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Abstract  
 
This manuscript centers on the reliability theory and its 
applications in Kalman filtering. Especially, it delivers a 
distinct derivation of the redundancy contribution - the 
key element of reliability theory for the Kalman filter 
algorithm that has not been comprehensively discussed in 
literature at present. A distinction is made between the 
system innovation vector and the measurement (or pseudo 
measurement) residual vector. This allows to directly 
analyse the observation vector and the process noise 
vector. Particular attention is paid not only to the 
theoretical fundamentals of the reliability, and also to the 
introduction of some practical applications about the use 
of the redundancy contribution in Kalman filtering. The 
manuscript aims at assisting readers in a comprehensive 
understanding of reliability analysis in Kalman filtering.  
 
Keywords: Kalman filter, stochastic information, quality 
control, internal reliability, external reliability, 
redundancy contribution, controllable value, minimal 
detectable outlier. 

 
 
1 Introduction 
 
Quality control is a system of maintaining standards in 
manufactured products by testing and inspection [Barber, 
1998]. It belongs to one of the paramount tasks to the 
applications with Kalman filter just as its importance to 
the traditional geodetic applications. Specifically, the term 
quality here comprises of reliability and precision 
[Salzmann and Teunissen, 1989]. The former describes 
the ability of the redundant observations to check model 
errors, or is concerned with the effects of possible 
misspecifications of the model on the estimation results, 
whilst the latter measures the spread of the estimation 
results due to the stochastic model and is represented by a 
covariance matrix. 
 
The measures for quality control have been affirmatively 
developed together with the development of the theory of 
Kalman filter and mostly driven by specific applications 
[Mehra & Peschon, 1971; Willsky et al, 1974, 1975; 
Willsky, 1976; Salzmann & Teunissen, 1989; Lu, 1991; 
Salzmann, 1991, 1993; Gao, 1992; Wang, 1997, 2008; 

Caspary & Wang, 1998; Tiberius, 1998; Hewitson, 2006; 
Wang et al, 2009; etc.]. As compared with the reliability 
analysis, the analysis of precision or accuracy has greatly 
matured in the years. 
 
The reliability theory in the method of least squares was 
adapted for quality control in Kalman filtering by 
[Salzmann and Teunissen, 1989], in which the testing 
procedure, reliability, estimation of variance components 
and certain practical considerations were outlined. 
[Teunissen, 1990; Salzmann, 1993] further suggested the 
DIA (Detection, Identification and Adaptation) procedure 
for quality control in integrated navigation system that 
has been often quoted in literature [Lu, 1991; Gao, 1992; 
Wang, 1996, 2008; Hewitson, 2006; etc]. The reliability 
analysis, statistic tests and variance component estimation 
were mostly derived either from the system innovation of 
Kalman filter [Mehra, 1971; Willsky, 1976; Teunissen, 
1990; etc.] or from the latest available measurement 
vector and the predicted state vector blended with the 
process noise as the pseudo-measurement vector [Gao, 
1992; Salzmann, 1993; Jia, et al, 1998; Tiberius, 1998; 
Hewitson, 2006; etc.]. An alternate derivation of 
reliability measures in Kalman filtering was given by 
[Wang, 1997], in which the most novel gain was the clear 
expression of the redundancy contribution of 
measurements in Kalman filtering for the latest available 
measurement vector, the process noise vector, and the 
predicted state vector without having blended with the 
process noise, respectively. As it has been in least squares 
adjustment, the redundancy contribution is essential to 
statistic tests, variance component estimation, and the 
reliability analysis overall in Kalman filtering [Wang, 
1997, 2008; Caspary & Wang, 1998; Wang et al, 2009]. 
 
The author attempts to systematically provide a 
manuscript about the reliability theory in Kalman filtering 
in a practical way so that readers can have a systematic 
and comprehensive grasp of the subject. The reliability 
concept is summarized in Section 2. The core of this text 
lies in Section 3, which first defines the standard model 
for Kalman filter, and then describes an alternate 
deviation of the Kalman filter algorithm, and ends with 
the delivery of the redundancy contribution for Kalman 
filter. Section 4 gives a numerical example about the 
reliability analysis in Kalman filtering based on a 
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simulated 2D land vehicle trajectory. Some of the useful 
applications based on the redundancy contribution in 
Kalman filtering are given in Section 5. This manuscript 
is ended with the concluding remarks in Section 6.      
    
2.  CONCEPT OF RELIABILITY IN LEAST 

SQUARES ESTIMATION  
 
The reliability theory was initially founded in the method 
of least squares by [Baarda, 1968]. For more specific 
details about the reliability analysis refer to [Jäger & Bill, 
1986; Caspary, 1988; Li & Yuan, 2002; Leick, 2004; etc]. 
Measures of accuracy and measures of reliability form 
together a sufficient basis for the assessment and 
comparison of the quality of geodetic networks [Caspary, 
1988]. This is also true for the same purpose in Kalman 
filtering.  
 
Before this section goes into details, a necessary 
clarification must be made between the measures of 
reliability of least squares estimation and the ones of 
reliability of manufacturing processes and of products. 
The reliability measures used in quality control for the 
latter are usually functions of the time of continuous 
proper functioning of a device or a part of thereof 
[Caspary, 1988]. For example, the most commonly used 
reliability measure for military equipment is the so-called 
MTBF (Mean Time Between Failures). The reliability 
measures that are being discussed for the method of least 
squares can be very different from the ones used in 
industrial process. However, the fundamental ideas in 
quality control have stimulated geodetic scientists to 
develop a concept of reliability for the method of least 
squares (or Gaussian Markov Model) as in [Baarda, 
1968].  
 
Reliability in least squares estimation refers to the 
controllability of measurements, i.e., the ability to detect 
outliers and to estimate the effects that the undetected 
outliers may have on the system solution [Leick, 2004]. 
Therefore, the criteria of reliability in least squares 
estimation can be classified as [Caspary, 1988; etc.]: 

- The internal reliability and 
- The external reliability. 

which will be summarized in the following subsections.  
 
2.1. Statistical basics 
As is well known, a very prime and straightforward 
statistical rule, 3σ, has commonly been employed to 
identify the measurement outliers. In reality, the outliers 
on measurements may not be able to be effectively 
removed in this way. Otherwise, it would not be 
necessary to introduce the reliability concept into the 
theory of least squares estimation. The best way to learn 
about this fact is to study the relation between the 
measurement errors and their residuals. 

Without loss of generality, a linearized observation 
equation system is considered 
 

)( )(0xFxBvL +δ=+     (1) 
 
where L  is the 1×n  observation vector; v  is the 1×n  
residual vector of L ; x  is the 1×t  parameter vector with 
a vector )(0x of known approximate values and the 
correction vector x̂δ  for )(0x ;  )(xF  is the 1×n  vector as 
nonlinear mathematical function of x  for L ; B  is the 

tn ×  design matrix that is composed of the partial 
derivatives of )(xF  with respect to x  at )(0x . The 
observation vector L  is normally distributed as 

),~(~ llDLNL  with its expectation vector L~  and its 
variance matrix llD . In practice, llD  is given as 
 

llllLL QPD 2
0

12
0 σ=σ= −                      (2) 

 
where 2

0σ  is the variance of unit weight and 1−
llP  and llQ  

are the weight matrix and the cofactor matrix of L , 
respectively. llQ  is also called as the inverse of a weight 
matrix and interchangeably used together with the weight 
matrix.  
 
The least-squares (LS) solution of (1) is 
 

))((ˆˆ )()()( 0100 xFLPBNxxxx ll
T −+=δ+= −                 (3) 

 
with its variance matrix 
 

12
0

−σ= )(ˆˆˆ BPBD ll
T

xx                                (4) 
 
Where 
 

r
vPv ll

T

=σ2
0ˆ                                     (5) 

 
The degree of freedom r in (5) is quantitatively equal to 
the number of the redundant measurements of (1), tn −  

)( tn > . The measurement residual vector is given by  
 

))(( )(01 xFLQQv llvv −−= −      (6) 
 
with its cofactor matrix 
 

T
ll

T
llvv BBQBBQQ 11 −−−= )(      (7) 

 
If the true parameter vector x~  is provided instead of 

)0(x , the vector )( )(0xFL −  only consists of the true 
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measurement error as ε  so that (6) becomes to 
 

ε1−−= llvvQQv      (8) 
 
Due to the fact that 1−

llvvQQ  is an idempotent matrix, its 
trace is equal to the number of the redundant 
measurements of (1). Its individual diagonal elements, 
denoted as ir  ( ni ,...,2,1= ), characterize the distribution 
of the redundancy of the system and are called as 
redundancy contribution or the redundancy indices of the 
measurements. If llQ  is diagonal, which means the 
measurements in L  being not correlated, the redundancy 
index of a measurement lies within (0, 1). 
 
A thorough analysis of (8) can show (i) how the 
measurement residuals are affected by each of the 
measurement errors, (ii) how the individual measurement 
residuals are affected by the error on a specific 
measurement, and (iii) how the error on a specific 
measurement affects its own residual [Hahn & Mierlo, 
1986; Li & Yuan, 2002; etc.].  
 
Based on the measurement residual vector, the well-
known data snooping was constructed as follows [Baarda, 
1968]: 
 

ii Li

i

v

i
i r

vvw
σ

=
σ

=     (9) 

 
If the i–th measurement contains an outlier iL∇ , it affects 
its own measurement residual by the magnitude of 
 
 iii Lrv ∇−=∇      (10) 
 
and results in a noncentrality parameter of iw  
 

i
L

i
ii L

r
w

i

∇
σ

−=∇=δ     (11) 

 
Against a potential measurement outlier, the null 
hypothesis based on (9) is given by  
 

)1,0(~:0 N
v

wH
iv

i
i σ

=     (12) 

 
versus the alternative hypothesis based on (11) 
 

)1,(~: i
v

i
ia N

v
wH

i

δ
σ

=     (13) 

 

A statistic test is always accompanied by the probability 
errors (Type I error and Type II error) with respect to the 
significance level and the power of a test (Table 1). These 
two types of errors cannot be minimized at the same time. 
The bigger Type I error one speifies, the higher test power 
one can gain. Studying how to balance these two types of 
errors is a good transition point to the subject of 
reliability.       
 
                       Table 1: Hypothesis Test 

Decision H0 true H0 false 

Accept H0 correct Type II error 

Rejct H0 Type I error correct 

 
2.2. The Internal Reliability  
The internal reliability refers to the desired model 
property of facilitating the detection of sytematic errors 
and the localization of outliers without requiring addtional 
information (self-checking model) [Caspary, 1988]. It is a 
measure of the capability of the system (1) to detect 
measurement outliers with the given probability. The 
analysis of the internal reliability of a system can be 
performed based on the given system structure without 
having  the real measurements or their residuals available.  
The overview here will focus on three commonly used 
measures of the internal reliability.  
 
First, how a given error iL∇  affects the residual iv∇  is 
controlled by the redundancy contribution ir  of the same 
measurement according to (10). Hence, the redundancy 
contribution can be directly used as a measure of internal 
reliability. Obviously, a system designer expects to have 
an evenly distributed redundancy among all of the 
observations in general. By computing the values of ir  
for all measurements, one can assess the internal 
reliability of the system because the individual 
redundancy indices can show the weak parts of the system 
and advice the necessary improvement accordingly in 
term of reliability. Apparently, the redundancy 
contribution can be either used as a global, or a local 
measure of the internal reliability.  
 
Secondly, what is the minimal detectable outlier in order 
to be able to identify an outlier on an observation at a 
significance level of 0α and with the test power of 

01 β− ? Based on the normal distribution, one can 
determine the distance iδ  between 0H and aH  
 

),( 00000 βαδδ =∇= iw        (14) 
 
so that the value of the minimal detectable outlier of a 
measurement is estimated after (11): 
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i
Li r

L
i

0
0

δσ=∇      (15) 

 
which is also called as the critical value for the internal 
reliability. Therefore, another measure of internal 
reliability of a measurement can be defined as the 
controllable value 
 

i
i

r
c 0

0
δ

=        (16) 

 
that tells how many times of the measurement standard 
deviation the minimal detectable outlier on a specific 
measurement is equal to. ic0  is a unitless number and 
only depends on the geometry of the system reflected by 

ir  and the given 0α and 0β . This measure may be 
categorized as a local measure of internal reliability. 
 
Thirdly, for the quadratic form of the residual vector v in 
(6), the global model test runs 
 

),(~ λχ
σ

rvPv ll
T

2
2
0

    (17) 

 
based on the a priori variance of weight unit 2

0σ  with its 
degree of freedom r  and a noncentrality parameter λ .  
This noncentrality parameter is determined as 
 

2
0σ=λ /ePQPe llvvll

T     (18) 
 
under the assumption that an error in the functional model 
(1) can be compensated by a vector e  as follows 
 

ε++−δ= )( )(0xFexBL     (19) 
 
On the ground of the Rayleigh inequality, the upper limit 
of the noncentrality parameter can be given by  
 

2
0

2
0 σλ≤σ=λ // max eeePQPe T

llvvll
T   (20) 

 
where maxλ is the maximum eigenvalue of llvvll PQP . 
Hence, maxλ  may be utilized as a global measure of 
internal reliability, although its usefulness must not be 
overrated [Caspary, 1988]. 
 
2.3. The External Reliability  
The external reliability measures the response of the 
model to undetected model errors such as systematic 
errors and measurement outliers [Caspary, 1988]. It 
studies the impact of undetectable model errors on the 
estimated parameters or on a specific function of the 

parameters. It is essential for a system designer to gain 
full knowledge of the effect of the potential model errors 
on the estimated parameters because one cannot generally 
expect to have a perfect systematic error and 
measurement outlier detection in the data processing. In 
term of external reliability, a high quality of the system 
will insignificantly to undetected or unmodeled errors. 
 
By denoting the bias vector of the parameter vector as 

x∆ , it can mathematically be connected to e  in (19) 
 

ePBBPBx ll
T

ll
T 1−= )(ˆ∆     (21) 

 
wherein e  is an error vector either having non-zero 
components on all of the measurements, on some of them, 
or even only on one single measurement. As a matter of 
course, it provides the logical way to connect the external 
reliability analysis with the internal reliability analysis by 
first analysing the internal reliability through the minimal 
detectable values of errors as in (15), and then further 
studying their effect on the parameters or on a function of 
them.  
 
As a common practice, the average measure of the effect 
of e  is the quadratic form of x∆  
 

xQx xx
T ˆˆ ∆∆ ePBBQPe ll

T
xxll

T=    
 (22) 
 Analog to (20), the Rayleigh inequality tells 
 

eeePBBQPe T
LL

T
xxLL

T
maxλ′≤    (23) 

 
where maxλ′  is the maximum eigenvalue of 

ll
T

xxll PBBQP . maxλ′  can be used as a measure of global 
external reliability of the system [Caspary, 1988]. The 
similar measure of the external reliability for a function of 
the parameters is easily established on the analog of (22) 
and (23).   
 
A measure of local external reliability can be established 
through studying how the parameter vector is affected by 
an error on one single measurement: 
 

ixx
T
iiixx

T
i bQbpeixQix 22

,0 )(ˆ)(ˆ == ∆∆δ   (24) 
 
where ie  is an error on the i-th measurement, ip  is the 
weight of the same measurement, ib  is the i-th column 
vector of the design matrix B . By substituting 0δ  in (14) 
into (22), (24) can be simplified to [Li & Yuan, 2002] 
 

i

i
i r

r−
=

1
0,0 δδ   ),...,2,1( ni =   (25) 
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which is one of the most commonly used measures for the 
external reliability.     
 
3.  RELIABILITY IN KALMAN FILTERING  
 
This section is to provide first a brief overview of the 
algorithm of the discrete Kalman filter, secondly an 
alternate formulation of it in order to be able to adapt the 
reliability theory of the least squares estimation described 
in Section 2 to the algorithm of Kalman filter, and thirdly 
the distinct expression of the redundancy contribution of 
individual measurements in Kalman filtering. 
Unquestionably, a comprehensive reliability analysis can 
be applied to practical applications based on the derived 
redundancy contribution for Kalman filter.    
 
3.1. The Kalman filtering algorithm 
As usual, a linear or linearized system with the state-space 
notation is considered under the assumption that the data 
are available over a discrete time series },,,{ 10 Nttt  , 
which will often be simplified to },,1,0{ N . Without 
loss of generality, a deterministic system input vector will 
be droped in all of the expressions in this paper. Hence, at 
any time instant k ( Nk ≤≤1 ) the system can be written 
as follows: 
 

)()()()()( 1111 −−+−−= kwkBkxkAkx   (26) 
 

)()()()( kkxkCkz ∆+=     (27) 
 
where )(kx is the 1×n  state-vector, )(kz is the 1×p  
observation vector, )1( −kw is the 1×m  process noise 
vector, )(k∆ is the 1×p  measurement noise vector, 

)( 1−kA  is the nn ×  coefficient matrix of )(kx , 
)1( −kB is the mn ×  coefficient matrix of )1( −kw , 

)(kC is the np×  coefficient matrix of )(kz . The random 
vectors )(kw and )(k∆  are generally assumed to be 
Gaussian with zero-mean:  
 

))(,(~)( kQoNkw     (28) 
 

))(,(~)( kRoNk∆     (29) 
 
where )(kQ  and )(kR  are positive definite variance 
matrices, respectively. Further assumptions about the 
random noise are made and specified as follows ( ji ≠ ): 
 

OjwiwCov =))(),((     (30) 
 

OjiCov =))(),(( ∆∆     (31) 
 

OjiwCov =))(),(( ∆     (32) 

Very often, we also have to assume the initial mean and 
variance-covariance matrix )0(x  and )0(xxD  for the 
system state. In addition, the initial state )0(x  is also 
assumed to be independent of )(kw  and )(k∆  for all k.  
 
The optimal estimate )(ˆ kx of )(kx  can be derived by 
applying, for example, the least-squares method in the 
sense of unbiasedness and minimum variance. Table 2 
summarizes its solution only for the need of further 
development of this manuscript:  
 
An essential characteristic of the sequence )(1d , …, 

)(id , …, )(kd  is that they are independent from each 
other epochwise [Stöhr, 1986; Chui, Chen, 2009]: 
 
 OjdidCov =)}(),({  for  ( ji ≠ )   (33) 
 
                Table 2: Solution of Kalman filter 

The predicted state vector and its variance matrix 
  )(ˆ)()/(ˆ 111 −−=− kxkAkkx  

  
)()()(

)()()()/(

111

1111

−−−+

−−−=−

kBkQkB

kAkDkAkkD
T

T
xxxx  

The optimal estimated state vector and its variance matrix 
  )()()/(ˆ)(ˆ kdkGkkxkx +−= 1  

  
)]()()[/()]()([

)()()()(
kCkGEkkDkCkGE

kGkRkGkD

xx

T
xx

−−−+
=

1
 

The optimal estimated state vector and its variance matrix 
   )/(ˆ)()()( 1−−= kkxkCkzkd  

   )()()/()()( kRkCkkDkCkD T
xxdd +−= 1  

The Kalman gain matrix 

   )()()/()( kDkCkkDkG dd
T

xx
11 −−=  

 
3.2. An alternate formulation of Kalman filter 
The optimal estimate )(ˆ kx  of )(kx  at the instant k is 
always associated with the stochastic information, which 
may be divided into three independent groups: 
 

a. The real observation noise )(k∆ , 
b. The system noise )1( −kw , 
c. The noise from the predicted )1/(ˆ −kkx  through 

)1(ˆ −kx , on which )}1(,),1({ −k∆∆   and ),({ 0w  
)}(,),( 21 −kww   are propagated into the current 

system state model. 
 
Traditionally, either the system innovation sequences, or 
the synthesized prediction of )1/(ˆ −kkx  from “b” and 
“c” has been statistically analysed. If these different error 
resources could be studied separately, it could be very 
helpful to the performance evaluation of (1). For this 
purpose, the model in 3.1 can be reconstituted using three 
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groups of residual equations as follows [Wang, 1997; 
Caspary & Wang 1998; Wang, 2008, 2009]: 
 

=

=

=

)(

)(

)(

kv

kv

kv

z

w

x

l

l

l

)(kC )(ˆ

)1()(ˆ

kx

kBkx −−
)1(ˆ
)1(ˆ

−
−

kw
kw









−
−−

)(
)(

)(

kl
kl

kl

z

w

x

  (34) 

 
which are corresponding to the following independent 
(pseudo-)observation groups  
 

)()(
)()(

)(ˆ)()(

kzkl
kwkl

kxkAkl

z

w

x

=
−=

−−=
1

11

0







                  (35) 

 
along with their variance-covariance matrices: 
 

)()(

)()(

)()()()(

kRkD

kQkD

kAkDkAkD

zz

ww

xx

ll

ll

T
xxll

=

−=

−−−=

1

111








                 (36) 

 
Here, )(kl x , )(klw  and )(klz  are the 1×n , 1×m  and 

1×p  measurement or pseudo-measurement vectors, 
respectively. Usually okw =− )1(0 . 
 
The identical estimate )(ˆ kx  of )(kx  as in 3.1 can be 
obtained by applying the least squares principle to (34)-
(36) [Wang, 1997]. 
 
This novel formulation of Kalman filter algorithm has 
directly made the measurement residual vectors available 
for error analysis. One can definitely take its advantages 
to build up the test statistics in Kalman filter based on the 
measurement residual vectors [Wang, 2008]. In this way, 
any of three measurement vectors can be separately 
analysed through their own residual vectors. 
 
3.3. The redundancy contribution in Kalman filtering 
This subsection delivers the key element of the reliability 
theory for Kalman filter – the redundancy contribution of 
measurements. It is understood that the diagonal elements 
of the idempotent matrix 1−

llvvQQ , as discussed in Section 
2.1, represent the redundancy contribution of 
measurements in the method of least squares, so does in 
Kalman filtering.   
 
Straightforward without the superfluous in-between steps, 
the measurement residual vectors are given as the 
functions of the system innovation vector at each epoch  
 

)()()/()()( kdkKkkDkDkv xxllll xxxx
11 −= −   (37) 

)()()/()()()( kdkKkkDkBkQkv xx
T

ll ww
111 1 −−−= −   (38) 

 
)(})()({)( kdEkKkCkv

zzll −=                    (39) 
 
with their variance matrices: 
 

→−−−= )()()()()( kCkAkDkAkD TT
xxvv xlxl

111     

                 )()()()()( 1111 −−−− kAkDkAkCkD T
xxdd    (40) 

 
→−−= − )()()()()( kDkCkBkQkD dd

TT
vv wlwl

111    

                     )()()( 11 −− kQkBkC      (41) 
 

)()}()({)( kRkKkCEkD
zlzl vv −=           (42) 

 
after one substitutes (36) for )(kD

xxll , )(kD
wwll  and 

)(kD
zzll . Similar to (33), we can readily prove the 

following results of independence:  
 

OjvivCov =)}(),({   for  ( ji ≠ )   (43) 
 
Under the assumption that the observations in )(klz , i.e. 

)(kz , are uncorrelated, )(kR  becomes diagonal. In this 
case, the redundancy index of each component in )(kz  is 
given by 
 

iiz kKkCkr
i

)}()({)( −= 1      (44) 
 
In a similar way, if the noise factors in )(klw , i.e. 

)1( −kw , are not correlated, )( 1−kQ  becomes diagonal. 
The redundancy index of each process noise factor is 
equal to  
 

iidd
TT

w kBkCkDkCkBkQkr
i

)]()()()()()([)( 111 1 −−−= −  
        (45) 
 
However, the pseudo-observations in )(kl x , the predicted 
state vector, are generally correlated. Therefore, the total 
redundancy contribution of )(kl x  cannot be decomposed 
to its individual components. More about the reliability 
measures for the correlated measurements refers to [Li & 
Yuan, 2002; Chen & Wang, 1996]  
 
Furthermore, three independent measurements groups as in 
(35) make the following redundancy contribution: 
 

=)(krx  

   )}()()()()()({ kCkDkCkAkDkAtrace dd
TT

xx
111 −−−   (46) 
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=)(krw        

   )}()()()()()({ 111 1 −−− − kBkCkDkCkBkQtrace dd
TT  (47) 

 
)]()([)( kKkCEtracekrz −=      (48) 

 
to the entire system, respectively. It is satisfied with: 
 

)()()()()( kpkrkrkrkr zwx =++=           (49) 
 
where )(kp  is the number of the total redundant 
measurements at epoch k  and is logically equal to the 
dimension of the real measurement vector )(kz . 
 
Based on the redundancy contribution provided above, the 
reliability analysis in Kalman filtering can be introduced 
exactly in the same way as in least squares method. 
Sufficient discussion may be found in [Wang, 1997].   
 
4. Numerical example 
 
This section provides a numerical example about the 
redundancy contribution together with the internal and 
external reliability in Kalman filtering. A 2D land vehicle 
trajectory is simulated based on the simplified uniform 
circular movement [Wang, 1997]. The similar case studies 
can also be found in [Ramm, 2008; Eichhorn, 2005]. 
 
In the 2D mapping frame (Fig. 1), the kinematic system at 
the instant 1+k  is expressed as follows 
 

)()(
)()(

))((sin)()()(
))((cos)()()(

kvkv
kk

ttkkvkyky
ttkkvkxkx

tt

kkt

kkt

=+
ϕ=+ϕ

−ϕ+=+
−ϕ+=+

+

+

1
1
1
1

1

1










 (50) 

 
with the state vector ( )T

tvxy ϕ . The observations 
are the ),( yx  coordinates, the azimuth and the tangential 
velocity: 
 

)()(
)()(
)()(

)()(

11

11
11

11

+=+

+ϕ=+
+=+

+=+

ϕ

kvkz
kkz
kxkz
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    (55) 

 
in which the azimuth and the tangential velocity usually 
have the higher data rate than ),( yx  have. 
 
 
 
 
 

 
Three coefficient matrices in (26) and (27) are 
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Or 
 







=+

1000
0100

1)(kC (only ϕ  and tv  available)   (58b) 

 
where kkkk ttt −=∆ ++ 11, . There are two components in 
process noise vector associated with )(kB : the tangential 
acceleration )(kat  and the centrifugal acceleration )(kar .  
 
Based on (50), a trajectory about 361 meters long was 
simulated for 40 seconds with the data rate 1 Hz for ),( yx  
observations and 10 Hz for the azimuth and velocity 
observations (Fig. 2). The standard deviations used for the 
observations in the simulation are listed in Table 3. The 
simulated tangential velocity and azimuth profiles are 
shown in Fig. 3 and Fig. 4, respectively.  

Fig. 1 The 2D mapping frame 

x (north) 

 y(east) 
o 

(x, y) φ 

 vt 
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Fig. 2 The simulated 2D vehicle trajectory (40 s) 

 
Table 3 The standard deviations used in the simulation  

Standard 
deviation 

Observation Standard 
deviation 

Process 
Noise 

xσ , yσ [m] 0.10 
taσ [m/s2] 0.25 

ϕσ [deg] 1.00 
raσ [m/s2] 0.75 

tvσ [m/s] 0.03   
 
 

 
Fig. 3 The velocity profile 

 
The redundancy contribution in groups with respect to the 
predicted state vector, the process noise vector and the 
observation vector are shown in Fig. 5. The total 
redundancy number is equal to 4 if ),( yx , ϕ  and tv  are 
available or 2 if only ϕ  and tv  are available. Fig. 6 gives 
the redundancy indices of 6 observations and 2 process 
noise factors. Based on 4230 .=δ  as in (14) at the 
significance level of %10 =α  and with the test power of 

%801 0 =β− , their internal reliability is plotted in Fig. 7. 

Furthermore, the measure of the external reliability after 
(28) is given in Fig. 8.   
 

 
Fig. 4 The azimuth profile 

 

 
Fig. 5 The redundancy contribution in groups 

 

 
Fig. 6 The redundancy contribution of individual   

   observations and process noise factors 
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Fig. 7 The internal reliability as in (16) 

 

 
Fig. 8 The external reliability as in (25) 

 
5. Some aspects regarding the use of redundancy 

contribution in Kalman filtering 
 
This section summarizes three applications about the use 
of the redundancy contribution in Kalman filtering: 

- The simplified algorithm for the variance 
component estimation in Kalman filtering [Wang, 
1997; Caspary & Wang, 1998; Wang, et al, 2009]; 

- The degrees of freedom of test statistics in Kalman 
filtering [Wang, 1997, 2008]; 

- The Robust Kalman filter with the help of the a 
posteriori variance estimation [Wang, 1997]  

 
5.1. The simplified VCE algorithm in Kalman filtering 
The simplified VCE (variance component estimation) 
algorithm for Kalman filter here means one of the 
approximate VCE algorithms by [Förstner, 1979], which is 
just based on the measurement residuals and the 
measurement redundancy indices through ignoring the non-
diagonal elements in the corresponding normal equation 
system of the rigorous Helmert VCE method.   
 
For an arbitrary epoch k , the individual variance factors 
for the measurements in )(kz  can be estimated by 
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The accumulative individual variance factor in )(kz can be 
estimated from the past k epochs: 
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They are corresponding to the diagonal elements of the 
measurement variance matrix )(∗R  in (29).     
 
For )1( −kw , the similar formulas can be given by: 
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and  
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As above, they are accordingly the estimates of the 
diagonal elements of the process noise variance matrix 

)(∗Q  in (28).  
 
More specifically about the applications of this VCE 
algorithm in kinematic positioning can be found in 
[Wang, 1997; Capsary & Wang, 1998; Wang, et al, 
2009].   
 
5.2. Degrees of freedom for test statistics 
The test statistics in Kalman filtering can be constructed 
using either the system innovation sequences or the 
measurement residuals [Wang, 1997, 2008]. The degrees 
of freedom of some of the test statistics for measurement 
residuals may be replaced by the corresponding 
redundancy indices. 
 
For example, the degrees of freedom in the test statistics 
for the i-th component given in 6.1, 6.2 in [Wang, 2008] 
are equal to the number of the used measurement 
residuals. Obviously, if one deals with all of the three 
measurement vectors given in (35), the total of the 
degrees of freedom from all of the components at an 
arbitrary epoch will be much bigger than the number of 
the total redundant measurements in the system (refer to 
Section 3.1) at that epoch. In this case, the author suggests 
using the redundancy indices of the individual 
measurements to calculate the accumulated degrees of 
freedom. There is a persuasive argument for doing this. 
Based on the posteriori variance estimates in (60) or (62), 
if the number of the used residuals is taken as the degrees 
of freedom, (60) and (62) become, respectively 
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which are definitely smaller than the values from (60) and 
(62) because the degrees of freedom are here bigger than 
the ones there. It definitely implies that the statistical 
critical values are more conservative (bigger) while the 
corresponding test statistics are too optimistic (smaller). 
 
5.3. The robust Kalman filter with the help of the a 

posteriori variances 
An approach for robust estimation in least squares method 
with the help of the a-posteriori variance estimation 
developed by [Li, 1983] was realized in Kalman filtering 
[Wang, 1997]. Instead of adjusting the weighting 
functions on the individual measurements, this approach 
takes the a posteriori estimates of the measurement 
variances to process the measurements repeatedly.    
 
Let s  be the number of the measurement groups, all of 
the measurements in the same group have the same level 
of accuracy and uncorrelated each other either in the 
group or among groups. In order to construct this robust 
algorithm, one needs three estimated variances: the global 
a-posteriori variance of weight unit )(ˆ 2

0 kgσ  as given by 
the equation (38) in [Wang, 2008], the global a-posteriori 
variance of the individual groups of the measurements 

)(ˆ 2 kgiσ  ),...,1( si =  given by the equation (58) in [Wang, 
et al, 2009], and the a-posteriori variance of each 
measurement: 
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for the j-th measurement in the i-th group at epoch k, 
wherein )(krij  is the measurement redundant index and  

in  is the number of the measurement in the i-th group. 
The iteration process of this robust algorithm at epoch k 
runs as follows: 
 
a). Estimate )1(ˆ 2

0 −kgσ and )1(ˆ 2 −kgiσ ),...,1( si =  based 
on all of the past filtering results from start to the last 
epoch k-1, 

 
b). Filter the data at the current epoch k, 
 
c). Compute the initial estimate )(2 )](ˆ[ τσ kij  ( 0=τ  for the 

initial step) and introduce the F-test as 
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     under the null hypothesis: )1(ˆ)(ˆ: 22

0 −= kkH giij σσ  for 

),...,1( si = , where ir  is the accumulated redundancy 
contribution of the i-th measurement group from the 
past k-1 epochs, 

 
d). Adjust the variance: 
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e). Repeat the filter from b) until  

εττ <−+ )(ˆ)(ˆ )()1( kxkx
xx ii   ),...,1( nix =  (67) 

 
for all of the components in the state vector,  
 

f).  Go on the next epoch starting from a).     
 
More specific details about this robust algorithm refer to 
[Li, 1983; Wang, 1997]. The numerical examples for this 
robust Kalman filter can be found in [Wang, 1997].  
 
6. Concluding Remarks 
 
Based on the standard model given in 3.1, the 
mathematical and statistical fundamental of the reliability 
analysis was systematically described for the Kalman 
filter algorithm in this manuscript. The alternate 
formulation of Kalman filter made it possible to distinctly 
derive the redundancy contribution for the Kalman filter 
algorithm. This delivery allows users to perform the 
reliability analysis in Kalman filtering exactly in the same 
way as it has been done in the least squares estimation. A 
numerical example was provided for the reliability 
analysis on kinematic data processing in Kalman filtering 
in Section 4. Additionally, a summary of three interesting 
applications: the simplified VCE algorithm, degrees of 
freedom for test statistics and the robust Kalman filter 
with the help of the a posteriori variances were given 
regarding the potential use of the redundancy contribution 
in Kalman filtering.    
 
Furthermore, as the author pointed out in [Wang, 2008], 
the alternate formulation of Kalman filter algorithm 
makes it possible to statistically conduct the system 
diagnosis epochwise against different error sources 
because three types of the available stochastic 
information: the current available measurements, the 
current process noise and the one step predicted states, are 
kept separately. So far either the system innovation 
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sequences or the measurements and the predicted states 
blended with the process noise have commonly been used 
for quality control in Kalman filtering. 
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