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GNSS Networks in Algebrai Graph TheoryA. LannesCNRS/SUPELEC/Univ Paris-Sud∗ (Frane)S. GrattonCNES/OMP/DTP∗ (Frane)Abstrat. A new approah to GNSS networks is pre-sented. Here, this approah is restrited to the ase wherethe user handles the network data for his own objetives:the satellite-lok biases are not estimated. To deal withthe general ase where some data are missing, the orre-sponding theoretial framework appeals to some elemen-tary notions of algebrai graph theory. As lari�ed in thepaper, the notion of losure delay (CD) then generalizesthat of double di�erene (DD). The body of the paperis devoted to the impliations of this approah in GNSSdata proessing. One is then led to de�ne loal vari-ables, whih depend on the suessive epohs of the timeseries, and a global variable whih remains the same allover these epohs, with however possible state transitionsfrom time to time. In the period de�ned by two suessivetransitions, the problem to be solved in the least-squaresense is governed by a linear equation in whih the keymatrix has an angular blok struture. This struture iswell suited to reursive QR fatorization. The state tran-sitions indued by the variations of the GNSS graph arethen handled in an optimal manner. Solving the integer-ambiguity problem via LLL deorrelation tehniques isalso made easier. At last but not the least, in entralizedmode, this approah is partiularly well suited to qualityontrol.Keywords. GNSS, DGPS, RTK. Centralized di�erenes.Quality ontrol, DIA. Ambiguity resolution, LLL.1 IntrodutionWhen proessing times series of global positioning data,one is led to introdue `loal variables' uk whih dependon the suessive epohs tk of the time series to be pro-essed, and a `global variable' v whih remains the sameall over these epohs with however possible state transi-
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tions from time to time. For example, the latter ourwhen some reeiver-satellite signals appear or disappear.In the period de�ned by two suessive transitions, theproblem to be solved in the least-square (LS) sense isgoverned by a system of linear equations of the form
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A1u1 +B1v = b1
A2u2 +B2v = b2...
Akuk +Bkv = bk

(1)The de�nition of the variables uk and v depends on theGNSS system under onsideration. The omponents of ukand v are real numbers, some omponents of v being in-tegers: the integer ambiguities of the problem.In matrix terms, Eq. (1) an be displayed as follows:










A1 B1

A2 B2

· · ·
...

Ak Bk





















u1

u2...
uk











=











b1
b2...
bk











[

v
]

(2)As spei�ed in Set. 6.3 of Björk 1996 (see also Goluband van Loan 1989, Bierman 1977), the angular blokstruture of matrix [A B] is well suited to reursive QR fa-torization. When dealing with large-sale problems, nu-merial auray an thereby be improved.More interestingly, the orresponding tehniques proveto be very e�ient for GNSS data proessing and qual-ity ontrol; see, e.g., Tiberius (1998), and Loehnert etal (2000). This is partiularly the ase for the GNSS en-tralized approahes (see Lannes and Gratton 2008). Inpartiular, in the quality-ontrol proedures, the identi�-ation of biases is then made easier. The approah pre-sented in Lannes and Gratton (2008) was restrited to thesimple ase of ontinuous observations in RTK mode witha loal-sale single baseline (see, e.g., Table 1 in Feng andLi 2008). The aim of the present paper is to extend thisapproah to the general ase of the GNSS networks.



Lannes and Gratton: GNSS networks in algebrai graph theory 53Other approahes have already been developed in this�eld. In partiular, to raise the integer ambiguities ina simple manner, appropriate linear ombinations of theoriginal signals an be onsidered. The orrespondingwidelane tehniques are very popular; see, e.g., Feng andLi (2008). This pointed out, when di�erent approahesrefer to the same physial models, the results must ofourse be the same. The best approah is then the mostgeneral and the most e�ient. For example, with regardto integer-ambiguity resolution, the deorrelating prop-erties of the widelane tehniques are not optimal (seeTeunissen, 1997). Likewise, the priniple of the quality-ontrol proedures must be well embedded in the theo-retial framework of the seleted approah.2 Observational equationsThe global positioning tehniques are based on the fol-lowing observational equations. For eah frequeny ν, foreah reeiver-satellite pair (i, j) ≡ (ri , sj), and at eahepoh t, the arrier-phase and ode data are respetivelyof the form (see, e.g., Merier and Laurihesse 2008)
Φν,t(i, j) = ρt(i, j) + Tt(i, j) − ανIt(i, j)
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Pν,t(i, j) = ρt(i, j) + Tt(i, j) + ανIt(i, j)
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(4)In these equations, whih are expressed in length units,
ρt(i, j) is the reeiver-satellite range: the distane be-tween satellite sj (at the time t − τ where the signal isemitted) and reeiver ri (at the time t of its reeption);
Tt(i, j) and It(i, j) are the tropospheri and ionospheridelays, respetively. Here,
αν = ν2

1/ν
2 = λ2

ν/λ
2
1 (5)The λν 's denote the wavelengths of the arrier waves.Note that αν1 = 1. The integers Nν(i, j) are the integerarrier-phase ambiguities: Nν(i, j) ∈ Z.The instrumental delays and lok errors that for a givenepoh depend only on ri are lumped together in the `ex-tended reeiver-lok biases' f (r)

φ;t(i), f (r)
p;t (i). Likewise,the instrumental delays and lok errors that for a givenepoh depend only on sj are lumped together in the `ex-tended satellite-lok biases' f (s)

φ;t(j) and f (s)
p;t (j).Similarly, g(s)

φ;t, g(r)
p;t(i) and g(s)

φ;t(j), g(s)
p;t(j) denote the biasesindued by the time group delays.In this model, whih will be re�ned in Set. 9 for qualityontrol (see Eq. (112)), the expetation values of the noiseterms εφ;ν,t(i, j) and εp;ν,t(i, j) are supposed to be nought.

In this paper, we also assume that these noises are notmutually orrelated.A priori, on the grounds of Eqs. (3) and (4), two op-tions are to be onsidered. In the �rst one, the extendedsatellite-lok biases f (s)
φ,t(j) and f (s)

p,t (j) are not estimated.This option is well suited to a user who deals with thenetwork data for his own objetives. In the seond one,these biases are to be estimated; they are broadastedto the network users for their preise point positioning(PPP). The present paper, whih ompletes the originalontribution of Lannes (2008), is devoted to the �rst op-tion only. The seond will be dealt with in a forthomingontribution.For our present purposes, we write the observational equa-tions (3) and (4) in the form
Φν,t(i, j) = ρt(i, j) + Tt(i, j) − ανIt(i, j) + λνNν(i, j)

+ ϕ
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(7)where
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(9)3 Preliminary notionsWe �rst introdue the notion of `GNSS grid' and the re-lated onept of `GNSS graph' (Set. 3.1). We then de-�ne the GNSS spaes to be onsidered (Set. 3.2). Thefuntions lying in these spaes an be deomposed in a`di�erential manner.' The related notion is introdued inSet. 3.3. The observational equations are then rewrittenaordingly (Set. (3.4).3.1 GNSS grid and GNSS graphLet ϑ(i, j) be a funtion suh as Φν,t(i, j) or ρt(i, j) forexample. Suh a funtion takes its values on the pointsof a retangular grid G0. When the GNSS devie in-ludes m reeivers and n satellites, G0 has m lines and
n olumns. More preisely, as some data may be missing,the values of ϑ are de�ned on ne grid points with
ne ≤ mn (10)In the example presented in the upper part of Fig. 1,these points are surrounded by a small irle. They form
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Figure 1: GNSS grid G and GNSS graph G.In the example shown here, the GNSS graphinludes 7 verties (3 reeivers and 4 satellites)and nine edges; m = 3, n = 4, ne = 9. Thedata orresponding to the reeiver-satellitepairs (r1, s2), (r2, s3) and (r3, s1) are missing.a subgrid of G0 denoted by G: the GNSS grid. (Notethat G impliitly depends on t.) As illustrated in thelower part of this �gure, the points (i, j) of G orrespondto the `edges' (ri , sj) of the GNSS graph to be onsidered;
E denotes the set of its edges; ne is their number. Thereeivers and the satellites involved in the de�nition ofthese edges de�ne the `verties' of this graph; V denotesthe set of its verties, and nv their number:
nv = m+ n (11)A GNSS graph G is therefore de�ned by the pair (V , E):
G ≡ G(V , E)Suh a graph is onneted (e.g., Biggs 1996): given anytwo verties of V , there exists a path of edges of E on-neting these verties. When ne = mn, the GNSS graphis said to be `full.' Note that a full GNSS graph is not`omplete:' mn < nv(nv − 1)/2.3.2 Edge-delay spaesA funtion ϑ taking its values on G, and thereby on E , anbe regarded as a vetor of the `edge-delay spae' E ≡ R

ne .The values of ϑ on G are then regarded as the omponentsof ϑ in the standard basis of this spae. The norm in Eis therefore de�ned by the relation
‖ϑ‖2

E =
∑

(i,j)∈G

|ϑ(i, j)|2 (12)We now adopt the notation aording whih Ψψ,t standsfor Φν,t if ψ = (φ; ν), or for Pν,t if ψ = (p; ν). Thevariane-ovariane matrix of Ψψ,t is denoted by [Vψ,t].Let us then onsider a funtion ϑ of type ψ, for example

a phase observational residual. At epoh t, the quadratisize of suh a funtion is de�ned by the relation
‖ϑ‖2

ψ,t := [ϑ]T[Vψ,t]
−1[ϑ]

≡ (ϑ · V −1
ψ,t ϑ)

(13)Here, [ϑ], is the olumn matrix whose entries are theomponents of ϑ on G; ( · ) is the inner produt of theEulidean spae E. The spae of funtions ϑ with innerprodut
〈ϑ′ | ϑ〉ψ,t := (ϑ′ · V −1

ψ,t ϑ) (14)is denoted by Eψ,t. This spae an be referred to as the`edge-delay spae' of type ψ at epoh t.Let us now introdue the following Cholesky fatorizationof the inverse of [Vψ,t]:
[Vψ,t]

−1 = [Uψ,t]
T[Uψ,t] (15)Here, [Uψ,t] is an invertible upper-triangular matrix. Set-ting

ϑE
ψ,t := Uψ,t ϑ (16)we have, from Eqs. (13) and (15),

‖ϑ‖2
ψ,t = ‖ϑE

ψ,t‖2
E (17)3.3 Di�erential deomposition of theedge-delay funtionsTo introdue the reader to this notion, we �rst restritourselves to the speial ase where the GNSS graph isfull: G = G0 (ne = mn). The extension to the generalase derives from the analysis presented in Set. 4.2.In the speial ase under onsideration (see Fig. 2), thenotion of `single di�erene' (SD) is assoiated with thefollowing operation on G0:

ϑ[sd](i, j) := ϑ(i, j) − ϑ(1, j) (18)Here, r1 is the seleted referene reeiver: ϑ[sd] vanisheson the �rst line of G0. Let s1 now be the referenesatellite. The notion of `double di�erene' (DD) is thenthrough the relation
ϑ[dd](i, j) := ϑ[sd](i, j) − ϑ[sd](i, 1) (19)By onstrution, ϑ[dd] vanishes on the �rst line and onthe �rst olumn of G0 (see Fig. 2). From Eq. (18), wehave
ϑ[dd](i, j) = [ϑ(i, j) − ϑ(1, j)] − [ϑ(i, 1) − ϑ(1, 1)]

= ϑ(i, j) − ϑ(i, 1) − [ϑ(1, j) − ϑ(1, 1)]As a result, any edge-delay funtion ϑ an be deomposedin the form
ϑ(i, j) = ϑ[r](i) + ϑ[s](j) + ϑ[dd](i, j) (20)
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Figure 2: Full GNSS grid. In the speialase where the GNSS graph is full, the double-di�erene funtion ϑ[dd] is de�ned by its valueson the (m− 1)(n − 1) points shown here as reddots; see Eq. (19). By onstrution, ϑ[dd] van-ishes on the other points shown as blak dots.where
ϑ[r](i) := ϑ(i, 1) (21)and
ϑ[s](j) := ϑ(1, j) − ϑ(1, 1) (22)As it is the ase here, throughout this paper, the referenesatellite, here s1, de�nes the origin of the reeiver andsatellite delays: ϑ[s](1) = 0.The integer-valued funtion Nν(i, j), in partiular, antherefore be deomposed in the form
Nν(i, j) = N [r]

ν (i) +N [s]
ν (j) +N [dd]

ν (i, j) (23)where
N [r]
ν (i) := Nν(i, 1) (24)and

N [s]
ν (j) := Nν(1, j) −Nν(1, 1) (25)3.4 Referene equationsAording to Eq. (23), the phase equation (6) an beexpanded in the form
Φν,t(i, j) = ρt(i, j) + Tt(i, j) − ανIt(i, j)
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φ;ν,t(1) = 0. The quantities
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φ;ν,t(j) for j 6= 1 are then regarded as realvariables without any physial interest. The integer vari-ables are then the DD ambiguities N [dd]
ν (i, j) for i 6= 1and j 6= 1; see Fig. 2. The other variables, those induedby the terms ρt, Tt and It via the linearization of theproblem, are introdued in Set. 5.The ode equation (7) is then written in the form

Pν,t(i, j) = ρt(i, j) + Tt(i, j) + ανIt(i, j)

+ ϕ
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(29)where (see (Eq. (9))
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(30)Note that ϕ[s]
p;ν,t(1) = 0. The quantities ϕ[r]

p;ν,t(i) and
ϕ

[s]
p;ν,t(j) for j 6= 1 are other real variables of the prob-lem.4 Theoretial frameworkWe �rst introdue some elementary notions of algebraigraph theory (Set. 4.1). We then establish the generalproperties underlying our approah (Set. 4.2).4.1 GNSS spanning tree and loopsAs illustrated in Fig. 3, a spanning tree of G ≡ G(V , E)is a subgraph Gst ≡ G(V , Est) formed by nv verties and
nv − 1 edges, with no `yle' in it. Here, `yle' is used inthe sense de�ned in algebrai graph theory (Biggs 1996).In the GNSS ommunity, to avoid any onfusion with theusual notion of wave yle, it is not forbidden to substi-tute the term of `loop' for that of `yle.' In this ontext,the number of loops de�ned through a given �xed (butarbitrary) spanning tree is the number of edges of E thatdo not lie in Est . These edges,
c(q) := (ri(q) , sj(q)) (31)are said to be `loop-losure edges' (see Fig. 3). Theirnumber is denoted by nc:
nc = ne − (nv − 1) (nv = m+ n, ne ≤ mn) (32)To selet a GNSS spanning tree, the edges of E are �rstordered somehow. The orresponding sequene is of theform
e(q) := (riq , sjq) (q = 1, . . . , ne)The algorithm is then the following: set q = 0, nst = 0,and Est = ∅ (the empty set). Then,
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Figure 3: GNSS spanning tree and loops. Theblak edges of G (the graph introdued in Fig. 1)are the edges of the seleted spanning tree Gst.The points of the orresponding subgrid Gst areshown as blak dots. The remaining points of G(the red dots of G) orrespond to the loop-losureedges (the red edges of G). We then have one loopof order 4, and 2 loops of order 6: (r2 , s4 , r1 , s1),
(r3, s3, r1, s1, r2, s2) and (r3, s4, r1, s1, r2, s2).1. If nst = nv − 1, terminate the proess; otherwise,set q set

= q + 1.2. When the verties of e(q) are not onneted viaedges of Est, set Est
set

= Est ∪ {e(q)} and nst
set

= nst + 1;then go to step 1.The subgrid of G orresponding to the edges of Est isdenoted by Gst. By onstrution, the spanning tree thusfound depends on how the edges are ordered.Example 4.1. To show, in onrete manner, how thisalgorithm works, we now onsider its ation on the grid Gof Fig. 3, its points being ordered line by line.The points of the �rst line of G, the points (1, 1), (1, 3)and (1, 4), de�ne the �rst 3 edges of Est:
Est

set

= {(r1, s1), (r1, s3), (r1, s4)} (nst = 3)By onstrution, four verties of G are then onneted:
r1, s1, s3 and s4.The next point of G, the �rst point of line 2, is assoiatedwith edge (r2, s1). As r2 and s1 are not onneted viaedges of Est, this edge annot be not a loop-losure edge.We therefore set
Est

set

= Est ∪ {(r2, s1)} (nst = 4)Five verties are then onneted: r1, s1, s3, s4 and r2.The next point of line 2 is assoiated with edge (r2, s2).As r2 and s2 are not onneted via edges of Est, we set
Est

set

= Est ∪ {(r2, s2)} (nst = 5)Six verties are then onneted: r1, s1, s3, s4, r2 and s2.

The next point of G, the last point of line 2, is assoiatedwith edge (r2, s4). As r2 and s4 are already onneted,this edge loses a loop with some edges of Est. As a result,this edge is the �rst loop-losure edge: c(1) = (r2, s4); seeEq. (24). The orresponding loop, (r2 , s4 , r1 , s1), is oforder 4: it inludes 4 edges (see Fig. 3).The next point of G, the seond point of line 3, is asso-iated with edge (r3, s2). As r3 and s2 are not onnetedvia edges of Est, we then set
Est

set

= Est ∪ {(r3, s2)} (nst = 6)As all the verties of E are then onneted, the algorithmstops: Est is then ompletely de�ned.The remaining points of line 3 therefore de�ne two loop-losure edges: c(2) = (r3, s3) and c(3) = (r3, s4). Theseloops are of order 6; see Fig. 3.Remark 4.1. In the speial ase of the graph shown inFig. 3, there exist spanning trees for whih the three loopsare of order 4. In general, the hoie of the spanning treeis arbitrary; see however Remark 4.2.Remark 4.2. As expliitly shown in Set. 7.4.3, to han-dle some `graph transitions,' one is led to order the pointsof G in a more subtle manner. To write down the al-gorithm yielding the orresponding spanning tree, thereader is invited to build the spanning trees de�ned inthe example given in that setion (Example 8.1).Remark 4.3. In the speial ase examined in Set. 3.3,the GNSS graph is full: G = G0. The points of Gst ob-tained by spanning G0 line by line are then the n pointsof its �rst line, and the remaining m−1 points of its �rstolumn (see Fig. 2). The other points, whih form a sub-grid with m−1 lines and n−1 olumns, then orrespondto loop-losure edges. All the loops are then of order four.4.2 Referene propertiesAording to the properties established in this setion,the analysis presented in Set. 3.3 an be extended to thegeneral ase of GNSS networks with missing data. We�rst introdue the key notion of `vertex-delay spae.'Vertex-delay spae. The funtions of the form
ϕ(i, j) = ϕ[r](i) + ϕ[s](j) (with ϕ[s](1) = 0) (33)form a subspae of the edge-delay spae E. This sub-spae, denoted by F , an be referred to as the vertex-delay spae. By de�nition, the `reeiver-delay spae' E[r]is the spae of funtions ϕ[r](i). Similarly, the `satellite-delay spae' E[s] is the spae of funtions ϕ[s](j) suh that
ϕ[s](1) = 0. By onstrution, F is the diret sum of E[r]and E[s]:
F = E[r] + E[s] (34)
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dimE[r] = m dimE[s] = n− 1 (35)and
dimF = dimE[r] + dimE[s] = nv − 1 (36)Property 1. Given any edge-delay funtion ϑ taking itsvalues on G, for eah spanning tree Gst of G, there existsa unique set of reeiver and satellite delays
Θ :=

{

ϑ[r](i)
}m

i=1
∪
{

ϑ[s](j)
}n

j=1
with ϑ[s](1) = 0suh that ϑ(i, j) = ϑ[r](i) + ϑ[s](j) on the points of Gst.More onretely, the following proess provides these de-lays in a reursive manner.∗Reursive di�erential proess. Set ϑ[s](1) = 0; then,span the points of Gst line by line (see Fig. 3). For eahpoint (i, j) thus enountered, then proeed as follows.If ϑ[s](j) has already been �xed, and ϑ[r](i) is not �xedyet, set

ϑ[r](i) = ϑ(i, j) − ϑ[s](j)If ϑ[r](i) has already been �xed, and ϑ[s](j) is not �xedyet, set
ϑ[s](j) = ϑ(i, j) − ϑ[r](i)To obtain all these delays, Gst is to be spanned in thisway as many times as required. The delay set Θ is unique.Indeed, applied to a funtion ϑ vanishing on the pointsof Gst, this reursive proess provides nought delays.It is important to point out that the only operations in-volved in this proess are di�erenes. As a result, if ϑ isan integer-valued funtion, the reeiver and satellite de-lays ϑ[r](i) and ϑ[s](j) lie in Z.Example 4.2. To illustrate this reursive di�erentialproess, we now follow its ation on the grid Gst of Fig. 3.As ϑ[s](1) is nought, we then obtain suessively:
ϑ[r](1) = ϑ(1, 1) − ϑ[s](1) = ϑ(1, 1)

ϑ[s](3) = ϑ(1, 3) − ϑ[r](1)

ϑ[s](4) = ϑ(1, 4) − ϑ[r](1)

ϑ[r](2) = ϑ(2, 1) − ϑ[s](1) = ϑ(2, 1)

ϑ[s](2) = ϑ(2, 2) − ϑ[r](2)

ϑ[r](3) = ϑ(3, 2) − ϑ[s](2)Closure delays. Aording to Property 1, the quantities
ϑ[cd](i, j) := ϑ(i, j) −

[

ϑ[r](i) + ϑ[s](j)
] (37)

∗This type of reursive proess was introdued for the �rst timein `phase-losure imaging;' see Set. 2E in Lannes (2005).

vanish on the points of Gst. The values of ϑ[cd] of inter-est are therefore de�ned on the remaining points of G,i.e., on the nc loop-losure edges of G (see Fig. 3 andEq. (32)). These quantities an therefore be referred toas the `losure delays' of ϑ, hene the notation d or CD.Remark 4.4. The notion of losure delay generalizesthat of double di�erene; see Eq. (20), Figs. 2 and 3. Infat, the CD's are algebrai sums of SD's. For example,with regard to Example 4.2, the losure delay ϑ[cd](3, 4)an be displayed as follows (see Fig. 3):
[ϑ(3, 4)−ϑ(1, 4)] + [ϑ(1, 1)−ϑ(2, 1)] + [ϑ(2, 2)−ϑ(3, 2)]Property 2. Any edge-delay funtion ϑ taking its valueson G an be deomposed in the form
ϑ(i, j) = ϑ[r](i) + ϑ[s](j) + ϑ[cd](i, j)For a given spanning tree, this deomposition is unique.This property is a simple transription of Eq. (37). Theuniqueness of this deomposition results from Property 1.Example 4.3. With regard to the GNSS grid of Fig. 3,let us onsider (for simpliity) the ambiguity funtion
N :

2 ∗ 1 −1

−1 1 ∗ 1

∗ −2 2 −1The reursive di�erential proess of Example 4.2 appliedto this funtion yields the following omponents of N :
N [r] :

2 ∗ 2 2

−1 −1 ∗ −1

∗ −4 −4 −4

N [s] :

0 ∗ −1 −3

0 2 ∗ −3

∗ 2 −1 −3

N [cd] :

0 ∗ 0 0

0 0 ∗ 5

∗ 0 7 6Closure-delay spae.The funtions ϑ thatvanish onGstform a subspae of E denoted by E[cd]. This spae is re-ferred to as the `losure-delay spae.' For example, when
G is full, E[cd] is the orresponding DD spae E[dd]. FromEq. (32), we have
dimE[cd] = nc (38)Aording to Property 2, E is the `oblique diret sum' of
E[r], E[s] and E[cd]:
E = E[r] + E[s] + E[cd] (39)



Lannes and Gratton: GNSS networks in algebrai graph theory 585 Statement of the problemBy taking aount of Property 2, the phase equation (26)is then written in the form
Φν,t = ρt + Tt − ανIt + λνN

[cd]
ν + ϕ̃φ;ν,t + εφ;ν,t (40)where ϕ̃φ;ν,t := ϕ̃

[r]
φ;ν,t + ϕ̃

[s]
φ;ν,t.Likewise, in terms of funtions taking their values ongrid G, the ode equation (29) is now read as follows:

Pν,t = ρt + Tt + ανIt + ϕp;ν,t + εp;ν,t (41)Here, ϕp;ν,t := ϕ
[r]
p;ν,t + ϕ

[s]
p;ν,t.As spei�ed in this setion, the problem an then bestated in the terms of Eq. (1); see the ontext of thatequation.At this level, depending on the network geometry, someonstraints may be introdued. For example, when thelength of baseline ri1↔ ri2 is su�iently small, the on-straints Tt(i1, j) = Tt(i2, j) and It(i1, j) = It(i2, j) are tobe imposed. In most ases enountered in pratie, thevariablesρt(i, j), Tt(i, j) and It(i, j) are linearly expandedin terms of other variables. In the general ase, some ofthe latter depend on t, while others not; see, e.g., Fengand Li (2008). In other terms, the �rst ones are `loal'variables, while the others are `global' with however pos-sible transitions from time to time.In the approah presented in this paper, the loal vari-ables ϕ̃φ;ν,t and ϕp;ν,t are regarded as partiular variablesof the problem. The other loal variables, suh as thoseinvolved in the linearization of ρt and Tt, are lumped to-gether in some variable ut. In general, the global variable

v inludes two bloks:
v =

[

vb
va

] (42)The entries of va are the integer CDambiguitiesN [cd]
ν (i, j).The entries of vb are simple real numbers. For example,when the position of some reeivers and It(i, j) are ex-panded as polynomial funtions of t, the entries of vb arethe orresponding unknowns. This is also the ase whenorbital parameters are to be retrieved.As is well known, in a �rst step (see Set. 8 for the se-ond), the integer variables are also dealt with as `�oatvariables,' i.e., as simple real variables.Let us denote by S̄k := {s1 , s2 , . . . , sn̄k} the series ofsatellites involved in the proess until epoh tk inluded.A given satellite may disappear and reappear in the samerun. Suh a satellite is then regarded as a new satellite. Inother words, whenever this ours, a new satellite is addedat the end of this series. The nk satellites of epoh tk forma subset Sk of S̄k: nk ≤ n̄k.To introdue the reader to what is essential, we �rst re-strit ourselves to the ase where the GNSS graph G does

not hange in the urrent run [t1, . . . , tκ, . . . , tk]: no statetransition ours in this interval. In this ase, we of oursehave nk = n̄k.5.1 Optimization prinipleIn the ontext previously de�ned, the observational equa-tions (40) and (41) therefore lead to equations of the form
Ψ̃ψ,κ = Aψ,κuκ + Bψ,κv + ϕψ,κ + εψ,κ (43)with ϕψ,κ in F . For larity, κ stands for tκ; Ψψ,κ thusstands for Φν,κ if ψ = (φ; ν), or for Pν,κ if ψ = (p; ν);

Aψ,κ and Bψ,κ are linear operators. The notation Ψ̃ψ,κmeans that the zero-order terms of this linearization aretaken into aount; see, e.g., Eqs. (14), (17) and (18)in Lannes and Gratton (2008). Here, the variable ϕψ,κorresponds to the quantities ϕ̃φ;ν,t and ϕp;ν,t of Eqs. (40)and (41), respetively.The problem is to minimize the objetive funtional (seeEq. (13))
F(u1, . . . , uκ, . . . , uk, v; . . . , ϕφ;ν,κ, ϕp;ν,κ , . . .)

:=

k
∑

κ=1

∑

ν

ψ=(p;ν)
∑

ψ=(φ;ν)

‖θψ(uκ, v) − ϕψ,κ‖2
ψ,κ

(44)where, from Eq. (43),
θψ(uκ, v) := Ψ̃ψ,κ − (Aψ,κuκ + Bψ,κv) (45)For eah frequeny, the sum in ψ inludes two terms, aphase term and a ode term, hene the notation adoptedin Eq. (44).In our approah, this minimization is performed in twosteps. The �rst step is to minimize F in the variables
ϕφ;ν,κ and ϕp;ν,κ for κ = 1, . . . , k, and for eah κ, forall ν. We now larify this point.Given any ϑ in E, in partiular for θψ(uκ, v), let us set
ϕo
ψ,κ := argmin

ϕ∈F
‖ϑ− ϕ‖2

ψ,κ (46)As illustrated in Fig. 4., ϕo
ψ,κ is the point of F losestto ϑ, the distane being that indued by the norm de-�ned on Eψ,κ; ϕo

ψ,κ is therefore the projetion of ϑ on Fin Eψ,κ:
ϕo
ψ,κ := Pψ,κϑ (47)Let us now denote by P ′

ψ,κ the projetion (operator) of Eψ,κonto the orthogonal omplement of F :
P ′
ψ,κϑ := ϑ− Pψ,κϑ (48)From Eq. (44), the seond step, the heart of the problem,is therefore to minimize the redued funtional
Fr(u1, . . . , uκ, . . . , uk, v)

:=

k
∑

κ=1

∑

ν

ψ=(p;ν)
∑

ψ=(φ;ν)

∥

∥P ′
ψ,κθψ(uκ, v)

∥

∥

2

ψ,κ

(49)
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V −1
ψ,κϑ

′
ψ,κ

r

ϑ′ψ,κ

r

ϑr

ψ,κ

0

r

ϕo
ψ,κ

r
ϑ

rϑ[cd]

E, Eψ,κ

F

F ′

F ′
ψ,κFigure 4: Centralization and redution. In this ge-ometrial illustration, Eψ,κ is the edge-delay spaeof type ψ at epoh tκ (see Set. 3.2); F is thevertex-delay spae; F ′

ψ,κ is the orthogonal omple-ment of F in Eψ,κ, whereas F ′ is the orthogo-nal omplement of F in the Eulidean spae E.The funtions lying in F ′ satisfy the `entralizationproperty' 4; ϕo
ψ,κ is the orthogonal projetion of ϑon F in Eψ,κ, whereas ϑ′

ψ,κ is the orthogonal pro-jetion of ϑ on F ′

ψ,κ: ϑ′

ψ,κ = ϑ − ϕo
ψ,κ. Aordingto Property 3, V −1

ψ,κϑ
′

ψ,κ lies in F ′. By de�nition,
ϑr

ψ,κ is equal to Uψ,κϑ′

ψ,κ where Uψ,κ is de�ned viaEq. (15). The norm of ϑ′

ψ,κ in Eψ,κ is equal tothat of ϑr

ψ,κ in E; see Eqs. (56) and (12). As justi-�ed in Set. 5.3, ϑr

ψ,κ is said to be the `ψ-reduedform' of ϑ. Note that V −1
ψ,κϑ

′

ψ,κ = UT
ψ,κϑ

r

ψ,κ. In thespeial ase where the variane-ovariane matrixof Ψψ,κ is proportional to the identity, F ′ oinideswith F ′

ψ,κ.5.2 Related propertiesDenoting by F ′ the orthogonal omplement of F in E, wethen have the following property (see Fig. 4):Property 3. The vetor ϕo
ψ,κ is the vetor ϕ of F forwhih V −1

ψ,κ (ϑ− ϕ) lies in F ′.Indeed, for any ξ in F , we have
‖ϑ− (ϕo

ψ,κ + ξ)‖2
ψ,κ = ‖ϑ− ϕo

ψ,κ‖2
ψ,κ + ‖ξ‖2

ψ,κ

+ 2〈ξ | ϑ− ϕo
ψ,κ〉ψ,κhene the property from Eqs. (46) and (14).As spei�ed below, the funtions of F ′ satisfy partiular`entralization properties.'Aording to its de�nition (see Fig. 4), F ′ is the spae offuntions ϑ suh that

∑

(i,j)∈G

ϕ(i, j)ϑ(i, j) = 0 (for any ϕ in F ) (50)From Eq. (33), the term on the left-hand side of this

equation an be expanded in the form
∑

(i,j)∈G

[

ϕ[r](i) + ϕ[s](j)
]

ϑ(i, j)

=

m
∑

i=1

ϕ[r](i)
∑

j∈Li

ϑ(i, j)

+
n
∑

j=2

ϕ[s](j)
∑

i∈Cj

ϑ(i, j)Here, Li is the subset of G haraterizing its ith line:
Li := {j : (i, j) ∈ G, i being �xed} (51)Likewise, Cj is the subset of G haraterizing its jth ol-umn:
Cj := {i : (i, j) ∈ G, j being �xed} (52)The following property then results from Eq. (50):Property 4. The funtions lying in F ′ satisfy the fol-lowing onditions:
∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

j∈Li

ϑ(i, j) = 0 (for i = 1, . . . ,m)
∑

i∈Cj

ϑ(i, j) = 0 (for j = 2, . . . , n)Note that the seond ondition then also holds for j = 1.For any ϑ in F ′, we thus have
∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

j∈Li

ϑ(i, j) = 0 (for i = 1, . . . ,m)
∑

i∈Cj

ϑ(i, j) = 0 (for j = 1, . . . , n)In the speial ase where the GNSS graph is full, thelines and olumns of G are also full. One then retrievesthe haraterization property of the `double-entralizedfuntions' of Shi and Han (1992):
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n
∑

j=1

ϑ(i, j) = 0 (for i = 1, . . . ,m)
m
∑

i=1

ϑ(i, j) = 0 (for j = 1, . . . , n) (53)5.3 Redued equationsAording to Eqs. (17) and (16), we have, for any ϑ in E,
∥

∥P ′
ψ,κϑ‖2

ψ,κ= ‖(P ′
ψ,κϑ)Eψ,κ‖2

E

= ‖Uψ,κP ′
ψ,κϑ‖2

ESetting (see Fig. 4)
ϑ′ψ,κ := P ′

ψ,κϑ = ϑ− ϕo
ψ,κ (54)
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ϑr

ψ,κ := Uψ,κϑ
′
ψ,κ (55)we therefore have

∥

∥ϑ′ψ,κ‖2
ψ,κ = ‖ϑr

ψ,κ‖2
E (56)Note that

ϑr

ψ,κ = Rψ,κϑ (57)where
Rψ,κ := Uψ,κP ′

ψ,κ (58)As the matrix elements of Uψ,κ are homogeneous to the in-verse of a length (see Eq. (15)), ϑr

ψ,κ is without any phys-ial dimension. Aording to Eqs. (46), (54) and (56),the smallest value of ‖ϑ− ϕ‖ψ,κ, ϕ spanning F , is equalto ‖ϑ′ψ,κ‖ψ,κ = ‖ϑr

ψ,κ‖E . For example, for any spanningtree, we have ‖ϑ′ψ,κ‖ψ,κ < ‖ϑ[cd]‖ψ,κ; see Fig. 4; ϑr

ψ,κ antherefore be regarded as the `ψ-redued form of ϑ.' Here,supersript r stands for redued. This pointed out, it anbe shown that
‖ϑr

ψ,κ‖2
E = [ϑ′ψ,κ]

T[V ′
ψ,κ]

−1[ϑ′ψ,κ] (59)where [V ′
ψ,κ] is the variane-ovariane matrix of Ψ′

ψ,κ.From Eqs. (49), (45), (56), (57) and (58), the reduedfuntional to be minimized is therefore of the form∗

Fr(u1, . . . , uκ, . . . , uk, v)

:=
k
∑

κ=1

∑

ν

ψ=(p;ν)
∑

ψ=(φ;ν)

∥

∥Ψ̃r

ψ,κ − (Ar

ψ,κuκ + B r

ψ,κv)
∥

∥

2

E

(60)where
Ar

ψ,κ := Rψ,κAψ,κ B r

ψ,κ := Rψ,κBψ,κ (61)and̃
Ψr

ψ,κ := Rψ,κΨ̃ψ,κ (62)The redued equations to be solved in the usual LS senseare therefore the following:
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Ar

ψ,1u1 + B r

ψ,1v = Ψ̃r

ψ,1...
Ar

ψ,κuκ + B r

ψ,κv = Ψ̃r

ψ,κ...
Ar

ψ,kuk + B r

ψ,kv = Ψ̃r

ψ,k

(63)For eah κ, we thus have an equation for ψ = (φ; ν), andanother one for ψ = (p; ν), and this for all the frequen-ies ν to be onsidered.
∗This funtional an equally well be obtained, diretly, by on-sidering the projetion of Eq. (43) onto F

′

ψ,κ
. Indeed, Eq. (60) thenderives from Eqs. (59) and (54).

In the dual-frequeny ase, for example, these equationsan therefore be displayed in the blok form (1) in whih
Ak :=















Ar

φ;ν1,k

Ar

φ;ν2,k

Ar

p;ν1,k

Ar

p;ν2,k















Bk :=















B r

φ;ν1,k

B r

φ;ν2,k

B r

p;ν1,k

B r

p;ν2,k















(64)and
bk :=















Φ̃r

ν1,k

Φ̃r

ν2,k

P̃ r

ν1,k

P̃ r

ν2,k















(65)As lari�ed in Example 5.1 (Set. 5.4), the entries of thematries Ak, Bk and bk an easily be omputed.5.4 Referene speial ase.To illustrate our analysis in a onrete manner, we nowonsider the important speial ase where the variane-ovariane matrix of the observational data Ψψ,κ is diag-onal (see Liu 2002):
[Vψ,κ] = σ2

ψ diag(ηκ(i, j)) (on G) (66)Here, σ2
ψ is a `referene variane;' η(i, j) is a nonnegativeweight funtion. Note that Uψ,κ is then de�ned by therelation

[Uψ,κ] =
1

σψ
diag( 1

√

ηκ(i, j)

) (on G) (67)From Eq. (46), ϕo
ψ,κ then depends only on κ. For larity,let us then set

δ := ϕo
ψ,κ δr,i := δ[r](i) δs,j := δ[s](j) (68)and

ωκ(i, j) :=











1

ηκ(i, j)
on G

0 otherwise (69)From Properties 3 and 4 (see also Eq. (33)), we then have
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

j∈Li

ωκ(i, j)
{

ϑ(i, j) −
[

δr,i + δs,j
]}

= 0(for i = 1, . . .m)
∑

i∈Cj

ωκ(i, j)
{

ϑ(i, j) −
[

δr,i + δs,j
]}

= 0(for j = 2, . . . n)
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∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

j∈Li

ωκ(i, j)
[

δr,i + δs,j
]

=
∑

j∈Li

ωκ(i, j)ϑ(i, j)(for i = 1, . . .m)
∑

i∈Cj

ωκ(i, j)
[

δr,i + δs,j
]

=
∑

i∈Cj

ωκ(i, j)ϑ(i, j)(for j = 2, . . . n)We are thus led to introdue the quantities
∣

∣

∣

∣

∣

∣

∣

∣

∣

Ωr,i :=
∑

j∈Li

ωκ(i, j) (for i = 1, . . .m)
Ωs,j :=

∑

i∈Cj

ωκ(i, j) (for j = 2, . . . n)and
∣

∣

∣

∣

∣

∣

∣

∣

∣

θr,i :=
∑

j∈Li

ωκ(i, j)ϑ(i, j) (for i = 1, . . .m)
θs,j :=

∑

i∈Cj

ωκ(i, j)ϑ(i, j) (for j = 2, . . . n)The equations to be solved to determine δ an then bewritten in the form
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Ωr,i δr,i +

n
∑

j=2

Ωi,j δs,j = θr,i (for i = 1, . . .m)
m
∑

i=1

Ωi,j δr,i + ωs,j δs,j = θs,j (for j = 2, . . . n)i.e., in matrix terms,
∣

∣

∣

∣

∣

[Ωr] [δr] + [Ω][δs] = [θr]

[Ω]T[δr] + [Ωs][δs] = [θs]
(70)Note that [Ωr] is a m×m diagonal matrix, while [Ωs] is a

(n−1)×(n−1) diagonal matrix; their inverses are trivial.By onstrution, [Ω] has m lines and n − 1 olumns. Aslari�ed below, Eq. (70) an be solved by omputing theinverse of a matrix with size (n− 1)× (n− 1) or m×m.We are thus led to onsider two ases.Case 1: n− 1 < mFrom the �rst equation (70), we have
[δr] = [Ωr]

−1
(

[θr] − [Ω][δs]
) (71)hene, from the seond,

[Ω]T[Ωr]
−1
(

[θr] − [Ω][δs]
)

+ [Ωs][δs] = [θs]i.e.,
[Ω̃s][δs] = [θs] − [Ω]T[Ωr]

−1[θr]where [Ω̃s] is the following (n− 1) × (n− 1) matrix:
[Ω̃s] := [Ωs] − [Ω]T[Ωr]

−1[Ω] (72)It then follows that
[δs] = [Ω̃s]

−1
(

[θs] − [Ω]T[Ωr]
−1[θr]

) (73)Equation (71) then yields [δr].

Case 2: n− 1 ≥ mFrom the seond equation (70), we have
[δs] = [Ωs]

−1
(

[θs] − [Ω]T[δr]
) (74)hene, from the �rst,

[Ωr][δr] + [Ω][Ωs]
−1
(

[θs] − [Ω]T[δr]
)

= [θr]i.e.,
[Ω̃r][δr] = [θr] − [Ω][Ωs]

−1[θs]where [Ω̃r] is the following m×m matrix:
[Ω̃r] := [Ωr] − [Ω][Ωs]

−1[Ω]T (75)It then follows that
[δr] = [Ω̃r]

−1
(

[θr] − [Ω][Ωs]
−1[θs]

) (76)Equation (74) then yields [δs].Example 5.1. In the speial ase de�ned in Fig. 3, letus onentrate on the olumn of Bk orresponding to theambiguity variable N [cd]
ν (2, 4). The entries of this olumnrelative to the redued data Φ̃r

ν,k(i, j) on G are then theorresponding values of λν(Rφ;ν,k c2,4
)

(i, j) where c2,4 isthe `harateristi funtion' of edge (r2, s4):
c2,4 :=

0 ∗ 0 0

0 0 ∗ 1

∗ 0 0 0The other entries of that olumn are nought. Let us thende�ne the values of the weight funtion as follows (seeEq. (66)):
ηκ =

1.0 ∗ 0.8 1.0

0.5 0.4 ∗ 1.0

∗ 1.0 1.0 1.0Equations (73) and (71) then provide δ ≡ Pψ,k c2,4:
δr,1 = −0.22 δr,2 = 0.11 δr,3 = −0.21

δs,2 = −0.02 δs,3 = 0.22 δs,4 = 0.44The values of the ψ-redued form of c2,4 for ψ = (φ; ν)are then the following (see Eqs. (58), (48), (47), (67)and (68)):
Rφ;ν,k c2,4 =

1

σφ;ν

0.22 ∗ 0.00 −0.22

−0.16 −0.15 ∗ 0.45

∗ 0.23 0.00 −0.23



Lannes and Gratton: GNSS networks in algebrai graph theory 626 Solution of the problem: SurveyIn the approah adopted in this paper, the equation (1)or (2) relative to the problem under onsideration is solvedin the LS sense, and reursively, by using the QR method(Set. 7). The state transitions of the global variable, inpartiular those due to a hange of the GNSS graph, areexamined in that framework; see Set. 7.4.The seleted QR implementation of this Reursive Least-Square (RLS) proess is based on `Givens rotations' (e.g.,Björk 1996). The orresponding operations an thus bestored in memory very easily. The e�ieny of the quality-ontrol proedures is thereby inreased; see Set 9.At eah epoh tk, the QR approah provides, in partiu-lar, the �oat ambiguity v̂a and the Cholesky fator Rk;a ofthe inverse of its variane-ovariane matrix. This upper-triangular matrix is then deorrelated via the LLL algo-rithm. As Rk;a may be of large size, a partiular imple-mentation of this algorithm is proposed; see Set. 8.2.One Rk;a has thus been deorrelated, the integer am-biguity solution is obtained by using lassial integer-programming tehniques (see, e.g., Agrell et al. 2002).The problem an thereby be ompletely solved.7 QR implementationAs already pointed out, we �rst restrit ourselves to thease where the GNSS graph G does not hange in theurrent run [t1, . . . , tκ, . . . , tk].The notion of QR fatorization is introdued in Set. 7.1.We then show how to solve Eq. (2) in a reursive manner(Set. 7.2). The orresponding variational aspets arepresented in Set. 7.3. We then speify how to handle theglobal variable when some transition ours (Set. 7.4).7.1 QR fatorizationLet us onsider the following general LS problem: mini-mize, with the Eulidean norm,
‖Ax− y‖2

Rm (A ∈ R
m×n, m ≥ n, rank A = n)With regard to numerial auray, the best way to solvethis problem is to use a method based on the QR fator-ization of A (see, e.g., Björk 1996):

A = Q

[

R
0

] (77)where R ∈ R
n×n is an upper triangular matrix with pos-itive diagonal terms, and Q ∈ R

m×m is an orthogonalmatrix: QTQ = Im (the identity matrix on R
m). We thus

A y

R z

z′

0

0

QTy

Figure 5: LS solution via QR fator-ization. The ation of QT on A and yyields the basi QR struture skethedhere: the upper-triangular matrix Rand the olumn matrix z. The solutionof the equation Ax = y in the LS senseis then given by Eq. (78): x̂ = R−1z.have
‖Ax− y‖2

Rm = ‖QT(Ax − y)‖2
Rm

=

∥

∥

∥

∥

QTQ

[

R
0

]

x− QTy

∥

∥

∥

∥

2

RmSetting QTy = z+ z′ where z ∈ R
n (see Fig. 5), it followsthat

‖Ax− y‖2
Rm = ‖Rx− z‖2

Rn + ‖z′‖2
Rm−nThe LS solution is therefore given by the relation

x̂ = R−1z (78)The problem an thereby be solved by bak substitution.In the ase where x is on�ned to Z
n, the solution of theproblem is therefore de�ned as follows:

ẋ = argmin
x∈Zn

‖R(x− x̂)‖2
Rn (79)Indeed, Rx− z = R(x− x̂).Aording to Eq. (77), the QR fatorization onsists in�nding an operator QT (and thereby an operator Q) suhthat QTA has the blok struture [R 0]T skethed inFig. 5. This operator is de�ned as a produt of elemen-tary orthogonal transformations. In the implementationpresented in this paper, the latter are Givens rotations(see Eqs. (2.3.10) to (2.3.13) in Björk 1996). Premul-tipliation of A and y by suh a rotation matrix a�etsonly rows k and ℓ of A and d. This matrix is de�ned sothat, for (a2

k + a2
ℓ) 6= 0,

[

c s

−s c

] [

ak
aℓ

]

=

[

a

0

] (80)where
a = (a2

k + a2
ℓ)

1/2 (81)
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K1 L1 c1

R1 , R2

K2 L2

L′
2

A1 B1

A2 B2

b1

b2

c′1

c2

c′2 d′2

d1

d′1

d2

Figure 6: LS solution via reursive QR fatoriza-tion. The priniple of the reursive QR method isskethed here for the �rst two epohs: epoh 1 withthe input blok matries A1 , B1 and the data ol-umn matrix b1; epoh 2 with the input blok ma-tries A2 , B2 and the data olumn matrix b2. Theinitialization proess is performed in two steps: K1 ,
(L1 , L

′

1), (c1 , c
′

1) are built in the �rst step (see textfor L′

1), whereas R1 , (d1 , d
′

1) are built in the seond.The global �oat solution is then found by bak substi-tution: v̂ = R−1
1 d1. The loal solution is then givenby the formula û1 = K−1

1 (c1 − L1v̂). Likewise, at thenext epoh, one �rst builds K2 , (L2 , L
′

2), (c2 , c
′

2),and then R2, (d2 , d
′

2); v̂ is then updated via the re-lation v̂ = R−1
2 d2. The loal solution at epoh 2 anthen be omputed: û2 = K−1

2 (c2 − L2v̂).It is easy to hek that the osine and sinus values  and sare then given by the following formulas
c = ak/a s = aℓ/a (82)Note that m−1 Givens rotations are required for the �rstolumn of A, m−2 for the seond, and so on (see Fig. 5).It is important to point out that that the ation of QTan be stored in memory as the sequene of the sues-sive (osine, sinus) pairs (c, s) haraterizing the sues-sive Givens rotations involved in this operation.7.2 Reursive QR fatorizationWe now show how to solve, in the LS sense and reur-sively, the equation (2) indued by the redued equations.Let us �rst onsider the initialization epoh: epoh 1.The problem is then solved in two steps (see Fig. 6).

Kk Lk ck

Rk dk

Figure 7: Reursive QR trian-gular struture. Aording tothe priniple of the reursive QRmethod skethed in Fig. 6, the al-ulation of Rk+1 and dk+1 requiresto have kept in memory the uppertriangular matrix Rk and the ol-umn matrix dk (see text).The Givens rotations of the �rst step are those requiredfor �nding the upper triangular matrix K1. The modi�edversion of B1 thus obtained inludes an upper blok L1and a lower blok L′
1. Likewise, the modi�ed version of b1inludes two olumn submatries: c1 and c′1.The Givens rotations of the seond step yield the uppertriangular matrix R1; c′1 then yields (d1 , d

′
1); see Fig. 6.Note that K1, L1 and c1 are not a�eted by these ro-tations. The global solution is then obtained by baksubstitution via the formula v̂ = R−1

1 d1. The loal so-lution an then be also omputed by bak substitution:
û1 = K−1

1 (c1 − L1v̂).The �rst step of the next epoh (epoh 2) is similar tothat of epoh 1: one thus obtains the upper triangularmatrix K2. The modi�ed version of B2 then inludes anupper blok L2 and a lower blok L′
2. Likewise, the mod-i�ed version of b2 inludes two olumn submatries: c2and c′2 (see Fig. 6). The Givens rotations of the seondstep then operate on (R1 , L

′
2) and (d1 , c

′
2) so as to trans-form L′

2 into a zero blok matrix. One thus gets R2 and
(d2 , d

′
2); v̂ is then updated via the relation v̂ = R−1

2 d2.The loal solution at epoh 2 an then be omputed:
û2 = K−1

2 (c2 − L2v̂).In summary, one thus operates, reursively, with the keystruture shown in Fig. 7: Kk+1, (Lk+1 , L
′
k+1) and

(ck+1 , c
′
k+1) are omputed fromAk+1, Bk+1 and bk+1, thequantities Rk+1 and (dk+1 , d

′
k+1) being then omputedfrom (Rk , L

′
k+1) and (dk , c

′
k+1). We then have

[

Kk+1 Lk+1

· Rk+1

] [

ûk+1

v̂

]

=

[

ck+1

dk+1

] (83)hene
v̂ = R−1

k+1dk+1and
ûk+1 = K−1

k+1(ck+1 − Lk+1v̂)



Lannes and Gratton: GNSS networks in algebrai graph theory 647.3 Variational alulationWe now answer to the following question: what are thevariations ∆ûk and ∆v̂ indued by a variation ∆bk of bk(at epoh tk)? From Eq. (2), these variations are the
u-v omponents at epoh tk of the LS solution of theequation
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0
0...
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[

∆v
]By onstrution, the quantities ∆d1, . . . , ∆dk−1 induedby this equation are nought. The problem is thereforethe same as previously, ∆dk being then omputed from

∆c′k with ∆dk−1 = 0. This is why it is reommended tostore in memory the sequene of the suessive pairs (c, s)haraterizing the Givens operators involved in the twoQR steps of epoh tk (see Fig. 6 and Eqs. (81) & (82)).7.4 State transitions of the globalvariableAt some epohs tk, one may be led to perform a linearoperation on the global variable v:
v̂′ = Sv̂For example, this ours in the following ases:1) The omponents of v̂ are to be modi�ed in a re-versible manner; S is invertible: S ≡ S1 (Set. 7.4.1).Note that reordering the omponents of v̂ omes un-der this ase.2) Some omponents of v̂ are to be disarded; S is thenof the form S2S1 where (Set. 7.4.2)� S1 is a `reordering operator;'� S2 is a `trunation operator.'Suh an operator is not invertible.3) Some edges of the urrent spanning tree of Gk (theGNSS graph at epoh tk) are missing in Gk+1. Asspei�ed in Set. 7.4.3, S is then of the form S2S1where� S1 is an operator whih hanges the set ofthe urrent CD ambiguities into another setof suh ambiguities;� S2 is a trunation operator.At epoh tk+1, new entries of v may appear. For ex-ample, this is the ase when new edges appear in theGNSS graph. How to proeed in this ase is spei�ed inSet. 7.4.4.

7.4.1 Reversible operationsWe then have Rkv̂ = RkS
−1
1 v̂′ = dk, hene

R′
kv̂

′ = dk where R′
k := RkS

−1
1This matrix is no longer triangular. One then performsGivens rotations on R′

k and dk so that R′
k beomes uppertriangular: R′

k→R′′
k , dk → d′′k. One then �nally sets

Rk
set

=R′′
k dk

set

= d′′k7.4.2 TrunationsFor example, onsider the ase where the omponents v̂(3)and v̂(5) of v̂ are to be disarded. One �rst performs thepermutation
S1
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The olumns of Rk are then permuted aordingly. As thematrix thus obtained, R′
k, is no longer upper triangular,one then performs Givens rotations on R′

k and dk so that
R′
k beomes upper triangular: R′

k→R′′
k , dk → d′′k . Toomplete the proess, one then removes the �rst two linesand �rst two olumns of R′′

k , as well as the �rst two entriesof v̂′ and d′′k . Again, one then �nally sets Rk set

=R′′
k and

dk
set

= d′′k.7.4.3 Graph transitionsLet us denote by
Gk := (Vk, Ek) Gk+1 := (Vk+1, Ek+1)the GNSS graphs at epohs tk and tk+1, respetively.As illustrated in the upper and lower parts of Fig. 8,
Gk and Gk+1 denote their respetive grids. Let us nowset
F := Ek ∩ Ek+1The edges of Ek that do not lie in F form a set denotedby M:
M := Ek −FLikewise, the edges of Ek+1 that do not lie in F form aset denoted by N :
N := Ek+1 −F



Lannes and Gratton: GNSS networks in algebrai graph theory 65Here, M andN stand for `missing edges' and `new edges,'respetively. In this setion, we onsider the ase where
M is not empty.The entries of v̂a at epoh tk are de�ned with respet tothe urrent spanning tree of Gk: Gk;st (see Fig. 8). Oneis then led to introdue another spanning tree of Gk: the`transition spanning tree' Gk;tst. This spanning tree isobtained by onsidering the following `ordered partition'of Ek (see Remark 4.2 and Fig. 8):
Ek = F ∪M (F ∩M = ∅)The spanning tree of Gk+1, Gk+1;st , is then built from thefollowing `ordered partition' of Ek+1 (see Fig. 8):
Ek+1 = F ∪N (F ∩N = ∅)The analysis of the ase where N is not empty is om-pleted under the analysis developed in Set. 7.4.4.With regard to M, two ases are then to be onsidered:(i) the ase where M∩Gk;st = ∅;(ii) the ase where M∩Gk;st 6= ∅.In the usual ase (i), the elements of M are loop-losureedges. The omponents of v̂a orresponding to theseedges are then simply to be removed. The proedure de-sribed in Set. 7.4.2 an then be implemented diretly.In the speial ase (ii), this is not so simple. One must�rst introdue some transition state v̂a;1. As spei�ed inthe example presented further on (see Fig. 8), the entriesof v̂a;1 are de�ned with respet to the transition spanningtree Gk;tst. More preisely, this state is de�ned by the rela-tion v̂a;1 = S1v̂a where S1 is an invertible operator de�nedvia the reursive di�erential proess de�ned in Set. 4.2;
Rk is then updated aordingly (see Set. 7.4.1). Thistransition operation is ompleted by a trunation oper-ation in whih the omponents of v̂a;1 orresponding tothe edges of M are removed (see the proedure desribedin Set. 7.4.2).One all these algebrai operations have been performed,the quantities Rk and dk, whih have thus been updated,are used to perform the reursive QR step towards Rk+1and dk+1 (see Set. 7.4.4).Example 7.1. To illustrate these onsiderations in aonrete manner, let us assume that the GNSS graph atepoh tk is that shown in Fig. 3; its grid Gk is shown isthe upper part of Fig. 8. The urrent spanning tree Gk;stis that represented in the same �gure.As shown in the lower grid of Fig. 8, let us now assumethat at epoh tk+1, satellite s1 is no longer visible, andthat satellite s3 is no longer visible from reeiver 1. A newsatellite, s5, is then visible from reeivers r1 and r2. More-over, satellite s2 is then visible from reeiver 1, and satel-
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Figure 8: Graph transition. In the example shown here, theupper grid Gk is that of the GNSS graph at epoh tk. Thelower gridGk+1 is that of the GNSS graph at epoh tk+1. Thegrid in between is a opy of Gk for desribing the transition tobe performed. As illustrated here, the edges (r1, s1), (r1, s3)and (r2, s1) disappear at epoh tk+1, while four new edgesthen appear: (r1, s2), (r1, s5), (r2, s3) and (r2, s5). The blakdots of the upper grid form the subgrid Gk;st of the urrentspanning tree at that epoh. Likewise, the blak dots of theseond grid form the subgrid Gk;tst of the transition spanningtree (see text). The red dots of eah of these grids de�nethe sets of loop-losure edges involved in the transition tobe performed. The relation between the �rst ambiguity setand the seond is linear and invertible. The orrespondingoperations an be performed by referring to the reursiveproess de�ned in Set. 4.2. The blak dots of the lowergrid de�ne the subgrid Gk+1;st of the spanning tree seletedfor Gk+1 (for further details see text).lite s3 is then visible from reeiver 2. We then have
F = {(r1, s4), (r2, s2), (r2, s4), (r3, s2), (r3, s3), (r3, s4)}
M= {(r1, s1), (r1, s3), (r2, s1)}
N = {(r1, s2), (r1, s5), (r2, s3), (r2, s5)}The grid points of Gk;st, Gk;tst and Gk+1;st are shownin Fig. 8 as blak dots. The red dots orrespond to theloop-losure edges de�ned via the hoie of these spanningtrees. The edges of Gk;tst and Gk+1;st are respetivelyobtained in the following orders:
(r1, s4), (r2, s2), (r2, s4), (r3, s2), (r3, s3); (r1, s1)

(r1, s4), (r2, s2), (r2, s4), (r3, s2), (r3, s3); (r1, s5)The entries of v̂a at epoh tk are then the �oat CD am-biguities (see the upper grid of Fig. 8)
N̂ [cd]
ν (2, 4), N̂ [cd]

ν (3, 3), N̂ [cd]
ν (3, 4)The entries of v̂a;1 at epoh tk are then the �oat CD am-biguities (see the seond grid of Fig. 8)

N̂
[cd]
ν;1 (1, 3), N̂

[cd]
ν;1 (2, 1), N̂

[cd]
ν;1 (3, 4)



Lannes and Gratton: GNSS networks in algebrai graph theory 66To de�ne this state transition, i.e., to de�ne, expliitly,the operator S1 involved in the relation v̂a;1 = S1v̂a, weare then led to onsider the funtion ϑ set

= N̂
[cd]
ν . Note thatwe then have

ϑ(1, 1) = 0; ϑ(1, 3) = 0; ϑ(1, 4) = 0;

ϑ(2, 1) = 0; ϑ(2, 2) = 0; ϑ(2, 4) = N̂
[cd]
ν (2, 4);

ϑ(3, 2) = 0; ϑ(3, 3) = N̂
[cd]
ν (3, 3); ϑ(3, 4) = N̂

[cd]
ν (3, 4)Conduted on grid Gk;tst with ϑ[s](2) = 0, and appliedto this funtion, the reursive di�erential proess de�nedSet. 4.2 then yields, suessively,

ϑ[r](2) = ϑ(2, 2) − ϑ[s](2) = 0

ϑ[s](4) = ϑ(2, 4) − ϑ[r](2) = N̂
[cd]
ν (2, 4)

ϑ[r](3) = ϑ(3, 2) − ϑ[s](2) = 0

ϑ[s](3) = ϑ(3, 3) − ϑ[r](3) = N̂
[cd]
ν (3, 3)

ϑ[r](1) = ϑ(1, 4) − ϑ[s](4) = −N̂ [cd]
ν (2, 4)

ϑ[s](1) = ϑ(1, 1) − ϑ[r](1) = N̂
[cd]
ν (2, 4)hene, from Eq. (37),

N̂
[cd]
ν;1 (1, 3) = ϑ(1, 3) − [ϑ[r](1) + ϑ[s](3)]

= N̂
[cd]
ν (2, 4) − N̂

[cd]
ν (3, 3)

N̂
[cd]
ν;1 (2, 1) = ϑ(2, 1) − [ϑ[r](2) + ϑ[s](1)]

= −N̂ [cd]
ν (2, 4)

N̂
[cd]
ν;1 (3, 4) = ϑ(3, 4) − [ϑ[r](3) + ϑ[s](4)]

= N̂
[cd]
ν (3, 4) − N̂

[cd]
ν (2, 4)The operator S1 involved in this reversible transition isthus expliitly de�ned; see Set. 7.4.1. Note that its ma-trix and its inverse an be obtained via elementary al-gebrai omputations. The ambiguities N̂ [cd]

ν;1 (1, 3) and
N̂

[cd]
ν;1 (2, 1) are then disarded; see Set. 7.4.2.7.4.4 Handling additional omponentsFrom time to time, some new entries of v are to be in-trodued. For example, in the graph transition of Fig. 8,the following entries of va must be taken into aount:
N [cd]
ν (1, 2), N [cd]

ν (2, 3), N [cd]
ν (2, 5)The �rst olumns of Bk+1 are then proessed as the lastolumns of Ak+1 (see Fig. 6). To get Rk+1 and dk+1, onethen proeeds as illustrated in Fig. 9.This pointed out, when suh a transition ours, one maybe led to reorder the omponents of v; see for instaneEq. (42). One then proeeds as spei�ed in Set. 7.4.1.

K L c

d

R

dk+1Rk+1

Figure 9: Handling additional entries ofthe global variable. When new entries of vappear at epoh tk+1, the �rst olumnsof Bk+1 are proessed as the last olumnsof Ak+1 (see Fig. 6). The reursive QR op-eration then yields the quantities K, L, c,
R and d. To get Rk+1 and dk+1, one thenproeeds as illustrated here.8 Integer-ambiguity resolutionAt eah epoh, the QR approah provides, in partiular,the �oat solution v̂ and the Cholesky fator Rk of theinverse of its variane-ovariane matrix. We then have

Rkv̂ = dk (see Set. 7.2), i.e., from Eq. (42),
[

Rk;b Rk;ba

0 Rk;a

][

v̂b

v̂a

]

=

[

dk;b

dk;a

] (84)The ambiguity solution is then de�ned by the relation(see Eq. (79))
v̇a = argmin

va∈Zna

‖Rk;a(va − v̂a)‖2
Rna (85)where na is the number of entries of v̂a. When in thedata assimilation proess, v̇a beomes onsistent with themodel (up to the noise), the ambiguities are said to be�xed. The estimate of the �oat omponent of the globalvariable is then re�ned aordingly (see Eq. (84)):

v̇b = R−1
k;b(dk;b −Rk;bav̇a) (86)The loal variable ûk is then re�ned via a FLS (FixedLeast-Squares) proess, i.e., a proess in whih the ambi-guities are �xed. Again, the QR method is well suited tosolving this problem.The remainder of this setion is devoted to the searh ofthe integer ambiguity solution. For larity, subsripts `k'and `a' are then omitted. Equation (85), for instane, isthen simply read as follows:

v̇ = argmin
v∈Zn

‖R(v − v̂)‖2
Rn (87)This nearest-lattie-point problem is solved in two steps(see, e.g., Agrell et al. 2002). One �rst searhes a `re-dued basis' of Z

n in whih the matrix of RTR is as diag-onal as possible. The problem is then solved in this basis



Lannes and Gratton: GNSS networks in algebrai graph theory 67by using the orresponding `redued form' of R: R̄; theinteger-valued solution ˙̄v thus obtained is then expressedin the original basis: ˙̄v 7→ v̇.The �rst step orresponds to a deorrelation proess. Thedeorrelation methods to be implemented must somehowrefer to the priniples of the LLL algorithm (an algorithmdevised by Lenstra, Lenstra and Lovàsz in 1982). In thease of GNSS networks, as R may be of large size, parti-ular implementations of this algorithm are to be devised.For the partiular methods presented in this setion, theentries of v are lumped together in m reeiver bloks vi:
v =



















v1...
vi...
vm



















(m ≤ m) (88)The reeiver bloks are of the form
vi :=









[

N [cd]
]

i,ν1
[

N [cd]
]

i,ν2
[

N [cd]
]

i,ν3









(89)For example, at epoh tk of Fig. 8, we have
[

N [cd]
]

i,ν
:=
[

· · · N [cd]
ν (i+ 1, j) · · ·

]T (90)where j spans the subset of Li+1 de�ned by the loop-losure points of line i+ 1; see Eq. (51). We then have
m = m− 1 = 2.The number of entries of vi is denoted by ni. For example,with three arrier waves on a full network (see Fig. 2), wehave ni = 3(n−1) for i = 1, . . . ,m with m = m−1. Notethat
n =

m
∑

i=1

ni (91)The struture of R indued by that of v inludes m ver-tial bands of the form
B1 :=











T1

0... 









Bi :=











Si
Ti

0...  (for i > 1) (92)Here, Ti is an upper-triangular matrix with ni positivediagonal elements; Si is a retangular matrix with pi linesand ni olumns:
pi =

i−1
∑

ι=1

nι (i > 1) (93)

As spei�ed in Set. 8.1, the searh for a redued basisan be initialized via some inter-frequeny deorrelationproess. For eah loop-losure point (i, j) of Li, the vari-ables N [cd]
ν1 (i, j), N [cd]

ν2 (i, j), N [cd]
ν3 (i, j) an thus be deor-related. It is important to note that this proess performsan operation basially similar to that of the widelane andextra-widelane tehniques (see e.g., Feng and Li 2008,Teunissen 1997). This pointed out, by proeeding in thisway for eah Ti, one bene�ts from the orrelation infor-mation onerning these variables at the urrent epoh.It is however preferable to perform, diretly, what weall `LLL band deorrelation' (Set. 8.2). This pointedout, one this weakened implementation of the LLL al-gorithm has been performed, the size of the searh el-lipsoid must generally be redued. This is done via the`blokwise-bootstrapping' method desribed in Set. 8.3.The integer-ambiguity solution an then be obtained andvalidated via standard integer-programming tehniques(Agrell et al. 2002).8.1 Inter-frequeny deorrelationWith regard to the frequeny-blok struture of vi (seeEqs. (89) and (90)), the matrix elements of Ti relativeto the same loop-losure point are then distributed asfollows:

tν1,ν1 · · · tν1,ν2 · · · tν1,ν3

· · ·
... ...

tν2,ν2 · · · tν2,ν3

· · ·
...

tν3,ν3

(94)By performing appropriate operations on R (see, e.g., Lukand Tray 2008), the following onditions an easily beimposed:
t̄ν1,ν1 > 2|̄tν1,ν2 | t̄ν1,ν1 > 2|̄tν1,ν3 |

t̄ν2,ν2 > 2|̄tν2,ν3 |
(95)Note that in this proess, the diagonal elements are notmodi�ed: t̄ν,ν = tν,ν . For eah reeiver blok (of index i),these operations are performed for eah set of the threeentries to be onsidered. The upper-triangular matrix R̄thus obtained is equal to RZ where Z is a unimodularmatrix. (By de�nition, a unimodular matrix is an integermatrix whose inverse is also an integer matrix.) We thenhave Rv = R̄v̄ where v̄ = Z−1v. The entries of v̄ arethe omponents of the integer-ambiguity vetor in the re-dued basis thus de�ned. This proess also provides Z−1.8.2 LLL band deorrelationThe guiding idea of the deorrelation proess presentedin this setion is to perform omplete LLL deorrela-tions of the suessive triangular bloks T1, T2, . . . ., Tm.



Lannes and Gratton: GNSS networks in algebrai graph theory 68The matrix elements of the bloks T̄i and S̄i of the deor-related bands B̄i thus obtained are respetively denotedby t̄ k,ℓi and s̄ q,ℓi (see Eq. (92)). The diagonal elementsof R̄ are then denoted by r̄ q,q. For i > 1, we thus have
t̄ k,ki = r̄ pi+k, pi+k for 1 ≤ k ≤ ni.The band deorrelation in question is a simple extensionof the `new implementation' of the LLL algorithm pro-posed by Luk and Tray (2008). For larity, we set
µki :=

∣

∣

∣

∣

∣

t̄ k,k+1
i

t̄ k,ki

∣

∣

∣

∣

∣

2

(1 ≤ k < ni) (96)The following onditions, with 1/4 < ̟ < 1, an then beimposed:For band i = 1, . . . ,m{If i > 1, thenfor q = pi, pi − 1, . . . , 1 r̄ q,q > 2
∣

∣s̄ q,1i

∣

∣For olumn ℓ = 2, . . . , ni of B̄i{
µℓ−1
i < 1/4;
[

t̄ ℓ,ℓi
]2 ≥

(

̟ − µℓ−1
i

)[

t̄ ℓ−1,ℓ−1
i

]2If ℓ > 2, thenfor k = ℓ− 2, ℓ− 3, . . . , 1 t̄ k,ki > 2
∣

∣t̄ k,ℓi

∣

∣For q = pi, pi − 1, . . . , 1 r̄ q,q > 2
∣

∣s̄ q,ℓi
∣

∣}}In fat, for optimal deorrelation, ̟ is set equal to 0.999.This proedure provides R̄ as the produt QRZ, in whih
Q is an orthogonal matrix, and Z is a unimodular matrix.We then have
‖Rv‖2

Rn = ‖R̄v̄‖2
Rn (97)where

v̄ := Z−1v (98)The entries of v̄ are the omponents of the ambiguity ve-tor in the redued basis thus de�ned; Z−1 is progressivelybuilt through the proess (together with Z). It followsthat
‖R(v − v̂)‖2

Rn = ‖R̄(v̄ − ¯̂v)‖2
Rn (99)where

¯̂v := Z−1v̂ (100)In the absene of any prior information, the searh ellip-soid (the ellipsoid in whih the solution is to be searhed)is then de�ned by the relation
E0 :=

{

v̄ : ‖R̄(v̄ − ¯̂v)‖2
Rn ≤ ǫ0

} (101)

where
ǫ0 := ‖R̄(v̄(0) − ¯̂v)‖2

Rn with v̄(0) :=
⌈

¯̂v
⌋ (102)Here, ⌈ ¯̂v

⌋ denotes the olumn matrix whose entries arethe nearest integers to the orresponding entries of ¯̂v. Be-fore solving the nearest-lattie point problem in the re-dued basis, one may be led to redue the size of thesearh ellipsoid. The blokwise-bootstrapping tehniquedesribed below an then be implemented.8.3 Blokwise bootstrappingThe proedure presented in this setion provides a �nitesequene of integer-ambiguity vetors v̄(q) suh that
ǫq+1 < ǫq where ǫq := ‖R̄(v̄(q) − ¯̂v)‖2

Rn (103)The ellipsoids
Eq :=

{

v̄ : ‖R̄(v̄ − ¯̂v)‖2
Rn ≤ ǫq

} (104)therefore satisfy the property Eqf ⊂ · · · ⊂ E1 ⊂ E0 where
qf is some �nite integer.To de�ne this proedure, let us onsider the quadratifuntional (see Eqs. (99), (92) and (88))
ǫ(v̄1, . . . , v̄i, . . . , v̄m) := ‖R̄(v̄ − ¯̂v)‖2

Rn

=
∥

∥

∑m

i=1 B̄i(v̄i − ¯̂vi)
∥

∥

2

Rn

(105)From Eq. (102), we have ǫ(v̄(0)
1 , . . . , v̄

(0)
i , . . . , v̄

(0)
m

)

= ǫ0.The priniple of this proedure is then the following. Forexample, we �rstminimize ǫ(v̄(0)
1 , . . . , v̄

(0)
m−1, v̄m

) in v̄
m

(106)The minimum is attained for some v̄(1)
m ∈ Z

nm . (How todo that is spei�ed at the end of this setion.) We thenminimize ǫ(v̄(0)
1 , . . . , v̄

(0)
m−2, v̄m−1, v̄

(1)
m

) in v̄
m−1 (107)The minimum is attained for some v̄(1)

m−1 in Z
nm−1 . Weproeed like that until the �rst blok variable inluded.We have thus found an `integer-ambiguity point'

v̄(1) :=
(

v̄
(1)
1 , . . . , v̄

(1)
i , . . . , v̄

(1)
m

)for whih ǫ = ǫ1 with ǫ1 ≤ ǫ0. If ǫ1 = ǫ0, the proess isinterrupted. Otherwise, we thenminimize ǫ(v̄(1)
1 , . . . , v̄

(1)
m−1, v̄m

) in v̄m (108)and so on until the proess is interrupted.We now speify how to perform the internal minimiza-tions of type (106), (107) and (108). For example, with
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ǫ(v̄

(0)
1 , . . . , v̄

(0)
m−1, v̄m)

=
∥

∥

∥
B̄m(v̄m − ¯̂vm) +

m−1
∑

i=1

B̄i
(

v̄
(0)
i − ¯̂vi

)

∥

∥

∥

2

Rn

=
∥

∥

∥B̄mv̄m −
[

B̄m
¯̂vm −

m−1
∑

i=1

B̄i
(

v̄
(0)
i − ¯̂vi

)

]∥

∥

∥

2

RnThe problem of minimizing this quantity in v̄m is solvedin two steps: we �rst �nd its �oat solution by QR fa-torization; see Set. 7.1. In the urrent redued basis, wethen solve the remaining problem of type (79); see Agrellet al. (2002). Note that for eah i, the ation of the oper-ator QT
i involved in the �rst orresponding QR operationis to be stored in memory (see Set. 7.1).9 DIA methodsTo prevent that biases on the undi�erential data prop-agate undeteted into the ambiguity solution, partiu-lar methods have been developed. The biases are �rst`Deteted,' then `Identi�ed,' and �nally the results are`Adapted' onsequently (e.g., Teunissen 1990, Hewitsonet al. 2004, Lannes and Gratton 2008). The identi�a-tion priniple of the DIA method presented in this setionis `loal:' the biases are identi�ed epoh by epoh. Theorresponding analysis is based on the results provided bythe QR proess at the urrent epoh. When the ambigu-ities are not �xed, the adaptation priniple is global: theloal variables, the urrent biases, the urrent �oat ambi-guities and the urrent QR triangular struture (skethedin Fig. 7) are updated in the global frame of the RLS pro-ess, without any approximation.9.1 Quality ontrolLet us set (see Eqs. (45) and (46))

θ̂ψ,κ := Ψ̃ψ,κ − (Aψ,κûκ + Bψ,κv̂)and̂
ϕo
ψ,κ := argmin

ϕ∈F
‖θ̂ψ,κ − ϕ‖2

ψ,κWhen the model de�ned by Eqs (43) and (66) holds, oneah point of G, |θ̂ψ,κ − ϕ̂o
ψ,κ| is then less than a few

σψ
√
η, say less than χ0σψ

√
η where χ0 is of the order of 3for example; for further details on the hoie of χ0, seeSet. 9.5. But, from Eqs. (48) and (47),

θ̂ψ,κ − ϕ̂o
ψ,κ = P ′

ψ,kθ̂ψ,κAs a result (see Eq. (58)), the absolute value of
Rψ,kθ̂ψ,κ ≡ Uψ,kP ′

ψ,kθ̂ψ,κ

is then less than χ0 on G; see Eq. (67). Taking aountof Eqs. (61) and (62), we are thus led to onentrate onthe quantity
wψ,k := Rψ,kϑ̂ψ,κ = Ψ̃r

ψ,κ − (Ar

ψ,κûκ + B r

ψ,κv̂) (109)If for ψ = (φ; ν), (p; ν) and for eah ν, |wψ,k| is less than χ0all over G, we therefore onsider that the model an beaepted as it is. Note that by onstrution, wψ,k is the
ψ-omponent of the loal residual
wk := bk − (Akûk +Bkv̂)

= Hkbk
(110)where Hk is a linear operator (see Set. 7).For larity, we now omit the time subsript k. In thisontext, to ontrol the validity of the model, we onsiderthe quantity

|w|max := max
ν

ψ=(p;ν)
max

ψ=(φ;ν)
max

(i,j)∈G
|wψ(i, j)| (111)If |w|max is larger than χ0, the model is to be re�ned. Forsome ψ's and some (i, j)'s to be identi�ed, we then searhto estimate additive biases βψ(i, j). More preisely, thealgebrai de�nition of these biases is suh that the orginaldata Ψψ(i, j) should then be orreted as follows:

Ψψ(i, j)
set

= Ψψ(i, j) − βψ(i, j) (112)Aording to Eqs. (49) and (45), Fr and thereby wψ areinvariant under any variation of Ψψ in the vertex-delayspae F ; see Fig. 4. As a result, to handle the identi�-ation problem in question, a preliminary notion is to beintrodued: the notion of `identi�able bias.'9.2 Identi�able biasesA unity bias on some reeiver-satellite signal ψ(i, j) isde�ned by the harateristi funtion ci,j of edge (ri, sj):
ci,j(i

′, j′) :=

{

1 if (i′, j′) = (i, j)

0 otherwise (113)Let us now onsider two `signed unity biases' on ψ havingthe same losure delays. As these biases are equal up toa vetor of F , their redued forms are idential. As a re-sult, they annot be distinguished. The following analysislari�es this point expliitly.The values of c[cd]
i,j on the loop-losure points of G forma vetor c

[cd]
i,j inluding nc omponents. As the losuredelays are algebrai sums of SD's (see Remark 4.4), theseomponents are equal to ±1 or zero. The simplest wayto determine them is to use the reursive di�erential pro-ess de�ned in Set. 4.2. For our present purposes, wesay that the one-dimensional subspae generated by c

[cd]
i,j



Lannes and Gratton: GNSS networks in algebrai graph theory 70de�nes a `bias diretion' d in E[cd]. As two distint edgesmay de�ne the same bias diretion, the number of identi-�able biases is less than or equal to the number of edges:
nd ≤ ne. For example, in the ase of the graph de�nedin Fig. 3, nd is equal to 6; the vetors dℓ are then thefollowing:

d1 d2 d3 d4 d5 d6

1 0 0 1 −1 0
0 1 0 1 0 1
0 0 1 1 −1 1They are obtained in this order by spanning, �rst the

nc loop-losure points of G, and then the points of Gst.By onstrution, we thus have (see Eq. (32))
nc ≤ nd ≤ ne (114)Denoting by Gℓ the set of points of G whose bias dire-tion is equal to dℓ, we then say that ⋃nd

ℓ=1Gℓ is the `biaspartition' of G. For example, in the speial ase of Fig. 3,we have
G1 = {(2, 4)} G2 = {(3, 3); (1, 3)} G3 = {(3, 4)}
G4 = {(1, 1); (2, 1)} G5 = {(1, 4)} G6 = {(2, 2); (3, 2)}The �rst element of Gℓ is denoted by eℓ. Here for ex-ample, e2 = (3, 3); e stands for edge. Whenever Gℓ in-ludes two grid points, the latter are of the form (i, j)and (i′, j). Furthermore, we then have c

[cd]
i,j = dℓ and

c
[cd]
i′,j = −dℓ. An identi�able bias is thus assoiated eitherwith a reeiver-satellite signal, or with a single di�erene.When m = 2, eah bias is assoiated with a single di�er-ene. The number of identi�able biases is then equal to n:
nd = n; see Lannes and Gratton (2008). Conversely, inthe ase where the GNSS graphs are full or almost fullwith m > 2, nd proves to be equal to ne.9.3 Identi�ation prinipleWhen the model is to be re�ned, we searh to identify ad-ditive biases of the form βℓψ (see Set. 9.1); here, ℓψ har-aterizes the orresponding `outlier:' an outlier with di-retion dℓ on the data vetor ψ. The outliers ℓψ form aset to be identi�ed: the `outlier set' O.Aording to Eqs. (110), (65) and (62), the variation of windued by the unity bias ceℓ on ψ is haraterized by thequantity
fℓψ := H
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Rψceℓ
]
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(115)

As a result, the variation of w indued by the global bias
z :=

∑

ℓψ∈O

βℓψ
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0
[

ceℓ
]
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(116)is haraterized by the vetor
Mz :=

∑

ℓψ∈O

βℓψ fℓψ (117)More preisely, from Eq. (112), w should then be or-reted as follows: w set

=w−Mz. The problem is thereforeto solve, in the LS sense, the equation w −Mz `=' 0, inwhih the olumn vetors of M , the fℓψ 's, are to be thor-oughly seleted. As lari�ed in Set. 9.5, this operation isperformed via a partiular Gram-Shmidt orthogonaliza-tion proess whih is interrupted as soon as the orreteddata are onsistent with the model.9.4 Global adaptationOne the outlier set O has been identi�ed, the model isto be updated onsequently: Ak is ompleted by addingthe olumns assoiated with the orresponding bias vari-ables βℓψ . These olumn matries have the followingblok form (see Eqs. (112), (65) and (62)):
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0
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Rψceℓ
]
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(118)
The global QR reursive proess is then updated aord-ingly. The loal variable, the biases and the �oat ambi-guities are thus re�ned, as well as Rk and dk in parti-ular (see Fig. 6). When the QR proess is initialized, orwhen the ambiguities are �xed, the biases provided bythe adaptation proess oinide with those provided bythe identi�ation proedure (see Set. 9.3 and step 2.5 inSet. 9.5). The LS problem to be solved, whih is thenthe same, is simply handled in a di�erent manner.9.5 ImplementationIn the proedure desribed in this setion, the outliers ℓψare identi�ed progressively; see the �ow diagram shown inFig. 10. At the beginning of this proedure, O is thereforeempty. For eah ψ, we then introdue the set
Kψ := {ℓ : 1 ≤ ℓ ≤ nd} (119)
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Cψ,ℓ := max

(i,j)∈Gℓ
|wψ(i, j)| (120)we then onsider the quantity

Cmax := max
ν

ψ=(p;ν)
max

ψ=(φ;ν)
max
ℓ∈Kψ

Cψ,ℓ (121)At the beginning of the proedure, we therefore have
Cmax = |w|max; see Eq. (111).Given some probability of false alarm θ0, the thresholdparameter χ0 may be de�ned as the upper θ0/2 probabil-ity point of the entral normal distribution:
χ0 := Nθ0/2(0, 1)For example, when θ0 is equal to 0.001, χ0 is of the orderof 3.This threshold parameter may also be de�ned, heuristi-ally, as a given multiple of the mean value of |wψ(i, j)|on G for all ψ.1. Entrane test on CmaxWhen Cmax is smaller than χ0, the model is aepted asit is: no outlier is to be searhed; one then goes to step 4.Conversely, if Cmax is very large ompared to χ0 (saylarger than 1000 for example), the QR proess is reinitial-ized (see Set. 7). In the other ases, the DIA proedureis initialized by setting r = 1 and Π = ∅; r is a reursiveindex; the meaning of the auxillary set Π is de�ned instep 2.2 as soon as it begins to be built. At this stage,the `loal redundany' of the problem, Lr, has a givenvalue.2. Reursive identi�ation of the outliers2.1. Current set of potential outliersGiven some nonnegative onstant κ ≤ 1, form the urrentset of potential outliers
Πr :=

⋃

ν

ψ=(p;ν)
⋃

ψ=(φ;ν)

{

ℓψ : ℓψ ∈ Kψ, Cψ,ℓ ≥ κCmax

}2.2. For eah potential outlier ℓψ ∈ ΠrPerform the following suessive operations:a) When ℓψ /∈ Π, ompute fℓψ ; to do that, see the ontextof Eqs. (115), (110) and Set. 7.3. Then, set
gℓψ = fℓψ Π

set

=

{ {ℓψ} if Π = ∅
Π ∪ {ℓψ} otherwiseBy onstrution, Π is the set of potential outliers ℓψfor whih fℓψ has already been omputed.

QR solutionLoal residual wEntrane teston CmaxReinitializationPotential outliersIdenti�ed outlierIdenti�ed biasesUpdate redundanyUpdate wInner teston CmaxGlobal adaptation
Figure 10: Flow diagram of the DIA proedure. Thisproedure is based on an examination of the loal resid-ual w. This residual, with omponents wψ(i, j), is the ob-servational residual simply divided by the standard devia-tion σψp

η(i, j) of the original data; see the introdution ofEq. (109). At eah step of the identi�ation proess, the up-dated values of w are analyzed on the grounds of Eqs. (121)and (120); see steps 1, 2.7 and 2.8. This allows the po-tential outliers to be seleted. The outliers an thus beidenti�ed, in a reursive manner, via a partiular orthogo-nalization Gram-Shmidt proess. This QR Gram-Shmidtproess also provides the iden�able biases (see Set. 9.2),and thereby the yle slips if any. When the ambiguity arenot �xed, these biases are slightly re�ned through the globaladaptation proess desribed in Set. 9.4.b) If r = 1 go to step 2.2. Otherwise, at this level,
{g◦q}q<r is an orthonormal set. (This set is built, pro-gressively, via step 2.3.) Then, for eah integer q < r,onsider the inner produt de�ned as follows:

ςq,ℓψ := (g◦q · gℓψ) ≡ [g◦q]T[gℓψ ]If ςq,ℓψ has not been omputed yet, ompute it, storeit in memory, and perform the Gram-Shmidt orthog-onalization operation
gℓψ

set

= gℓψ − ςq,ℓψg
◦
qBy onstrution,

ςq,ℓψ = (g◦q · fℓψ)At the end of all these operations, gℓψ is orthogonalto g◦q for any q < r.



Lannes and Gratton: GNSS networks in algebrai graph theory 72) Consider the projetion of w on the one-dimensionalspae generated by gℓψ , i.e.,
(hℓψ · w)hℓψ hℓψ := gℓψ/‖gℓψ‖where ‖gℓψ‖2 ≡ [gℓψ ]T[gℓψ ]. The norm of this proje-tion is equal to |(hℓψ · w)|, the absolute value of thequantity
γℓψ := (gℓψ · w)/̺ℓψ ̺ℓψ := ‖gℓψ‖2.3. Identi�ed outlierThe identi�ed outlier ℓ⋆ψ⋆ is de�ned as the dominant po-tential outlier, i.e., the potential outlier for whih |γℓψ | ismaximal:

ℓ⋆ψ⋆ := arg max
ℓψ∈Πr

|γℓψ |We then disard ℓ⋆ψ⋆ from Kψ⋆ : Kψ⋆ set

= Kψ⋆ − {ℓ⋆ψ⋆}. Wethen set
◦r := ℓ⋆ψ⋆ O set

=

{ {◦r} if r = 1

O ∪ {◦r} if r > 1

γ◦r := γ◦r
g◦r := g◦r

/̺◦rHere, ◦ stands for outlier. At this level, O is the urrentset of identi�ed outliers:
O = {◦q}r

q=1By onstrution, {g◦q}r
q=1 is an orthonormal basis of theurrent range of M ; ∑r

q=1 γ
◦
qg

◦
q is the projetion of w onthis spae. With regard to Eq. (117), we then set

β◦
r := β◦r

f◦
r := f◦r2.4. Components of g◦r in the basis of the f◦

q 'sThese omponents are denoted by uq,r:
g◦r =

r
∑

q=1

uq,rf
◦
qThey are omputed via the following QR Gram-Shmidtformulas (see, e.g., Björk 1996):

uq,r =























− 1

̺◦r

∑

q≤q′<r

uq,q′ ςq′,◦r
if q < r

1

̺◦r

if q = rfor 1 ≤ q ≤ r. The uq,r's are the entries of the rth olumnof an upper triangular matrix U.

2.5. Identi�ed biasesAording to Eq. (117), the biases β◦
q are the omponentsof ∑r

q=1 γ
◦
qg

◦
q in the basis of the f◦

q 's:
r
∑

q=1

γ◦qg
◦
q =

r
∑

q=1

β◦
qf

◦
qDenoting by [γ◦] the olumn matrix with entries γ◦q (from

q = 1 to r), and likewise for [β◦], we have [β◦] = U[γ◦].The identi�ed biases are therefore to be updated as fol-lows:
β◦

q

set

=

{

β◦
q + uq,rγ

◦
r if q < r

ur,rγ
◦
r if q = r

(for 1 ≤ q ≤ r)2.6. Update the loal redundany
Lr

set

= Lr − 1If Lr = 0 go to step 3.2.7. Update w
w

set

=w − γ◦r g
◦
r2.8. Update Cmax

Cmax := max
ν

ψ=(p;ν)
max

ψ=(φ;ν)
max
ℓ∈Kψ

Cψ,ℓ2.9. Inner test on CmaxIf Cmax > χ0, update the reursive index: r
set

= r+1. Then,go to step 2.1.3. Global adaptationUpdate the global QR reursive proess by taking aountof the identi�ed bias variables (see Set. 9.4).4. End10 Conluding ommentsThe GNSS entralized approah presented in Lannes andGratton (2008) was restrited to the ase of RTK ob-servations with a single baseline of loal sale. Thatapproah was validated by proessing real GPS data indual-frequeny mode. The present paper was devoted tothe extension of that ontribution to the general ase ofmultiple-baseline networks of any sale. (The extendedsatellite-lok biases are not estimated.)To introdue the reader to the related onepts, we �rstexamined the speial ase where the GNSS graph is full:all the reeiver-satellite signals of the GNSS network arethen available; see Set. 3.1. The arrier-phase integerambiguity vetor an then be deomposed into three in-teger ambiguity omponents: the reeiver, the satelliteand the DD ambiguity vetors; see Eq. (23).
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