the algorithm formulated for 
VCE in Kalman filtering has its advantages that directly 
connect the error analysis with the measurement residuals 
other than the system innovation vector. This offers the 
capability to estimate not only the variance components 
for the measurement vector, but also the variance 
components for the process noise factors. Based on the 
fact that GPS data processing typically comprises a high 
volume of redundant measurements, the proposed 
algorithms are efficient without requiring a lot of 
computation and have good convergence properties. The 
posteriori variance components can be used either to 
evaluate the overall mission performance and/or create a 
practical adaptive process either in the sequential least-
squares method or in a Kalman filter.  
 
Future research will address the development of practical 
algorithms for the estimation of variance and covariance 
components that can be applied to single differenced PPP 
models and double differenced RTK GPS models, 
especially for kinematic applications using a Kalman 
filter. 
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