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Abstract 
 
In the past, the implementation of a complete GPS 
receiver was divided into two parts. The first part is 
implemented on ASIC or FPGA. This part includes the 
acquisition and tracking phases, where the algorithms of 
the both are written by the HDL programming language. 
The second part is the navigation solution part that is 
implemented on DSP by writing its algorithm by C/C++, 
FORTRAN, or assembly. This means that we have to deal 
with three environments to implement a complete GPS 
receiver. The three environments are the Simulation, 
FPGA, and DSP environments. Moreover, using a text 
programming languages in writing such long and 
complicated algorithms makes the process exhaustive and 
difficult to debug, modify, and learn. This article 
introduces the simulation and implementation of a 
complete GPS receiver on a DSP through a graphical 
programming language, which is SIMULINK. This makes 
every part in the receiver architecture very clear and easier 
to understand, follow, modify and debug. This can be 
considered a step added on the route of an open source 
GPS receiver. Using the same environment in both the 
simulation and implementation stages makes the 
designer’s mind dedicated most of the time in developing 
and enhancing the algorithm through rapid prototyping 
and experimentation and less time on the coding. In 
general, this article can be considered as introducing a 
new look for designing, simulating, and implementing the 
most complicated parts of a typical GPS receiver using a 
graphical programming language, which is SIMULINK. 
 
Keywords: GPS receiver, MATLAB, SDR, Simulink, 
System design, RTW, and RTDX. 
 
 
1 Introduction  
 
Any GPS receiver that deals with the Standard Positioning 

Service (SPS) transmitted on the L1 carrier of 
1.57542GHz using the Coarse Acquisition (C/A) code has 
four phases to extract the position and time from the 
received signal. These phases are: the front-end, the 
acquisition phase, the tracking phase, and the navigation 
solution (calculations) phase.  
 
Previously, and disregarding the front-end, to implement 
such receiver according to the SDR technology, it is 
required to deal with three environments; A simulation 
environment such as MATLAB or Simulink to simulate 
and verify each phase, FPGA environment to implement 
and verify both the acquisition and tracking phases by 
writing the algorithm in the HDL language, and a DSP 
environment to implement and verify the navigation 
solution (calculations) phase by writing its algorithm in 
C/C++ programming language. This process, for sure, is 
exhaustive and takes a long time. In this article we 
introduce the simulation and implementation of all the 
phases of a GPS receiver that deals with the SPS service 
through Simulink, which is a graphical programming 
language. Utilizing the same environment in the 
simulation and implementation stages makes the designer 
mind dedicated most of the time in developing and 
enhancing the algorithm and less time on the coding.  
 
In fact, this article is a continuation to the efforts that have 
been exerted by Kai Borre, Dennis Akos, and others to 
facilitate the simulation of the GPS receiver. These efforts 
fruited a book called “A Software-Defined GPS and 
GALILEO Receiver: A Single-Frequency Approach” in 
which they introduced the simulation of a complete single 
frequency GPS receiver using the C/A code on the L1 
carrier utilizing MATLAB as the coding and simulation 
environment. They introduced the receiver’s algorithm in 
39 m-files. The GPS signal that they used in verifying the 
algorithm was a real signal received by an ASIC-based 
front-end fabricated especially for Borre–Akos book.  
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In this article the Borre-Akos algorithm was ported to 
Simulink for the purpose of both the simulation and 
implementation on the C6713 DSP starter kit through 
Simulink. We added some modifications, which will be 
stated in the following sections, to make the Simulink 
models implementable on a DSP. 
 
The implementation process is done through utilizing the 
Real Time Workshop (RTW) and the Target Support 
Package (TC6) softwares introduced by Matlab. Each 
phase was built as a separate Simulink model and verified 
on the Code Composer Studio (CCS3.3) C6713 Device 
Functional Simulator from Texas Instruments. The 
tracking phase was emulated on the C6713DSP starter kit. 
All the simulated and verified phases are combined in a 
single Simulink model to represent a complete GPS 
receiver, which is ready to be downloaded on a DSP by 
just one click. The GPS signal that was used in verifying 
our Simulink models was the same real signal that was 
used in verifying the Borre-Akos algorithm. This signal 
was accompanying the Borre-Akos book on a DVD. We 
used the CCS Functional simulator instead of the 6713 
DSP starter kit for the acquisition and the navigation 
solution phases because the generated C-code from 
Simulink requires a RAM size more than the 16MB that 
was available on the DSP kit. 
 
2 The Front-End 
 
The real GPS signal that was used in verifying both the 
Borre-Akos algorithm and our Simulink models was 
received by the SE4110 ASIC-based front-end. The 
functional block diagram of this front-end is shown in Fig. 
1.  
 
The received GPS signal has the following parameters:-  

• Sampling frequency (Fs):  38.192MHz, 
• Intermediate Frequency (IF):   9.548MHz, and 
• Eight-bit samples. 

 
These parameters are acceptable in the Simulation stage 
and will not cause major problems. Because the hardware 
resources required for the simulation will be withdrawn 
from the computer (PC). When we intended to implement 
the simulated models we had to make another look to 
these parameters specially the sampling frequency. Using 
a high sampling rate has a direct impact on increasing 
both the processing time and the number of operations 
required by the processor platform whether it was DSP or 
FPGA. Because as the sampling frequency increases the 
number of samples to be processed increases. So, we have 
to either make another front-end that belongs to the low-IF 
type or change these parameters as a step prior to the 
acquisition phase. We chose the second solution.  
 

 
Fig. 1: The functional block diagram of the SE4110 ASIC-based front-

end  
 

Changing the IF to a value equals to double the code 
frequency, which amounts to 1.023MHz, and it is done by 
multiplying the input signal by a frequency value equal to 
the difference between the original IF and double the code 
frequency (i.e., 9.548MHz – 2*1.023MHz). After 
acquisition, the detected carrier frequencies for the visible 
satellites are referenced again to the original IF by adding 
to them the same difference. 
 
In the acquisition phase we are using the parallel code 
phase search acquisition, which will be described in the 
next section, by performing Circular Correlation through 
Fourier Transform. The data size selected for acquisition 
was 1 ms (equivalent to one complete C/A code). This 
means that the number of samples per C/A code to be 
processed equals to Fs×1ms.  So if the sampling frequency 
had the lowest possible radix-2 value, (i.e., Fs=2n

 

; n is a 
positive integer), the acquisition time will be decreased 
and the processor requirements will be relaxed.  

The resampling process was executed by an unordinary 
manner. The number of samples in a complete C/A code, 
which will be processed in acquisition and equals to 
38192 samples, was first interpolated to be 65536 samples 
and then each 8 or 16 consecutive samples were replaced 
with their mean. By this way we obtain a sampling 
frequency of 8.192MHz, which means 8192 samples per 
C/A code, or 4.096MHz, which means 4096 samples per 
C/A code, respectively. The detected code phase, for a 
visible satellite, after resampling by such a manner can be 
referenced again to the original number of samples per 
C/A code by multiplying the detected one by either 
(38192/8192) or (38192/4096) then rounding the result to 
the nearest integer. Fig. 2 and Fig. 3 show the process of 
stepping down both the IF and Fs. 
 
We have to notice here that resampling by a fractional 
parameter using the “Resample” function in MATLAB 
gave worse simulation results as well as caused problems 
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during implementation. 
 

 
Fig. 2: Changing the IF to be double the code frequency and stepping 

down Fs to be 8.192MHz 
 

 
Fig. 3: Changing the IF to be double the code frequency and stepping 

down Fs to be 4.096MHz 
 

Resampling here implies that we resample only the 
incoming GPS signal but both the locally generated 
demodulating frequency and dispreading PRN codes are 
sampled according to the new parameters from the start. 
In other words, changing the IF and Fs in such way is 
equivalent to processing a signal received from a low-IF 
front-end that has the new Fs and IF. This method is 
superior to the Averaging Correlator method because it 
decreases the simulation time significantly and doesn’t 
imply sampling and resampling both the locally generated 
modulating frequency and dispreading codes. 

 
Now we have two trials for making successful acquisition 
after reducing IF and Fs. The first trial uses the following 
parameters: 

• Fs=8.192 MHz, 
• IF=2*Code Frequency, 
• No. of samples per C/A code=8192, and 
• No. of samples per chip=8. 
• The second trial uses the following parameters: 
• Fs=4.096 MHz, 
• IF=2*Code Frequency, 
• No. of samples per C/A code=4096, and 
• No. of samples per chip=4 

 
3 Acquisition 
 
The main purpose of acquisition is to determine the 
frequency, as a rough estimation, and the code phase of 
the PRN for each visible satellite. Acquisition was 
implemented by the parallel code phase search technique  
that is shown in Fig.4. In this technique we circularly 
correlate (in the frequency domain) the incoming GPS 
signal with both a number of the locally generated carrier 
frequencies and PRN codes of different code phases. The 
locally generated carrier frequencies cover a range 
determined according to the satellites rotation velocity and 
the receiver velocity. The minimum frequency range that 
corresponds to a fixed GPS receiver equals to IF±5KHz. 

The maximum range occurs for a receiver that has a very 
high velocity and this range equals to IF±10KHz. In 
general, we use a 500Hz frequency bin. The number of the 
locally generated PRN codes is 32, which corresponds to 
the number of all the working satellites in the space 
segment. We have a correlation peak if and only if both 
the generated carrier frequency and the phase of the 
generated PRN are perfect replicas for those of the 
received signal. The search through all the possible 
frequency bins is parallelized with the code phase search 
such that the total number of searches per satellite equals 
the number of frequency bins. The number of frequency 
bins in our case was 29 frequency bins for ±7 KHz search 
band. The parallel code phase search technique was 
implemented in Simulink two times, as shown in Fig. 5, to 
eliminate the effect of the data bit transition. In the 
Simulink model of acquisition the 29 frequency bins are 
searched at the same time where the incoming signal, after 
resampling, is multiplied by a matrix containing all the 
possible IF frequencies. This means that the total number 
of searches for the 32 satellites is 32. We ran the 
acquisition algorithm of Borre-Akos that was written as 
m-code for Fs=38.192MHz and IF=9.548MHz. Also we 
ran our Simulink model of acquisition two times. The first 
time for Fs=8.192MHz and IF=2.046MHz and the second 
time for Fs=4.096MHz and IF=2.046MHz. In the 
following section we will compare the acquisition 
performance in the three cases. 
 
Simulation stage  
Acquisition results are represented by four outputs: the 
detected PRNs, the Signal to Noise Ratio (S/N), the code 
phase of the PRN, and the carrier frequency (IF) for the 
visible satellites. The S/N represents the ratio between the 
highest correlation peak to the next peak. 

 
 

Fig. 4: The parallel code phase search algorithm 
 

 

 
Fig. 5: The implementation of the parallel code phase search algorithm to 

avoid data bit transition 
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Table 1 shows a comparison between the acquisition 
results obtained from the Borre-Akos algorithm and those 
obtained from our Simulink model after modifying the Fs 
and IF. This comparison is made according to: 1- the 
number of detected PRNs in each trial; 2- the maximum 
percentage error ( %Re

ReRe
sultoriginal

sulttrialsultoriginal − ) in the detected 

S/N, code phase, and IF for each trial. Our reference is the 
results obtained from Borre-Akos algorithm; 3- the data 
type used in the processing; 4- the simulation 
environment; 5- the acquisition time for each trial. Fig. 6a, 
6b, and 6c show the acquisition plot using the original and 
modified IF and Fs. 
 
From Fig. 6 and Table 1 it is clear that the percentage 
error in the results obtained at Fs=8.192MHz are 
negligibly small and we can say that we obtained nearly 
typical results as those of Borre-Akos but with much 
reduced acquisition time.  
 
Although the maximum error in the S/N for the PRNs 
detected at Fs=4.096MHz exceeded 50%, the error in the 
detected code phase of the visible satellites is very small. 
This is because the code phase step in the parallel code 
phase search acquisition technique is one sample. This 
means that we can detect the code phase with a very high 
accuracy. In spite of missing three PRNs we could acquire 
more than four satellites with accurate code phase and 
carrier frequency. This means that a lower Fs can be used 
for stronger GPS signal reception. 
 
Implementation stage  
It was difficult to make the implementation stage at the 
original sampling frequency due to the huge number of 
samples per C/A code to be processed. So, the 
implementation was executed for the model that work 
according to the modified IF and Fs.  
 

 Borre-Akos 
IF=9.548MHz 

Fs=38.192MHz 
(Reference

1

) 

st

IF= 
2.046MHz 

 trial 

Fs=8.192M
Hz 

2nd

IF=2.046MH
z 

 trial 

Fs=4.096MH
z 

Detected PRNs 8 8 5 

Max. % error 
in S/N  

0% 14.5% 50.4% 

Max. % error 
in Code phase 

0% 0.12% 0.25% 

Max. % error 
in Detected IF  

0% 7.3% 5.3% 

Data type used Double Single Single 

Simulation 
environment 

M-files SIMULINK  SIMULINK 

Acquisition 
time 

183 sec < 24 sec < 17 sec 

Table 1: Comparison between the acquisition results obtained before and 
after modifying the IF and Fs 

 

 
PRN No. 

Fig. 6a: Acquisition plot at IF= 9.548MHz and Fs=38.192MHz 
 

 
PRN No. 

Fig. 6b: Acquisition plot at IF= 2.046MHz and Fs=8.192MHz 
 

 
PRN No. 

Fig. 6c: Acquisition plot at IF= 2.046MHz and Fs=4.096MHz 
 
The simulated Simulink model isn’t necessarily the same 
model that can use the Real Time Workshop (RTW) 
technology that automatically generates a C/C++ source 
code from it because: 

1- Not all the Simulink blocks used in building the 
model are permitted to use the RTW. These blocks can be 
known by reviewing the help of each block. In this case 
we have to rebuild the functions done by such block by 
using another blocks that have a permission to use the 
RTW. 

2- There may be a combination of blocks in the 
Simulink model that can’t be understood by the RTW. 
The problem here is that when we try to Build (use the 
RTW and TC6) the model gives either pseudo errors or no 
errors and stop Building. This combination can be 
identified by partitioning the model into small sections. If 
the first section succeeded in using the RTW then we add 
to it the next section and try to use the RTW and so on till 
we fail after adding certain section. At this moment we 
have to write the function of that section as M-code using 
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the Embedded MATLAB Function block. 
 
The two bottlenecks in the acquisition model that were 
modified to enable it to use the RTW successfully were: a 
combination of two Selector blocks used at the input to 
make acquisition for two consecutive C/A codes and a 
combination of blocks used in searching for the 
correlation peak, frequency bin, and code phase. The two 
combinations are reconstructed by writing their functions 
as m-code using the Embedded MATLAB Function. 
 
Inserting m-code in the Simulink model makes it slower in 
the simulation stage, but enables it to use the TC6 that 
integrates Simulink with Texas Instruments Express DSP 
Development tools. 
 
To verify that the generated C-code from the Simulink 
acquisition model gives the same results as in the 
simulation stage, Real Time Data Exchange (RTDX) 
blocks are inserted at the model’s outputs before 
generating the C code to enable it from transferring the 
results from the C6000 target to the PC. We found that all 
the DSP results are the same as the simulated results 
shown in Fig.6. 
 
The implementation of the acquisition phase is done by 
using the C6713 Device Functional Simulator existed in 
the Code Composer Studio (CCS 3.3) because the RAM 
size required by the generated code exceeded the 16MB 
that was available on the C6713 starter kit. 
 
4 Tracking 
 
The main purpose of tracking is to refine the acquisition 
results, track any changes that occur to these results with 
time, and demodulate and dispread the incoming signal to 
obtain the 50 bits/s navigation data. The data size that is 
being processed in each tracking cycle is a complete C/A 
code plus or minus the delay or lag that is being calculated 
during tracking. Tracking starts if the number of the 
detected PRN codes at the acquisition phase ≥ 4. 
 
In general, tracking is implemented as a carrier tracking 
loop that works in consistency with a code tracking loop. 
The carrier and code tracking loops that are used usually 
in GPS receivers are the Costas Phase Lock Loop (PLL) 
and the Delay Lock Loop (DLL). Fig. 7a, and 7b show the 
block diagram of both Costas PLL and the DLL. Usually 
the two loops are combined in one loop to increase the 
control on the generated carrier frequency and the code 
phase and to reduce the number of multipliers. This helps 
in reducing the tracking time. 

 
 

Fig. 7a: Costas phase locked loop 
 
Simulation stage 
A complete tracking channel was built in Simulink 
according to the functional block diagram of the combined 
Costas PLL and DLL that is shown in Fig.8. Fig. 9 shows 
the Simulink model of a complete tracking channel, which 
corresponds to the functional block diagram shown in Fig. 
8. Now, to demonstrate how using a graphical 
programming language in simulation makes the simulated 
system very clear we will describe each block in Fig. 9. 

 
Fig. 7b: Delay Lock Loop has 6 correlators 

 

The Carrier Loop Discriminator block was built as an 
arctan discriminator according to the following equation: 

)(tan 1

I

Q−=φ  

Where φ

 

 is the phase error. I and Q are the in-phase and 
quadrature signals of Costas loop. The implementation of 
this discriminator is shown in Fig. 10. 

The Carrier Loop Filter was implemented as a second 
order filter in the carrier tracking loop that has the 
following parameters:  

• Damping Ratio (ζ) =0.7, 
• Noise Bandwidth (Bn) =25Hz, 
• Natural frequency (wn) = 8 ζBn/ (4ζ2

• Loop gain (K) = 0.25, and 
+1), 

• Filter coefficients (τ1, τ2 ), where τ1=K/(wn)2  
and  τ2=2ζ/ wn

 
. 

Fig. 11 shows the implementation of this filter in 
Simulink. 
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The NCO Carrier Generator block, which represents the 
numerically controlled oscillator, is implemented in 
Simulink as a center frequency, which was detected in the 
acquisition phase, its value is decreased or increased 
according to the filtered output of the discriminator. 
Sampling the locally generated carrier frequencies 
according to the original Fs, which amounts to 38192KHz, 
was implemented in Simulink as shown in Fig. 12. 
 
The PRN Code Generator block generates three code 
replicas that have a spacing of ±½ chip. The three code 
replicas are correlated with the incoming signal. 
According to the correlation result we decide to lag or 
lead the P-code to follow the changes on the phase of the 
received code. The PRN Code Generator block was 
implemented as a look up table that retain all the 32 PRNs 
without sampling. According to the detected PRN from 
acquisition and the anticipated number of samples per C/A 
code that is detected from the previous tracking cycle, we 
sample this PRN. Fig. 13 shows the implementation of the 
PRN code generator in Simulink. 
 
The Code Loop Discriminator was implemented as a 
normalized noncoherent discriminator according to the 
following equation:  

)()(
)()(

2222

2222

LLEE

LLEE

QIQI
QIQIcodeError

+++
+−+=  

Where IE and IL are the in-phase outputs of the early and 
late codes respectively. QE and QL

 

 are the outputs of the 
quadrature early and late codes respectively. Fig. 14 
shows the implementation of that discriminator in 
Simulink. 

The Code Loop Filter is the same as the Carrier Loop 
Filter except that the noise bandwidth (Bn) was taken to 
be 2Hz and the loop gain (K) was 1. The Integrate and 
Dump operation shown in Fig.8 is implemented as a 
summing block that sums all the samples values per C/A 
code. 

 
Fig. 8: A combined carrier and code tracking loop (complete tracking 

channel)  
 
The real GPS signal that was used in verifying our models 
was saved in a binary file. The IncomingSignal block that 
is shown in Fig. 9 is responsible for feeding the tracking 
channel with the C/A codes. The number of samples to be 
fed each cycle from the file is calculated from the 
previous cycle and we start by 38192 samples. Reading 
data from that file was implemented by using the Level-2 
M-file S-Function block as shown in Fig. 15. 
 

Fig. 9: The implementation of a complete tracking channel in Simulink 
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Fig. 10: The implementation of the carrier loop discriminator in Simulink 
 

Fig. 11: The implementation of the carrier loop filter in Simulink 
 

 
Fig. 12: Sampling the NCO output 

 

 
Fig. 13: The implementation of the PRN code generator in Simulink 

 

 
Fig. 14: The implementation of the code loop discriminator in Simulink 

 

 
Fig. 15: Feeding the tracking channel with the C/A codes in Simulink 

 
Tracking is done according to the original front-end main 
parameters, which are IF=9.548MHz and Fs=38.192MHz. 
Making tracking according to the modified IF and Fs will 
imply either resampling the data file that contains the 
incoming navigation message before starting tracking or 
resampling it step by step during tracking. In either of the 
two cases this will represent a time overhead added to the 
tracking given that to complete the tracking of only one 
page from the navigation message we need to process 
more than 36000 C/A codes. 
 
Fig. 16a, 16b, and 16c show a part of the navigation data 
extracted from the tracking model for PRN number 3 after 
making acquisition using the original and modified 
parameters. 
 
The data inversion for the same PRN that is shown in Fig. 
16c returns to the ability of the carrier tracking loop 
(Costas loop) to track the signal with 180o

 

 phase shift. 
This inversion doesn’t affect the position solution because 
the navigation solution phase can distinguish between the 
data and its inverted version. 

Implementation stage  
To transform the Simulink model to a DSP implementable 
model that can use the RTW and TC6 to target a DSP we 
modified the following parts: 

1- The file transfer section that is responsible for 
feeding the tracking algorithm with the required 
data size to be processed in each cycle was 
modified. The Level-2 M-file S-Function block 
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that is shown in Fig. 13 and the Level-2 M-file S-
Function block that feeds the first one by the File 
Identifier (fid) were reconstructed as a C-file S-
function. Because the “fopen”, “fseek”, “fread”, 
and “ftell” m-functions are not permitted to use 
the RTW software. 

2- The two multipliers that are used in wiping off 
the carrier in the I and Q branches are replaced 
by an Embedded MATLAB Function that do the 
same job. 

 
The tracking phase isn’t heavy as the acquisition phase, 
which is the heaviest and most time consuming phase in 
the GPS receiver. Tracking needed only less than 6.5MB 
of SDRAM. So, it could be implemented on the 
C6713DSP starter kit that has a maximum SDRAM size 
of 16MB.  
 
The verification of the tracking algorithm that ran on the 
DSP starter kit was done through transferring the results 
through the RTDX channels from the target RAM to 
MATLAB. The results received from the DSP kit were the 
same as those obtained in simulation. 
 
5 Navigation solution 
 
In this phase the 50 Hz navigation bits are decoded 
according to ICD-GPS-200 (1991) to obtain the 
pseudorange, the receiver position, and the receiver clock 
offset. The navigation solution phase is simulated 
according to the block diagram shown in Fig. 17. 
 
The first step in the navigation solution phase is the Bit 
Synchronization. In this step we find the time where bit 
transitions occur and then each 20ms  are replaced by a 
single value that represent a navigation data bit. The 
second step is determining the beginning of each subframe 
that is consisting of an 8-bit long preamble and that is 
performed by correlating the tracking output with a locally 
generated preamble.  
 
The third step is to determine the transmission time of the 
first detected subframe by the aid of decoded TOW word. 
The TOW corresponds to the transmission time of the next 
subframe. To obtain the transmission time of the first 
subframe we multiply the TOW by 6 and subtract 6s from 
the result. All the navigation bits are ready now to be 
decoded. The ephemeris parameters are decoded 
according to Table 2 and Table 3. Pseudorange 
calculations are accomplished on two steps: the first step 
is to find initial pseudoranges. The second step is to keep 
track of the initially calculated pseudoranges. The initial 
pseudoranges are used in calculating the receiver position 
(X Y Z) and the receiver clock offset (dt). The Least-

Squares method is usually used in calculating the receiver 
position for ≥ 4 visible satellites. 
 

 
Fig. 16a: Part of the navigation data bits for PRN3 extracted after making 

acquisition by IF=9.548MHz and Fs=38.192MHz 
 

 
Fig. 16b: Part of the navigation data bits for PRN3 extracted after 

making acquisition by IF=2.046MHz and Fs=8.192MHz 
 

 
Fig. 16c: Part of the navigation data bits for PRN3 extracted after making 

acquisition by IF=2.046MHz and Fs=4.096MHz 
 

 
Table 2: The ephemeris parameters 
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Simulation stage  
Although the navigation solution phase is the lightest 
phase in the GPS receiver; it is the most complicated 
phase.  Building this phase using Simulink makes the 
compound and complicated calculations very clear and 
easy to follow. The Find Preamble and Pseudorange 
algorithms were built in Simulink as shown in Fig. 18 and 
Fig.19 respectively. Fig. 20 shows the results obtained for 
the receiver position and receiver clock offset.  

 

 
Table 3: The decoding scheme for the ephemeris parameters 

 

 
Fig. 17: Navigation solution block diagram 

 

 
 

Fig. 18: The algorithm for finding the preamble in Simulink 
 

 
 

Fig. 19: The pseudorange calculations for one satellite in Simulink 
 
Implementation stage  
The navigation solution model could use the RTW and 
TC6 easily. But due to the large amount of the tracking 
results to be fed to the navigation solution algorithm, we 
couldn’t run it on the C6713DSP starter kit and simulated 
its performance on the kit by using the C6713 Device 
Functional Simulator. The same results that are obtained 
from the Simulink model are obtained, through the RTDX 
channels, from the target Functional Simulator. We have 
to mention that the error in the navigation solution (with 
respect to that obtained from Borre-Akos algorithm) after 
making acquisition according to Fs=8.192MHz and 
IF=2.046MHz was as follows: 
 
- The error in the x direction was less than 7.77e-13. 
- The error in the y direction was less than 2.17e-13. 
- The error in the z direction was less than 2.51e-13. 
- The error in the receiver clock error (dt) was less than 
1.34e-12. 
 
The error in the navigation solution after making 
acquisition according to Fs=4.096MHz and IF=2.046MHz 
was as follows: 
- The error in the x direction was less than 1.47e-05. 
- The error in the y direction was less than 2.64e-06. 
- The error in the z direction was less than 4.71e-06. 
- The error in the receiver clock error (dt) was less than 
4.12e-05. 
 
6 Simulation and Implementation of a complete GPS 

receiver through Simulink  
 
The Simulink models of acquisition, tracking, and 
navigation solution phases were combined in one model 
that represents the simulation stage of a complete GPS 
receiver. Constructing the receiver in such a way makes 
its architecture very clear and very easy to debug, modify, 
and separate any part of it and obtain immediate results. 
The DSP Implementable models of acquisition, tracking, 
and navigation solution were also combined in one model. 
This model forms a complete GPS receiver that is ready, 
by just one click, to run on the C6713 Device Functional 
Simulator or any DSP kit that support Simulink and has 
enough RAM size. 
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Fig. 20: The results obtained from the Navigation Solution model 

 
7 Summary and Conclusion 
 
In this article we introduced the simulation and 
implementation of a complete GPS receiver on a DSP 
through a graphical programming language, which is 
Simulink. Also we introduced the idea of modifying both 
the IF and Fs in the Simulink GPS receiver and the 
corresponding results can be easily analyzed. Using a 
graphical environment in both the simulation and 
implementation stages makes the designer mind dedicated 
most of the time in developing and enhancing the 
algorithm and less time on the coding. Moreover using a 
graphical programming language makes the algorithm 
very clear and can be easily modified and debugged. In 
general, the simulation and implementation of a complete 
GPS receiver through a graphical environment represent a 
new approach for the SDR technology. 
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