

Journal of Global Positioning Systems (2009)
Vol.8, No.1 : 75-84

Implementation of a Complete GPS Receiver on the C6713 DSP
through Simulink

Gihan Gomah Hamza†, Abdelhaliem A. Zekry‡, and Mohamed N. Moustafa♀
†Research assistant in the National Institute of Standards, Guiza, Egypt.
‡Professor in the Communications and Electronics Department, Faculty of Engineering, Ain Shams University, Cairo,
Egypt.
♀Assistant professor in the Computer and systems Department, Faculty of Engineering, Ain Shams University, Cairo,
Egypt.

Abstract

In the past, the implementation of a complete GPS
receiver was divided into two parts. The first part is
implemented on ASIC or FPGA. This part includes the
acquisition and tracking phases, where the algorithms of
the both are written by the HDL programming language.
The second part is the navigation solution part that is
implemented on DSP by writing its algorithm by C/C++,
FORTRAN, or assembly. This means that we have to deal
with three environments to implement a complete GPS
receiver. The three environments are the Simulation,
FPGA, and DSP environments. Moreover, using a text
programming languages in writing such long and
complicated algorithms makes the process exhaustive and
difficult to debug, modify, and learn. This article
introduces the simulation and implementation of a
complete GPS receiver on a DSP through a graphical
programming language, which is SIMULINK. This makes
every part in the receiver architecture very clear and easier
to understand, follow, modify and debug. This can be
considered a step added on the route of an open source
GPS receiver. Using the same environment in both the
simulation and implementation stages makes the
designer’s mind dedicated most of the time in developing
and enhancing the algorithm through rapid prototyping
and experimentation and less time on the coding. In
general, this article can be considered as introducing a
new look for designing, simulating, and implementing the
most complicated parts of a typical GPS receiver using a
graphical programming language, which is SIMULINK.

Keywords: GPS receiver, MATLAB, SDR, Simulink,
System design, RTW, and RTDX.

1 Introduction

Any GPS receiver that deals with the Standard Positioning

Service (SPS) transmitted on the L1 carrier of
1.57542GHz using the Coarse Acquisition (C/A) code has
four phases to extract the position and time from the
received signal. These phases are: the front-end, the
acquisition phase, the tracking phase, and the navigation
solution (calculations) phase.

Previously, and disregarding the front-end, to implement
such receiver according to the SDR technology, it is
required to deal with three environments; A simulation
environment such as MATLAB or Simulink to simulate
and verify each phase, FPGA environment to implement
and verify both the acquisition and tracking phases by
writing the algorithm in the HDL language, and a DSP
environment to implement and verify the navigation
solution (calculations) phase by writing its algorithm in
C/C++ programming language. This process, for sure, is
exhaustive and takes a long time. In this article we
introduce the simulation and implementation of all the
phases of a GPS receiver that deals with the SPS service
through Simulink, which is a graphical programming
language. Utilizing the same environment in the
simulation and implementation stages makes the designer
mind dedicated most of the time in developing and
enhancing the algorithm and less time on the coding.

In fact, this article is a continuation to the efforts that have
been exerted by Kai Borre, Dennis Akos, and others to
facilitate the simulation of the GPS receiver. These efforts
fruited a book called “A Software-Defined GPS and
GALILEO Receiver: A Single-Frequency Approach” in
which they introduced the simulation of a complete single
frequency GPS receiver using the C/A code on the L1
carrier utilizing MATLAB as the coding and simulation
environment. They introduced the receiver’s algorithm in
39 m-files. The GPS signal that they used in verifying the
algorithm was a real signal received by an ASIC-based
front-end fabricated especially for Borre–Akos book.

Gihan, Zekry, and Moustafa : Implementation of a Complete GPS Receiver on the C6713 DSP through Simulink
76

In this article the Borre-Akos algorithm was ported to
Simulink for the purpose of both the simulation and
implementation on the C6713 DSP starter kit through
Simulink. We added some modifications, which will be
stated in the following sections, to make the Simulink
models implementable on a DSP.

The implementation process is done through utilizing the
Real Time Workshop (RTW) and the Target Support
Package (TC6) softwares introduced by Matlab. Each
phase was built as a separate Simulink model and verified
on the Code Composer Studio (CCS3.3) C6713 Device
Functional Simulator from Texas Instruments. The
tracking phase was emulated on the C6713DSP starter kit.
All the simulated and verified phases are combined in a
single Simulink model to represent a complete GPS
receiver, which is ready to be downloaded on a DSP by
just one click. The GPS signal that was used in verifying
our Simulink models was the same real signal that was
used in verifying the Borre-Akos algorithm. This signal
was accompanying the Borre-Akos book on a DVD. We
used the CCS Functional simulator instead of the 6713
DSP starter kit for the acquisition and the navigation
solution phases because the generated C-code from
Simulink requires a RAM size more than the 16MB that
was available on the DSP kit.

2 The Front-End

The real GPS signal that was used in verifying both the
Borre-Akos algorithm and our Simulink models was
received by the SE4110 ASIC-based front-end. The
functional block diagram of this front-end is shown in Fig.
1.

The received GPS signal has the following parameters:-

• Sampling frequency (Fs): 38.192MHz,
• Intermediate Frequency (IF): 9.548MHz, and
• Eight-bit samples.

These parameters are acceptable in the Simulation stage
and will not cause major problems. Because the hardware
resources required for the simulation will be withdrawn
from the computer (PC). When we intended to implement
the simulated models we had to make another look to
these parameters specially the sampling frequency. Using
a high sampling rate has a direct impact on increasing
both the processing time and the number of operations
required by the processor platform whether it was DSP or
FPGA. Because as the sampling frequency increases the
number of samples to be processed increases. So, we have
to either make another front-end that belongs to the low-IF
type or change these parameters as a step prior to the
acquisition phase. We chose the second solution.

Fig. 1: The functional block diagram of the SE4110 ASIC-based front-

end

Changing the IF to a value equals to double the code
frequency, which amounts to 1.023MHz, and it is done by
multiplying the input signal by a frequency value equal to
the difference between the original IF and double the code
frequency (i.e., 9.548MHz – 2*1.023MHz). After
acquisition, the detected carrier frequencies for the visible
satellites are referenced again to the original IF by adding
to them the same difference.

In the acquisition phase we are using the parallel code
phase search acquisition, which will be described in the
next section, by performing Circular Correlation through
Fourier Transform. The data size selected for acquisition
was 1 ms (equivalent to one complete C/A code). This
means that the number of samples per C/A code to be
processed equals to Fs×1ms. So if the sampling frequency
had the lowest possible radix-2 value, (i.e., Fs=2n

; n is a
positive integer), the acquisition time will be decreased
and the processor requirements will be relaxed.

The resampling process was executed by an unordinary
manner. The number of samples in a complete C/A code,
which will be processed in acquisition and equals to
38192 samples, was first interpolated to be 65536 samples
and then each 8 or 16 consecutive samples were replaced
with their mean. By this way we obtain a sampling
frequency of 8.192MHz, which means 8192 samples per
C/A code, or 4.096MHz, which means 4096 samples per
C/A code, respectively. The detected code phase, for a
visible satellite, after resampling by such a manner can be
referenced again to the original number of samples per
C/A code by multiplying the detected one by either
(38192/8192) or (38192/4096) then rounding the result to
the nearest integer. Fig. 2 and Fig. 3 show the process of
stepping down both the IF and Fs.

We have to notice here that resampling by a fractional
parameter using the “Resample” function in MATLAB
gave worse simulation results as well as caused problems

Gihan, Zekry, and Moustafa : Implementation of a Complete GPS Receiver on the C6713 DSP through Simulink
77

during implementation.

Fig. 2: Changing the IF to be double the code frequency and stepping

down Fs to be 8.192MHz

Fig. 3: Changing the IF to be double the code frequency and stepping

down Fs to be 4.096MHz

Resampling here implies that we resample only the
incoming GPS signal but both the locally generated
demodulating frequency and dispreading PRN codes are
sampled according to the new parameters from the start.
In other words, changing the IF and Fs in such way is
equivalent to processing a signal received from a low-IF
front-end that has the new Fs and IF. This method is
superior to the Averaging Correlator method because it
decreases the simulation time significantly and doesn’t
imply sampling and resampling both the locally generated
modulating frequency and dispreading codes.

Now we have two trials for making successful acquisition
after reducing IF and Fs. The first trial uses the following
parameters:

• Fs=8.192 MHz,
• IF=2*Code Frequency,
• No. of samples per C/A code=8192, and
• No. of samples per chip=8.
• The second trial uses the following parameters:
• Fs=4.096 MHz,
• IF=2*Code Frequency,
• No. of samples per C/A code=4096, and
• No. of samples per chip=4

3 Acquisition

The main purpose of acquisition is to determine the
frequency, as a rough estimation, and the code phase of
the PRN for each visible satellite. Acquisition was
implemented by the parallel code phase search technique
that is shown in Fig.4. In this technique we circularly
correlate (in the frequency domain) the incoming GPS
signal with both a number of the locally generated carrier
frequencies and PRN codes of different code phases. The
locally generated carrier frequencies cover a range
determined according to the satellites rotation velocity and
the receiver velocity. The minimum frequency range that
corresponds to a fixed GPS receiver equals to IF±5KHz.

The maximum range occurs for a receiver that has a very
high velocity and this range equals to IF±10KHz. In
general, we use a 500Hz frequency bin. The number of the
locally generated PRN codes is 32, which corresponds to
the number of all the working satellites in the space
segment. We have a correlation peak if and only if both
the generated carrier frequency and the phase of the
generated PRN are perfect replicas for those of the
received signal. The search through all the possible
frequency bins is parallelized with the code phase search
such that the total number of searches per satellite equals
the number of frequency bins. The number of frequency
bins in our case was 29 frequency bins for ±7 KHz search
band. The parallel code phase search technique was
implemented in Simulink two times, as shown in Fig. 5, to
eliminate the effect of the data bit transition. In the
Simulink model of acquisition the 29 frequency bins are
searched at the same time where the incoming signal, after
resampling, is multiplied by a matrix containing all the
possible IF frequencies. This means that the total number
of searches for the 32 satellites is 32. We ran the
acquisition algorithm of Borre-Akos that was written as
m-code for Fs=38.192MHz and IF=9.548MHz. Also we
ran our Simulink model of acquisition two times. The first
time for Fs=8.192MHz and IF=2.046MHz and the second
time for Fs=4.096MHz and IF=2.046MHz. In the
following section we will compare the acquisition
performance in the three cases.

Simulation stage
Acquisition results are represented by four outputs: the
detected PRNs, the Signal to Noise Ratio (S/N), the code
phase of the PRN, and the carrier frequency (IF) for the
visible satellites. The S/N represents the ratio between the
highest correlation peak to the next peak.

Fig. 4: The parallel code phase search algorithm

Fig. 5: The implementation of the parallel code phase search algorithm to

avoid data bit transition

Gihan, Zekry, and Moustafa : Implementation of a Complete GPS Receiver on the C6713 DSP through Simulink
78

Table 1 shows a comparison between the acquisition
results obtained from the Borre-Akos algorithm and those
obtained from our Simulink model after modifying the Fs
and IF. This comparison is made according to: 1- the
number of detected PRNs in each trial; 2- the maximum
percentage error (%Re

ReRe
sultoriginal

sulttrialsultoriginal −) in the detected

S/N, code phase, and IF for each trial. Our reference is the
results obtained from Borre-Akos algorithm; 3- the data
type used in the processing; 4- the simulation
environment; 5- the acquisition time for each trial. Fig. 6a,
6b, and 6c show the acquisition plot using the original and
modified IF and Fs.

From Fig. 6 and Table 1 it is clear that the percentage
error in the results obtained at Fs=8.192MHz are
negligibly small and we can say that we obtained nearly
typical results as those of Borre-Akos but with much
reduced acquisition time.

Although the maximum error in the S/N for the PRNs
detected at Fs=4.096MHz exceeded 50%, the error in the
detected code phase of the visible satellites is very small.
This is because the code phase step in the parallel code
phase search acquisition technique is one sample. This
means that we can detect the code phase with a very high
accuracy. In spite of missing three PRNs we could acquire
more than four satellites with accurate code phase and
carrier frequency. This means that a lower Fs can be used
for stronger GPS signal reception.

Implementation stage
It was difficult to make the implementation stage at the
original sampling frequency due to the huge number of
samples per C/A code to be processed. So, the
implementation was executed for the model that work
according to the modified IF and Fs.

 Borre-Akos
IF=9.548MHz

Fs=38.192MHz
(Reference

1

)

st

IF=
2.046MHz

 trial

Fs=8.192M
Hz

2nd

IF=2.046MH
z

 trial

Fs=4.096MH
z

Detected PRNs 8 8 5

Max. % error
in S/N

0% 14.5% 50.4%

Max. % error
in Code phase

0% 0.12% 0.25%

Max. % error
in Detected IF

0% 7.3% 5.3%

Data type used Double Single Single

Simulation
environment

M-files SIMULINK SIMULINK

Acquisition
time

183 sec < 24 sec < 17 sec

Table 1: Comparison between the acquisition results obtained before and
after modifying the IF and Fs

PRN No.

Fig. 6a: Acquisition plot at IF= 9.548MHz and Fs=38.192MHz

PRN No.

Fig. 6b: Acquisition plot at IF= 2.046MHz and Fs=8.192MHz

PRN No.

Fig. 6c: Acquisition plot at IF= 2.046MHz and Fs=4.096MHz

The simulated Simulink model isn’t necessarily the same
model that can use the Real Time Workshop (RTW)
technology that automatically generates a C/C++ source
code from it because:

1- Not all the Simulink blocks used in building the
model are permitted to use the RTW. These blocks can be
known by reviewing the help of each block. In this case
we have to rebuild the functions done by such block by
using another blocks that have a permission to use the
RTW.

2- There may be a combination of blocks in the
Simulink model that can’t be understood by the RTW.
The problem here is that when we try to Build (use the
RTW and TC6) the model gives either pseudo errors or no
errors and stop Building. This combination can be
identified by partitioning the model into small sections. If
the first section succeeded in using the RTW then we add
to it the next section and try to use the RTW and so on till
we fail after adding certain section. At this moment we
have to write the function of that section as M-code using

Gihan, Zekry, and Moustafa : Implementation of a Complete GPS Receiver on the C6713 DSP through Simulink
79

the Embedded MATLAB Function block.

The two bottlenecks in the acquisition model that were
modified to enable it to use the RTW successfully were: a
combination of two Selector blocks used at the input to
make acquisition for two consecutive C/A codes and a
combination of blocks used in searching for the
correlation peak, frequency bin, and code phase. The two
combinations are reconstructed by writing their functions
as m-code using the Embedded MATLAB Function.

Inserting m-code in the Simulink model makes it slower in
the simulation stage, but enables it to use the TC6 that
integrates Simulink with Texas Instruments Express DSP
Development tools.

To verify that the generated C-code from the Simulink
acquisition model gives the same results as in the
simulation stage, Real Time Data Exchange (RTDX)
blocks are inserted at the model’s outputs before
generating the C code to enable it from transferring the
results from the C6000 target to the PC. We found that all
the DSP results are the same as the simulated results
shown in Fig.6.

The implementation of the acquisition phase is done by
using the C6713 Device Functional Simulator existed in
the Code Composer Studio (CCS 3.3) because the RAM
size required by the generated code exceeded the 16MB
that was available on the C6713 starter kit.

4 Tracking

The main purpose of tracking is to refine the acquisition
results, track any changes that occur to these results with
time, and demodulate and dispread the incoming signal to
obtain the 50 bits/s navigation data. The data size that is
being processed in each tracking cycle is a complete C/A
code plus or minus the delay or lag that is being calculated
during tracking. Tracking starts if the number of the
detected PRN codes at the acquisition phase ≥ 4.

In general, tracking is implemented as a carrier tracking
loop that works in consistency with a code tracking loop.
The carrier and code tracking loops that are used usually
in GPS receivers are the Costas Phase Lock Loop (PLL)
and the Delay Lock Loop (DLL). Fig. 7a, and 7b show the
block diagram of both Costas PLL and the DLL. Usually
the two loops are combined in one loop to increase the
control on the generated carrier frequency and the code
phase and to reduce the number of multipliers. This helps
in reducing the tracking time.

Fig. 7a: Costas phase locked loop

Simulation stage
A complete tracking channel was built in Simulink
according to the functional block diagram of the combined
Costas PLL and DLL that is shown in Fig.8. Fig. 9 shows
the Simulink model of a complete tracking channel, which
corresponds to the functional block diagram shown in Fig.
8. Now, to demonstrate how using a graphical
programming language in simulation makes the simulated
system very clear we will describe each block in Fig. 9.

Fig. 7b: Delay Lock Loop has 6 correlators

The Carrier Loop Discriminator block was built as an
arctan discriminator according to the following equation:

)(tan 1

I

Q−=φ

Where φ

 is the phase error. I and Q are the in-phase and
quadrature signals of Costas loop. The implementation of
this discriminator is shown in Fig. 10.

The Carrier Loop Filter was implemented as a second
order filter in the carrier tracking loop that has the
following parameters:

• Damping Ratio (ζ) =0.7,
• Noise Bandwidth (Bn) =25Hz,
• Natural frequency (wn) = 8 ζBn/ (4ζ2

• Loop gain (K) = 0.25, and
+1),

• Filter coefficients (τ1, τ2), where τ1=K/(wn)2
and τ2=2ζ/ wn

.

Fig. 11 shows the implementation of this filter in
Simulink.

Gihan, Zekry, and Moustafa : Implementation of a Complete GPS Receiver on the C6713 DSP through Simulink
80

The NCO Carrier Generator block, which represents the
numerically controlled oscillator, is implemented in
Simulink as a center frequency, which was detected in the
acquisition phase, its value is decreased or increased
according to the filtered output of the discriminator.
Sampling the locally generated carrier frequencies
according to the original Fs, which amounts to 38192KHz,
was implemented in Simulink as shown in Fig. 12.

The PRN Code Generator block generates three code
replicas that have a spacing of ±½ chip. The three code
replicas are correlated with the incoming signal.
According to the correlation result we decide to lag or
lead the P-code to follow the changes on the phase of the
received code. The PRN Code Generator block was
implemented as a look up table that retain all the 32 PRNs
without sampling. According to the detected PRN from
acquisition and the anticipated number of samples per C/A
code that is detected from the previous tracking cycle, we
sample this PRN. Fig. 13 shows the implementation of the
PRN code generator in Simulink.

The Code Loop Discriminator was implemented as a
normalized noncoherent discriminator according to the
following equation:

)()(
)()(

2222

2222

LLEE

LLEE

QIQI
QIQIcodeError

+++
+−+=

Where IE and IL are the in-phase outputs of the early and
late codes respectively. QE and QL

 are the outputs of the
quadrature early and late codes respectively. Fig. 14
shows the implementation of that discriminator in
Simulink.

The Code Loop Filter is the same as the Carrier Loop
Filter except that the noise bandwidth (Bn) was taken to
be 2Hz and the loop gain (K) was 1. The Integrate and
Dump operation shown in Fig.8 is implemented as a
summing block that sums all the samples values per C/A
code.

Fig. 8: A combined carrier and code tracking loop (complete tracking

channel)

The real GPS signal that was used in verifying our models
was saved in a binary file. The IncomingSignal block that
is shown in Fig. 9 is responsible for feeding the tracking
channel with the C/A codes. The number of samples to be
fed each cycle from the file is calculated from the
previous cycle and we start by 38192 samples. Reading
data from that file was implemented by using the Level-2
M-file S-Function block as shown in Fig. 15.

Fig. 9: The implementation of a complete tracking channel in Simulink

Gihan, Zekry, and Moustafa : Implementation of a Complete GPS Receiver on the C6713 DSP through Simulink
81

Fig. 10: The implementation of the carrier loop discriminator in Simulink

Fig. 11: The implementation of the carrier loop filter in Simulink

Fig. 12: Sampling the NCO output

Fig. 13: The implementation of the PRN code generator in Simulink

Fig. 14: The implementation of the code loop discriminator in Simulink

Fig. 15: Feeding the tracking channel with the C/A codes in Simulink

Tracking is done according to the original front-end main
parameters, which are IF=9.548MHz and Fs=38.192MHz.
Making tracking according to the modified IF and Fs will
imply either resampling the data file that contains the
incoming navigation message before starting tracking or
resampling it step by step during tracking. In either of the
two cases this will represent a time overhead added to the
tracking given that to complete the tracking of only one
page from the navigation message we need to process
more than 36000 C/A codes.

Fig. 16a, 16b, and 16c show a part of the navigation data
extracted from the tracking model for PRN number 3 after
making acquisition using the original and modified
parameters.

The data inversion for the same PRN that is shown in Fig.
16c returns to the ability of the carrier tracking loop
(Costas loop) to track the signal with 180o

 phase shift.
This inversion doesn’t affect the position solution because
the navigation solution phase can distinguish between the
data and its inverted version.

Implementation stage
To transform the Simulink model to a DSP implementable
model that can use the RTW and TC6 to target a DSP we
modified the following parts:

1- The file transfer section that is responsible for
feeding the tracking algorithm with the required
data size to be processed in each cycle was
modified. The Level-2 M-file S-Function block

Gihan, Zekry, and Moustafa : Implementation of a Complete GPS Receiver on the C6713 DSP through Simulink
82

C
or

re
la

tio
n

re
su

lt
C

or
re

la
tio

n
re

su
lt

that is shown in Fig. 13 and the Level-2 M-file S-
Function block that feeds the first one by the File
Identifier (fid) were reconstructed as a C-file S-
function. Because the “fopen”, “fseek”, “fread”,
and “ftell” m-functions are not permitted to use
the RTW software.

2- The two multipliers that are used in wiping off
the carrier in the I and Q branches are replaced
by an Embedded MATLAB Function that do the
same job.

The tracking phase isn’t heavy as the acquisition phase,
which is the heaviest and most time consuming phase in
the GPS receiver. Tracking needed only less than 6.5MB
of SDRAM. So, it could be implemented on the
C6713DSP starter kit that has a maximum SDRAM size
of 16MB.

The verification of the tracking algorithm that ran on the
DSP starter kit was done through transferring the results
through the RTDX channels from the target RAM to
MATLAB. The results received from the DSP kit were the
same as those obtained in simulation.

5 Navigation solution

In this phase the 50 Hz navigation bits are decoded
according to ICD-GPS-200 (1991) to obtain the
pseudorange, the receiver position, and the receiver clock
offset. The navigation solution phase is simulated
according to the block diagram shown in Fig. 17.

The first step in the navigation solution phase is the Bit
Synchronization. In this step we find the time where bit
transitions occur and then each 20ms are replaced by a
single value that represent a navigation data bit. The
second step is determining the beginning of each subframe
that is consisting of an 8-bit long preamble and that is
performed by correlating the tracking output with a locally
generated preamble.

The third step is to determine the transmission time of the
first detected subframe by the aid of decoded TOW word.
The TOW corresponds to the transmission time of the next
subframe. To obtain the transmission time of the first
subframe we multiply the TOW by 6 and subtract 6s from
the result. All the navigation bits are ready now to be
decoded. The ephemeris parameters are decoded
according to Table 2 and Table 3. Pseudorange
calculations are accomplished on two steps: the first step
is to find initial pseudoranges. The second step is to keep
track of the initially calculated pseudoranges. The initial
pseudoranges are used in calculating the receiver position
(X Y Z) and the receiver clock offset (dt). The Least-

Squares method is usually used in calculating the receiver
position for ≥ 4 visible satellites.

Fig. 16a: Part of the navigation data bits for PRN3 extracted after making

acquisition by IF=9.548MHz and Fs=38.192MHz

Fig. 16b: Part of the navigation data bits for PRN3 extracted after

making acquisition by IF=2.046MHz and Fs=8.192MHz

Fig. 16c: Part of the navigation data bits for PRN3 extracted after making

acquisition by IF=2.046MHz and Fs=4.096MHz

Table 2: The ephemeris parameters

Gihan, Zekry, and Moustafa : Implementation of a Complete GPS Receiver on the C6713 DSP through Simulink
83

Simulation stage
Although the navigation solution phase is the lightest
phase in the GPS receiver; it is the most complicated
phase. Building this phase using Simulink makes the
compound and complicated calculations very clear and
easy to follow. The Find Preamble and Pseudorange
algorithms were built in Simulink as shown in Fig. 18 and
Fig.19 respectively. Fig. 20 shows the results obtained for
the receiver position and receiver clock offset.

Table 3: The decoding scheme for the ephemeris parameters

Fig. 17: Navigation solution block diagram

Fig. 18: The algorithm for finding the preamble in Simulink

Fig. 19: The pseudorange calculations for one satellite in Simulink

Implementation stage
The navigation solution model could use the RTW and
TC6 easily. But due to the large amount of the tracking
results to be fed to the navigation solution algorithm, we
couldn’t run it on the C6713DSP starter kit and simulated
its performance on the kit by using the C6713 Device
Functional Simulator. The same results that are obtained
from the Simulink model are obtained, through the RTDX
channels, from the target Functional Simulator. We have
to mention that the error in the navigation solution (with
respect to that obtained from Borre-Akos algorithm) after
making acquisition according to Fs=8.192MHz and
IF=2.046MHz was as follows:

- The error in the x direction was less than 7.77e-13.
- The error in the y direction was less than 2.17e-13.
- The error in the z direction was less than 2.51e-13.
- The error in the receiver clock error (dt) was less than
1.34e-12.

The error in the navigation solution after making
acquisition according to Fs=4.096MHz and IF=2.046MHz
was as follows:
- The error in the x direction was less than 1.47e-05.
- The error in the y direction was less than 2.64e-06.
- The error in the z direction was less than 4.71e-06.
- The error in the receiver clock error (dt) was less than
4.12e-05.

6 Simulation and Implementation of a complete GPS

receiver through Simulink

The Simulink models of acquisition, tracking, and
navigation solution phases were combined in one model
that represents the simulation stage of a complete GPS
receiver. Constructing the receiver in such a way makes
its architecture very clear and very easy to debug, modify,
and separate any part of it and obtain immediate results.
The DSP Implementable models of acquisition, tracking,
and navigation solution were also combined in one model.
This model forms a complete GPS receiver that is ready,
by just one click, to run on the C6713 Device Functional
Simulator or any DSP kit that support Simulink and has
enough RAM size.

Gihan, Zekry, and Moustafa : Implementation of a Complete GPS Receiver on the C6713 DSP through Simulink
84

Fig. 20: The results obtained from the Navigation Solution model

7 Summary and Conclusion

In this article we introduced the simulation and
implementation of a complete GPS receiver on a DSP
through a graphical programming language, which is
Simulink. Also we introduced the idea of modifying both
the IF and Fs in the Simulink GPS receiver and the
corresponding results can be easily analyzed. Using a
graphical environment in both the simulation and
implementation stages makes the designer mind dedicated
most of the time in developing and enhancing the
algorithm and less time on the coding. Moreover using a
graphical programming language makes the algorithm
very clear and can be easily modified and debugged. In
general, the simulation and implementation of a complete
GPS receiver through a graphical environment represent a
new approach for the SDR technology.

References
K. Borre, D. Akos (2006), A Software-Defined GPS and

GALILEO Receiver – A Single-Frequency Approach,
Birkhauser Boston.

Akos, D. (1997), A Software Radio Approach to Global
Navigation Satellite System Receiver Design Approach,
Ph.D Dissertation, Ohio University.

Yi-Ran Sun. (2006), Generalized Bandpass Sampling
Receivers For Software Defined Radio, Ph.D
Dissertation, Royal Institute of Technology, Stockholm.

James Bao-Yen Tsui (2005), Fundamentals Of Global
Positioning System Receivers, USA, John Wiley & Sons.

J. Starzyk and Z. Zhu, (2001), Averaging Correlation for C/A

code Acquisition and Tracking in Frequency Domain,
MWSCS, Fairborn, Ohio.

Kaplan, E. D. and C. J. Hegarty, (2006), Understanding GPS:
Principles and Applications, 2nd Edition, Norwood

GPS Joint Program Office, (1995), Global Positioning System

Standard Positioning Service Signal Specification.

Real-Time Workshop User's Guide,

(http://www.mathworks.com/access/helpdesk/help/pdf_doc/rtw/rt
w_ug.pdf)

Target Support Package TC6 3, User’s Guide,

(http://www.mathworks.com/access/helpdesk/help/pdf_doc
/tic6000/tic6000.pdf)

Ziemer, R. E., Peterson, R. L. (1985), Digital Communications
and Spread Spectrum System, Macmillan, New York.

E. Del Re, M. Ruggieri (2008), Satellite Communications and

Navigation Systems, Springer Science+Business Media,
LLC.

http://celestrak.com/GPS/icd200cw1234.pdf

SE4110L PointChargerTM GPS Receiver IC, Data Sheet.

http://www.mathworks.com/access/helpdesk/help/pdf_doc/rtw/rtw_ug.pdf�
http://www.mathworks.com/access/helpdesk/help/pdf_doc/rtw/rtw_ug.pdf�
http://www.mathworks.com/access/helpdesk/help/pdf_doc/rtw/rtw_ug.pdf�
http://www.mathworks.com/access/helpdesk/help/pdf_doc/rtw/rtw_ug.pdf�
http://celestrak.com/GPS/icd200cw1234.pdf�

	Implementation of a Complete GPS Receiver on the C6713 DSP through Simulink
	Simulation stage
	Implementation stage
	Simulation stage
	Implementation stage
	Simulation stage
	Implementation stage

