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Abstract 
 
This paper firstly presents an extended ambiguity resolu-
tion model that deals with an ill-posed problem and con-
straints between the estimated parameters. In the ex-
tended model, the regularization criterion is used instead 
of the traditional least squares in order to estimate the 
float ambiguities better. The existing models can be de-
rived from the general model. Secondly, the paper exam-
ines the existing ambiguity searching methods from four 
aspects: exclusion of nuisance integer candidates based 
on the available integer constraints; integer rounding; 
integer bootstrapping and integer least squares estima-
tions. Finally, an experiment is carried out to demonstrate 
the ambiguity resolution performance under the regulari-
zation criterion with different constraints. 
 
Keywords GNSS, Ambiguity resolution, regularization, 
constraints 
                                                  
1 Introduction 
 
The GNSS carrier phase observations can be used for 
various precise positioning applications, including real 
time kinematic positioning and atmospheric modelling 
services, depending on the integer ambiguities in the 
phase measurements being correctly fixed. The ambiguity 
resolution (AR) topic has been intensively investigated 
and a great number of methods proposed in the past two 
decades for single, dual and three frequency GNSS appli-
cations, with the contributions by Dong and Bock (1989); 
Frei and Beulter (1990); Hatch (1990); Teunissen (1993); 
Park et al. (1996); Shen and Li (2007); Li and Shen 
(2008); Feng and Rizos (2005); Feng (2008); Li et al. 
(2010) etc. Nevertheless it is still an open and critical 
problem attracting much research attentions (Verhagen 
2004). In particular, with the availability of multiple fre-
quency GNSS signals and more demanding requirements 
from users, the issues such as reliability of instantaneous 
AR, the efficiency of searching techniques for huge num-
ber of integer parameters due to multiple frequencies and 

multiple GNSS systems, become more critical (Feng 
2008). 
 
An AR method is identified to be effective from three 
aspects: (i) the difference between estimated float ambi-
guities and their true integers is sufficiently close and 
their covariance matrix can be decorrelated sufficiently to 
a diagonal matrix; (ii) the searching technique can effi-
ciently pick up the integer candidates considered correct 
by excluding all nuisance candidates; (iii) the final integ-
er ambiguities should be statistically evaluated to further 
avoid the incorrect AR solutions. Various AR methods 
have been developed to improve one or more of the three 
aspects mentioned above, while most of them have con-
centrated on the second aspects.  
 
In fast GPS positioning, the normal equations associated 
to ambiguities and coordinate parameters is severely of 
ill-condition. The float ambiguities can largely deviate 
from their integers and their covariance matrices are 
highly correlated. In order to obtain a better set of float 
ambiguities that are more closer to their integers with a 
less correlated covariance matrix, Shen and Li (2007) 
introduce the regularization criterion instead of the tradi-
tional least squares (LS) such that the degree of the ill-
condition of normal equations is significantly reduced, 
also see e.g., Li and Shen (2008). Furthermore, Li and 
Shen (2009) gave a general AR model with available con-
straints in the context of LS adjustment, and the quality 
of the float solution is also improved. As far as the effi-
cient ambiguity searching is concerned, substantial con-
tributions are referred to the decorrelation technique 
firstly proposed by Teunissen (1993). Afterwards, the 
decorrelation technique has been explored, including ef-
forts by Liu et al. (1999), Grafarend (2000) and Xu 
(2001). It is noted that many researchers have worked on 
the validation of AR, see e.g., Frei and Beutler (1990), 
Euler and Schaffrin (1990), Han (1997), Teunissen (1999), 
Verhagen (2004), Xu (2006). 
 
This paper presents an extended AR model that deals 
with an ill-posed problem and constraints among the es-
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timated parameters. The extended model uses a regulari-
zation criterion instead of the traditional LS criterion, and 
the existing models can be derived from the general 
model. In section 3, the paper examines the existing am-
biguity search methods from four aspects, exploring their 
relationship and difference with each other. In Sec 4, a 
numerical experiment is carried out to demonstrate the 
AR performance of regularization method with con-
straints. Finally, concluding remarks are given in Sec 5. 
 
2 Generalized ambiguity searching criterion 
 
2.1 Regularized ambiguity resolution with constraints 
 
We start with the linearized double differenced (DD) ob-
servation model 

( ) 2 1
0,     cov σ −= + − =v Ax Bz y y P                (1) 

where y and v are the (n×1) vectors of DD GNSS obser-
vations and residuals; A and B are the (n×t1) and (n×t2) 
coefficient matrices of (t1×1) real-valued parameters x 
and (t2

2 1
0σ −P

×1) integer parameters z with full column rank. 
 is the covariance matrix of DD observations y, 

where 2
0σ  is a prior variance of unit weight and P the 

weight matrix.  
 
To improve AR reliability and also speed up the AR in-
teger search, one shall make use of available constraints 
about the real valued and integer parameters. The genera-
lized linear constraints are expressed as (Li and Shen 
2009) 

− =Rx w 0                             (2) 
and 

− =Sz q 0                             (3) 
for real-valued and integer parameters, respectively. Here 
R and S are (m1×t1) and (m2×t2) coefficient matrices for 
constraints of real-valued and integer parameters with full 
row rank, and w and q are their corresponding (m1×1) 
and (m2
 

×1) constant vectors. 

Normally, we first solve the “float” ambiguities as real 
numbers regardless of their integer characteristics. In this 
step, all constraints for real-valued parameters can be 
used to enhance the float solutions. However, the con-
straints for integer parameters cannot in principle be used 
unless these integer constraints are also admissible with 
the float ambiguities. Moreover, in the rapid AR from 
several epochs or even on the fly, the normal equations 
are usually severely ill-posed. In this situation, the small 
errors in the observations do lead to the larger errors in 
the estimates. The regularization criterion is employed 
instead of the traditional LS criterion to stabilize the float 
solution (Shen and Li 2007). The objective function Φ of 
float solution based on the regularization criterion with 
available constraints for real-valued parameters is ex-

pressed as 

( ) ( )
( )                2 min

T

T T

α

α
= + − + −

+ − + =

ΦAx Bz y P Ax Bz y

k Rx w z z
            (4) 

where α is the regularization parameter of a positive 
value. If this parameter is properly given, better float am-
biguities with slight deviation to their actual integers and 
low correlation in the covariance matrix can be achieved 
than those from the LS criterion (Shen and Li 2007; Li 
and Shen 2008). Let the derivatives of the objective func-
tion with respect to the parameter x, z and k equal to ze-
ros, we obtain 

( )ˆˆ ,̂ ,
ˆˆˆ2 T Tα∂ ∂ = + − + =

x z k
Φx A P Ax Bz y R k 0     (5a) 

( )ˆˆ ,̂ ,
ˆˆˆ2 2 minTα α∂ ∂ = + − + =

x z k
Φz B P Ax Bz y z   (5b) 

( )ˆˆ ,̂ ,
ˆ2α∂ ∂ = − =

x z k
Φk Rx w 0            (5c) 

where the variables with hats denote the LS estimates. 
Then the normal equations are 

11 12 1

21 22 2

ˆ
ˆ
ˆ

T

α
    
    + =    

       

N N R x U
N N I 0 z U
R 0 0 wk

             (6) 

with N11=ATPA, N12=ATPB, N21=BTPA, N22=BTPB, 
U1=ATPy and U2=BTPy. I is (t2×t2) identity matrix. We 
also define the following notations 

( )

22 21 11 12 22

1 1 1
11 11 11 11

11
11

2 2 21 11 1

1
11

T
R

T
R

T
R

α α α
− − −

−−
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= −


=


= −
 =

 





N N N Q N I N I
Q N N R N RN

N RN R

U U N Q U
u N R N w

            (7) 

The regularized float ambiguities with constraints are 
( )1

, 2 21ˆ fα α
−= −z N U N u                           (8) 

and the other real-valued parameters 

( )
, 11 1 11 12 ,

1 1
11 1 11 12 2 11 12 21

ˆˆ f fα α

α α
− −

= − +

= − + +

x Q U Q N z u

Q U Q N N U Q N N N I u

 

  
     (9) 

In line with the law of covariance propagation, the co-
variance matrix of the regularized float ambiguities is 
derived as 

( )2 1 1
ˆ , 0 22 21 11 12 21 11 11 11 122f α ασ − −= − +zΣN N N Q N N Q N Q N N      

(10) 
It is important that the float solution is biased due to the 
regularization criterion. Its bias is computed as 

1
α αα −= −b N z                                 (11) 

where z  is the “true” ambiguity vector and is replaced by 
its LS solution with constraints in practice. The mean 
squares error (MSE) is used to describe the accuracy of 
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regularized solution considering the effect of the bias 
term 

(
)
2 1

ˆ ,̂ , 0 22 21 11 12

1 2 1 1
21 11 11 11 12

2

        

T
f f

T

α α α

α α α

σ

α

−

− − −

= + = −

+ +

z zMΣb b N N N Q N

N Q N Q N N N zz N



 
    (12) 

There are many methods to estimate the regularization 
parameter, and we numerically compute it based on 
minimizing the trace of ˆ , fzM . For more information, one 
can refer to Xu (1998). Once the regularization parameter 
is properly determined, equation (8) can give the float 
ambiguities that are normally closer to the true integer 
ambiguities than LS solutions, and their MSE matrix 
computed from (12) would be less correlated than LS 
covariance matrix. Similar to the integer LS AR, we es-
tablish the following criterion for integer searching which 
is considered more efficient relative to the LS, 

( ) ( )1
ˆ, , ,ˆˆˆˆ minT

f f fα α
−Ω = − − =zz z M z z           (13) 

where ẑ  is the vector of integer candidates to be 
searched. Once the ambiguity is correctly fixed, the real-
valued parameters are updated as 

( ), 11 12 ,ˆˆˆˆ f fα α= − −x x Q N z z                   (14) 
 
2.2 Three reduced models from the generalized model 
 
Up to now, we have derived the generalized AR model 
based on the regularization criterion extended with avail-
able constraints. We will discuss its three reduced models 
by specifying the variables in Eqs.(7) to (14). 
• If the LS is used instead of regularization to solve the 

float solution and the constraints are still available, 
ˆˆ22 , ,0,  ,   ,  f fα αα = = = =z zN N b 0 MΣ         (15) 

Li and Shen (2009) have specified several constraints 
that can enhance the float solutions. 

• If the regularization criterion is still used but without 
available constraints 

1
11 11,   = ,  ,   = ,  R

−= = =R 0 w 0 N 0 u 0 Q N       (16) 
This model has been carefully addressed by Shen and 
Li (2007), and results showed that the AR can indeed 
improved in the case of rapid GPS positioning. 

• If the LS is used without any available constraints, 
1

11 11

1 1
22 21 11 12 2 2 21 11 1

0,  ,   ,   = ,  = ,   
,   

R

α

α −

− −

 = = = =


= − = −

R 0 N 0 w 0 u 0 Q N
N N N N N U U N N U




    (17) 

It is the standard integer LS model for AR. 
 
3 Methods of ambiguity searching 
 
Once the integer searching criterion (13) is established, 
the next procedure is to efficiently determine the optimal 
candidate, because there is a very huge number of candi-
dates, especially in the case of highly correlated matrix 

ˆ , fzM  and large number of unknown ambiguities, need to 
test by substituting them into (13). Actually, most of AR 

methods have been developed to improve the searching 
efficiency. 
 
3.1 Exclusion of nuisance ambiguity candidates 
 
In the searching process, the constraints on the integer 
ambiguities should be employed. We firstly check all 
integer candidates using the integer constraints (3). If the 
integer candidates are not compatible with the constraints 
(3), they are immediately excluded. In addition, we can 
construct some statistics for ambiguities themselves or 
for their linear combinations to exclude some nuisance 
candidates thus exempting them from further testing. The 
essence of the “FARA” method proposed by Frei and 
Beutler (1990) is to construct the statistics for all ambi-
guities and for the difference of any two ambiguities as 
integer constraints to efficiently exclude most of ambigu-
ity candidates. 
 
In the short-baseline kinematic GPS positioning, there are 
three unknown coordinates besides integer ambiguities. 
In fact three ambiguity-fixed DD observations can be 
used to determine the coordinates and the others are to-
tally redundant. In other words, once three ambiguities 
are fixed, the coordinates can be solved and then the other 
ambiguities can be trivially fixed, which is the essence of 
the LS ambiguity searching technique and ARCE (ambi-
guity resolution using constraint equation) proposed by 
Hatch (1990) and Park et al. (1996), respectively. In fact, 
both of them use the relationship among ambiguities of 
single epoch where DD phase equations are of rank de-
fect with the number of three (Li and Shen 2010). In 
long-baseline ambiguity resolution with three or multiple 
frequency signals, the extra-widelane and widelane ambi-
guities can be firstly reliably fixed and then used as inte-
ger constraints for narrow-lane ambiguity resolution 
(Feng 2008; Li et al. 2010). 
 
In general, a great number of examples have proven that 
these integer constraints mentioned above are always 
very strong and can be used to eliminate most of nuisance 
integer candidates (Li and Shen 2010). After this opera-
tion, if there are still more than one integer candidate, we 
will compute their corresponding quadratic values Ω by 
(13) and further choose the optimal integer candidate 
with employment of other indicators. 
 
3.2 Rounding: the simplest method 
 
The earliest and easiest method of AR is rounding off to 
fix the float ambiguity directly to its nearest integer if 
both its fraction and uncertainty are small enough, 

( ),ˆˆ roundi i fz z=                            (18) 
where ˆiz  and ,ˆi fz  are the ith fixed ambiguity and float 
one, respectively. In principle, the rounding is only ap-
plied to consider the diagonal elements of the covariance 
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matrix of float ambiguities, and their correlations are to-
tally disregarded. Therefore, it usually takes a long time 
such that the float ambiguity has sufficiently small frac-
tion and variance to warrant a correct integer solution. 
 
3.3 Bootstrapping: partially considering the correla-
tion 
 
Another relatively simple integer estimator method is the 
bootstrapping estimator, which is initially applied by 
Dong and Bock (1989) and elaborated by Teunissen 
(1999). The implementation of bootstrapping is similar to 
rounding except the correlation between float ambiguities 
is taken into account. It is essentially a sequentially con-
ditional adjustment and the new float ambiguities can be 
relatively more precisely fixed by use of their correlation 
with the fixed ambiguities. In theory, it is still a rounding 
method and the float solution transformed by the cholesky 
decomposition is used. Usually, it starts from the ambigu-
ity with smallest variance. However, the overall correla-
tions of all ambiguities are not fully considered after all. 
Thus, the success rate of the bootstrapping solution is 
lower than the rigorous Integer Least-Squares solution as 
discussed below. 
 
3.4 Integer LS: the rigorous method 
 
In order to obtain the optimal integer solution, the rigor-
ous covariance matrix of the float solution must be used. 
The problem is that the original covariance matrix is 
highly correlated so that the determined searching inter-
vals of all ambiguities are always large for including the 
true integer candidate. In other words, there are a huge 
number of potential candidates in the super-ellipsoid gov-
erned by this covariance matrix. Fortunately, this problem 
was solved through the decorrelation technique firstly 
introduced by Teunissen (1993). The decorrelation tech-
nique decreases the correlation of covariance matrix of 
the float solution and then reduces the number of integer 
candidates. As a result, the AR efficiency is significantly 
improved and the optimal solution is achievable. After-
wards, the decorrelation technique has been intensively 
investigated and three general techniques are proposed, 
namely, LLL (Grafarend 2000), integer cholesky decom-
position and inverse integer cholesky decomposition (Xu 
2001), of which the integer cholesky decomposition has 
been essentially applied in the LAMBDA method. 
 
3.5 Optimal combinations for TCAR 
 
One of the benefits from three and multiple frequency 
GNSS signals offered by future systems is to form more 
useful combinations that generally have smaller total 
noise level in cycles or reduced ionosphere effects (Feng 
2008). As a result, the combined float ambiguities can be 
determined more precisely and easily fixed to their inte-
ger values. For instance, the ambiguities of two extra-

widelane combinations can be determined with both the 
geometry-based and geometry-free models at success rate 
of 99% and above almost instantaneously without dis-
tance constraint (Feng 2008, Li et al. 2010). However the 
narrow-lane AR over long baselines is still problematic 
mainly due to the effect of distance-dependent residual 
tropospheric biases after the effect of the ionospheric 
biases are reduced in the optimal combinations. The sta-
tistic results from the semi-generated three frequency 
GPS signals as shown in Li (2008), have shown that the 
success probabilities of narrow-lane instantaneous AR 
solutions are about 83% and 24% for 53km and 155km 
baselines, respectively (Li et al. 2010). In the network-
based AR, the AR allows for use of accumulated meas-
urements from multiple epochs. Li et al. (2010) proposed 
a both geometry-free and ionosphere-free model that 
overcomes the geometric and ionospheric effects simul-
taneously without constraints on inter-station distances, 
and 100% AR success rate can be achieved using meas-
urements of several minutes. 
 
4 Experiment and analysis 
 
We demonstrate the superior performance of regularized 
AR using the real single-frequency GPS data. There are 
total 8000 epochs with sampling interval of 1s and base-
line length of 4.6km. The elevation mask angle is set to 
13 degrees. 10 epochs of phase data are used to compute 
the regularized and LS float ambiguities at each perform-
ance. The differences between the solved float ambigui-
ties and their true integer values are shown in Figure 1. 
The differences are tens of cycles for LS and reduced to 
smaller than 3 cycles for regularization, which means that 
the float solution can be significantly improved. 
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Figure 1. Differences between true ambiguities and LS (A) 
ambiguities as well as regularized ambiguities (B) 
 
Table 1: Success AR probabilities for regularization (RG) and 
LS estimations with different number of epochs 

Method 
Number of epochs 

3 5 10 30 
LS 0.11 1.03 2.44 10.34 
RG 59.51 59.44 60.13 62.77 
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We further assess the success probability of regularized 
AR with different numbers of epoch data. The success 
probability is defined to be a ratio of the number of ep-
ochs with all correctly fixed ambiguities over the number 
of total epochs. The results are given in Table 1. The suc-
cess probability can be significantly improved for all 
computation schemes at different degree. In general, 
when more data epochs are involved, the observation 
geometry becomes stronger and thus the power of regu-
larization becomes smaller. 
 
We turn to analyse the benefit of the constraint to the 
float solution using another set of real dual-frequency 
GPS data with the baseline length of about 10 km. A total 
of 600 epochs were collected with sampling interval of 1 
s and data from 6 common satellites (i.e., total 10 DD 
ambiguities). For both LS and regularization processes 
we use 10 epoch phase data to compute the LS float solu-
tions with or without different constraints, i.e., baseline 
length constraint, horizontal coordinate constraint as well 
as 3D coordinate constraint, respectively. There are total 
591 computations and the differences between float am-
biguities and their true integer values are shown in Figure 
2. Apparently, the float solution can be significantly im-
proved by using the constraint, and the stronger is the 
constraint, the better is the float solution. Especially for 
the case of 3D coordinate constraint, the float ambiguities 
are sufficiently precise such that they can be immediately 
fixed by rounding off to their nearest integers. 
 

  

  
Figure 2. Differences between float ambiguities and their true 
values without constraint (a) and with baseline length constraint 
(b), with horizontal coordinate constraint (c) and 3D coordinate 
constraint (d), respectively 
 
5 Concluding remarks 
 
In this paper, we have presented an extended model for 
efficient AR with constraints. In this model, the regulari-
zation criterion is used instead of the traditional LS crite-

rion such that the ill-condition problem of the LS normal 
equations of AR can be significantly mitigated. As a re-
sult, better float ambiguity solutions can be derived and 
the covariance matrices are less correlated. From this 
extended model, one can deduce three reduced models 
widely refereed in the existing literatures. In addition, we 
have introduced the exclusion of nuisance integer candi-
dates based on the available constraints as the important 
first step of the integer search. Finally, the numerical ex-
periments are carried out to demonstrate the superior per-
formance of regularized AR and the benefit of constraints 
to the float solution. In general, the regularization can 
mitigate the ill-condition of fast GNSS AR model and 
thus improve the success AR probability. The constraint 
can improve the float solution and especially for the case 
of strong constraints the float ambiguities can be im-
proved to such precision that they can be directly fixed by 
rounding off to their nearest integers. 
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