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Abstract 
 
In the past years, several regional error models for the 
network RTK (NRTK) approach have been proposed, 
investigated and used. Most of the studies are based on 
one single model to test the model’s performance in a 
reference network or a few reference networks. Very 
limited research has been conducted to evaluate 
performance differences of different error models in the 
same network using the same test dataset. It is difficulty 
to predict which of the models will outperform the others 
for a specific network since different reference networks 
have different error characteristics. For example, the 
multipath effect (or the station specific error), the spatial 
atmospheric pattern, and the scale of the ionospheric 
disturbance may be different in different networks. These 
factors may cause differences in performance among 
different error models. 

Among the existing error models for NRTK, the linear 
interpolation model (LIM) and the low-order surface 
model (LSM) are typical and most often discussed/used. 
In this paper, the difference in the accuracies of the 
interpolated residuals in GPSnet from the two models are 
compared using several test cases with three different 
observation sessions combined with various network 
configurations. The snapshots of the fitting surface planes 
derived from the two models at the same epochs are also 
compared as well. Test results indicate that the LSM in 
some cases performed significantly poorer than the LIM. 
In this case, the snapshots of the two fitting surface 
planes from the two models present the error’s correlation 
trend significantly different.    

Keywords: NRTK, GPSnet, error models, regional 
atmospheric modelling, interpolation method 

 

 

1. Introduction 

Due to the characteristics of the spatial and temporal 
variation of the atmosphere, in the NRTK application, it 
is ubiquitous to use regional error models (or 
interpolation methods) for obtaining the predicted error 
values for the rover’s location. Several regional error 
models proposed by different researchers in the past years 
for NRTK positioning mainly include:  

1) Linear Interpolation Method (LIM) (Wanninger, 1995; 
Wübbena et al., 1996), 

2) Linear Combination Method (LCM) (Han, 1997; Rizos 
et al., 1999), 

3) Distance-based Linear Interpolation Method (DIM) 
(Gao et al., 1997), 

4) Low-order Surface Model (LSM) (Fotopoulos G., 
2000; Fotopoulos and Cannon, 2001; Varner, 2000; 
Wübbena et al., 1996), and 

5) Least Squares Collocation Method (LSCM) (Raquet, 
1998). 

All of the error models are merely different forms of 
approximation for the true spatial distribution of the error 
modeled. Dai (2002) conducted tests for performance 
comparisons of all the above five models. Based on the 
results of a two test scenario, he concluded that all the 
five error models perform similarly. However, it is 
difficult to know if this conclusion still holds for other 
regions/networks. In order to investigate this, in this 
paper, two of these models, i.e. the LIM and the LSM are 
selected for the performance testing for the Victoria 
region using GPSnet data. The reason for this selection is 
that these two models both are functional models and 
they have more similarity in their mathematical forms, 
compared to other models. Secondly, both of them can be 
easily implemented in the data processing for real-time 
scenario. Moreover, these two models were commonly 
used ones for NRTK.    

GPSnet is a regional GPS Continually Operating 
Reference Station Network (CORS) in the state of 
Victoria, Australia. Currently it consists of 33 reference 
stations covering both the Melbourne metropolitan and 
rural areas of Victoria. The inter-station distances of 
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GPSnet range from several tens of kilometres up to 
200km, a typical medium-to-long-range GPS reference 
network. With the NRTK technique, GPSnet makes it 
possible for the high accuracy real-time positioning 
service to be available throughout the whole state area. 
The implementation and performance of the NRTK 
approach are currently under investigating and testing. 
Due to the fact that the accuracy of regional atmospheric 
error models is critical for the accuracy of the NRTK 
positioning, it is important that the performance of the 
error models in Victoria is assessed using the GPSnet 
data. Thus the performance of the NRTK in GPSnet will 
be enhanced, if possible (Zhang et al., 2006). In order to 
assess the performance of regional error models in the 
Victoria region, tests based on both many different 
observation datasets and various different network 
configurations are more convincing. In this paper, nine 
test cases derived from not only three different sessions 
of GPSnet observations but also from a variety of four-
station and five-station network configurations of sub-
GPSnet are used for the performance assessment of the 
two selected error models.  

The outline of this paper is as follows. The algorithms for 
the two selected error models are introduced. Secondly, 
the test data and the test methodology are described. 
Thirdly, the test results are presented. Conclusions are 
given in the final session. 

2 Algorithms for the two Selected Error Models 

The pre-requisite for the regional error modeling of a 
reference network is that ambiguities between the master 
station and the secondary reference stations must be first 
successfully resolved. Then, all of the spatially correlated 
errors need to be modeled to generate corrections for the 
rover. Ambiguity resolution for real-time medium-to-long 
baselines (e.g. over 100km) is very challenging. The 
ability to fast resolve network ambiguities and the quality 
of the resolved ambiguity are the two most important 
factors for the accuracy and quality of the correction 
generated and hence network RTK positioning. 
Procedures and algorithms for real-time network 
ambiguity resolutions used in this research are 
investigated in (Chen et al., 2000) and (Wu, 2009; Wu et 
al., 2007). In the following sections, it is assumed that all 
of the ambiguities between the master reference station 
and the secondary reference stations have been 
successfully fixed to their corrected values.  

It should be noted that the difference between the phrases 
“error model” and “interpolation method” is not 
differentiated in this paper. This is because the only 
reason for the error modeling here is for obtaining the 
interpolated error for the rover. In this context, the two 
phrases being treated the same will not cause confusion.  

It should also be noted that, the regional error models are 
designed mainly for modeling the spatially correlated 
errors. The spatially correlated errors consist of the 
orbital error and the atmospheric error. In this research, 
the IGS ultra-rapid predicted orbit is used and the double-
differenced (DD) approach is adopted. In this case, the 
residual DD orbital errors are neglectable and thus all the 
remained errors, which can be called combined errors, to 
be modelled mainly contain the DD atmospheric errors.  
Therefore, the error modeling virtually means the 
atmospheric error modeling.  

In addition, the following algorithms of the two selected 
error models (and also other models) can be used for 
modeling any single types of the spatially correlated 
errors. They can also be used for modeling the combined 
errors under the assumption that each of the spatially 
correlated errors in the combined errors follows the same 
pattern of spatial correlation. In this research, the 
combined errors (or the atmospheric errors) are modelled.  

2.1 Algorithms for the LIM 

The initial development and use of this type of model can 
be found from Wanninger (1995),  Wübbena et al. 
(1996), and Wanninger (1999). Chen et al. (2000) and 
Rizos et al. (1999) proposed to use the LIM to interpolate 
the combined error. The algorithm of the LIM is as 
follows. 

The DD residual vector V  (for the frequencies of either 
L1 or L2) can be defined as: 
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where  
subscript 1 denotes the master station; 2, 3, …n 

denote the secondary reference stations; X∇  and Y∇  are 
the coordinate differences between a secondary reference 
station and the master station; a  and b  are the error 
model’s coefficients in the directions of X∇  and Y∇  
respectively. If the total number of the reference stations 
is more than three, the error model’s coefficients a  and 
b  can be estimated by the least squares adjustment: 
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After â and b̂ are estimated, the DD combined error for 
the user’s location can be interpolated by  

uuu YbXaV 111
ˆˆ ∆⋅+∆⋅=  (5) 

where subscript u  denotes the rover user’s station. 

It should be noted that X∇  and Y∇  in equations (1) to (5) 
can also be replaced with B∇  and L∇ , which are the 
coordinate difference in geodetic latitude and longitude  
respectively at two stations. The LIM is a two 
dimensional (2D) model as only two variables ( X∇  and 

Y∇ ) are used in the model.  

2.2 Algorithms for the LSM 

The low-order surface models usually refer to the first-
order and the second-order surface models. These models 
can also be used to fit the distance-dependent error 
(Fotopoulos G., 2000; Wübbena et al., 1996). The fitted 
surface shows the major trend of the distance-dependent 
error. The number of variables in the regression function 
is two when plane coordinates X and Y (or B and L, 
latitude and longitude) are used as variables. The fitting 
surface plane is two dimensional. In the case where X, Y 
and H (height component) are used as variables, a three 
dimensional surface model is used. In practice, the 
correlation nature of the error in each of the three 
directions is the determining factor for choosing a 
suitable model. In the application of the GPS error 
modeling, special care should be taken to see the 
necessity of the inclusion of the vertical component H in 
the model. The reason is that, in many cases, it is not 
meaningful to use it, e.g. when the height difference 
among the reference stations is very small, or, when the 
error to be modeled doesn’t exhibit the spatially-
correlated nature in the vertical direction. In these two 
cases, the inclusion of H in the model needs more 
coefficients to be resolved. Consequently more reference 
stations are required. This is a key disadvantage of using 
more variables or/and a higher order surface model. 
 
The height difference (H) among the reference stations of 
GPSnet is under 0.5km. Neglecting such amount of H in 
the error model will affect the performance of the model 
little. According to Fotopoulos (2000) and Schaer (1999), 
the difference between two-dimensional and three-
dimensional models is small even for a regional network 
with more than 3000 metres of  inter-station height 
differences.  

The two dimensional model used in this research is the 
typical first-order surface model. The formula of this 

model can be expressed as (Dai et al., 2004; Fotopoulos 
G., 2000): 

cYbXaV +∆⋅+∆⋅=   (6) 

where V is the DD residual that can be calculated from 
equation (4); X∆  and Y∆   are the horizontal coordinate 
differences between the secondary stations and the master 
station; a, b and c are the model’s coefficients. The 
model’s coefficients can be estimated by the least squares 
adjustment if there are redundant reference stations.  

The least square estimates for the coefficients in equation 
(6) can be obtained: 
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In a similar way that equation (5) is used for the LIM, 
then the DD interpolated corrections for the rover can be 
calculated by: 

cYbXaV uuu ˆˆˆ 111 +∆⋅+∆⋅=  (9) 

The minimum number of reference stations required for 
the first-order 2D surface model expressed in equation (6) 
is four as the DD approach is used. One more reference 
station is required for the extra constant term c, compared 
to the LIM. 

From the 2D LIM and the first-order 2D LSM, it can be 
seen that the only difference in the two fitting functions is 
the constant term c that presents in the LSM. For the 

same test dataset, the coefficients â  and b̂  derived from 
the two models do not necessarily have the same values. 
This is especially true when multipath effects exist at 
some (or all) of the reference stations. The term c in the 
LSM was not designed for modeling the spatially 

correlated error like â  and b̂  do, instead, it was for 
modeling the station specific errors of the master station. 
It may make sense for the undifferencing approach. 
However in the DD approach, it is in fact for modeling 
the station specific errors of the network. This means that 
the constant term represents the averaged value of the 
station specific errors of all the stations. The residual 
station specific errors of all the stations will be absorbed 

in â  and b̂ .  

In the LIM, all station specific errors are not explicitly 
modeled in the way that the LSM does, they will all be 
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absorbed in its â  and b̂ . Theoretically, it is difficult to 
determine whether the LIM or the LSM outperforms the 
other, especially when station specific errors exist in the 
network. For a specific network, the differences in the 
interpolation accuracy of the two models may reflect 
which model can mitigate the station specific errors more 
efficiently than the other. This is also one of the main 
purposes of the tests conducted in this research. 

3 Test Data and Network Configurations 

The test data used for this research is from selected 
GPSnet sites. The names and network configurations of 
the six selected reference stations are shown in Fig. 1 and 
Fig.2. Park station is located inside the polygon formed 
by all of the other reference stations. Therefore, it is 
selected as the rover station for the purpose of checking 
and validating the test results. The GPS data from three 
different observation sessions is selected for the tests. The 
three time sessions are defined as Time1 (3:50pm-9:30pm 
on 13/11/2007), Time2 (8:20am-11:00am on 26/07/2008) 
and Time3 (1:30pm-4:00pm on 1/06/2007) respectively. 
All the times are the local time. In each session, there are 
several different network configurations that are for 
various test cases. For convenience, Group1, Group2 and 
Group3 are labeled to represent all of the tests in each of 
the three sessions respectively. For example, Group1 is 
for all of the test cases of the first session (i.e. Time1), 
Group2 is for all of the test cases of the second session 
(i.e. Time2) and Group3 is for all of the test cases of the 
third session (i.e. Time3).  
 
As shown in Figs. 1 and 2, the selected baselines (in red) 
for the tests of Group1 and Group2 are Bacc-Park and 
Morn-Park respectively. The baseline lengths and 
positions of all the reference stations can be seen in Figs. 
1 and 2 as well. For Group3, the test baseline and the 
fundamental network configurations are the same as that 
of Group2 however the observation session is different 
(i.e. Time3). The sampling rates of the data from the three 
sessions are 30 seconds, 5 seconds and 10 seconds 
respectively. 

From Figs. 1 and 2, one can see that the lengths of the 
two test baselines are: 47.7km for Bacc-Park and 48.6km 
for Morn-Park. The network is a typical mid-range-
baseline network in the context of NRTK as all baselines 
from the secondary reference stations to the master 
station are in the range of 53-97km. 

Tables 1, 2 and 3 list the network configurations that will 
be used in the next section for the tests of Group1, 
Group2 and Group3 respectively. Each of the three tables 
contains the five-station configurations and two four-
station configurations (since the minimum number of 
reference stations required for the LSM is four).  

 

 
Fig. 1 Test baseline for Group1 and network from GPSnet 

 
Table 1 Network configurations for the tests of Group1 (i.e. 

observations from Time1) 

Configuration  Stations selected 

Cfg.1 All of the five stations 

Cfg.2 Bacc, Morn, Woor, Whit 

Cfg.3 Bacc, Morn, Geel, Woor 

 
Fig. 2 Test baseline for Group2 and Group3 from GPSnet 

 
Table 2 Network configurations for the tests of Group2 (i.e. 

observations from Time2) 

Configuration Stations included 

Cfg.1  All of the five stations  

Cfg.2 Morn, Geel, Bacc, Whit  

Cfg.3 Morn, Geel, Bacc, Woor  
 
 

Table 3 Network configurations for the tests of Group3 (i.e. 
observations from Time3) 

Configuration  Stations included 

Cfg.1  All of the five stations  

Cfg.2 Morn, Geel, Whit, Woor  

Cfg.3 Morn, Bacc, Whit, Woor  
 

It should be noted that all the tests are conducted in a 
post-processing mode but the approach is for real-time 
since the algorithms used in the data processing is on an 
epoch-by-epoch, a station-by-station and a satellite-by-
satellite basis.  
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4 Test Results  

4.1 Interpolation Accuracies 

4.1.1 Results for Group1 

The network configurations for this group’s testing are 
from Table 1 and the satellite selected is PRN13. The 
time series plots for the original/measured DD L1 
residuals and the residuals with corrections from the two 
models are shown in Figs. 3a, 3b and 3c.  

Figs 3a and 3b show that the accuracies of the LIM’s 
results (in red) are significantly better than that of the 
LSM since the former are more close to zero, whereas 
Fig. 3c shows the similar accuracies of the two models 
for its configuration. These three figures also show that 
all of the LIM results are significantly improved, 
compared to the original residuals. However the LIM’s 
results are significantly different: in some configurations 
(i.e. Figs. 3a and 3c) and at some epochs (Fig. 3b), its 
results are significantly improved, while at other epochs 
its results are even worse than the original residuals (i.e. 
the later part of Fig. 3b).  
 

 
Fig. 3a Time series plots for the original/measured DD L1 residuals and 
the residuals with corrections from the LIM and LSM respectively, for 

baseline Bacc-Morn in Cfg.1 of Table 1  

 
Fig. 3b Time series plots for the original/measured DD L1 residuals and 
the residuals with corrections from the LIM and LSM respectively, for 

baseline Bacc-Morn in Cfg.2 of Table 1 

 

Fig. 3c Time series plots for the original/measured DD L1 residuals and 
the residuals with corrections from the LIM and LSM respectively, for 

baseline Bacc-Morn in Cfg.2 of Table 1 

 
It should be noted that in these three figures, the middle 
part of the plots are blank. This is because PRN13 is 
selected as the reference satellite for the DD during that 
period of time. The NRTK system automatically selects 
the satellite that has the highest elevation angle at an 
epoch to be the reference satellite for the epoch. In 
addition, for the DD results, instead of quote a pair of 
satellites, only one satellite (i.e. PRN13) is mentioned 
here. The reason for that is the varying reference satellite 
for different epochs in the time series. Usually several 
satellites are used as the reference satellite for the time 
series.    

4.1.2 Results for Group2 

The network configurations for this group’s testing are 
from Table 2 and the satellite selected is PRN29. The 
time series plots for this group’s testing are shown in 
Figs. 4a, 4b and 4c. 
 

 
Fig. 4a Time series plots for the original/measured DD L1 residuals and 
the residuals with corrections from the LIM and LSM respectively, for 

baseline Morn-Bacc in Cfg.1 of Table 2  
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Fig. 4b Time series plots for the original/measured DD L1 residuals and 
the residuals with corrections from the LIM and LSM respectively, for 

baseline Morn-Bacc in Cfg.2 of Table 2  

 
 

 
Fig. 4c Time series plots for the original/measured DD L1 residuals and 
the residuals with corrections from the LIM and LSM respectively, for 

baseline Morn-Bacc in Cfg.3 of Table 2  

These three figures also show that all of the DD residuals 
with the two models’ corrections can be significantly 
improved, compared to the original DD residuals. Figs 4a 
and 4c shows no significant difference in the accuracies 
of the interpolated results between the LIM and LSM, 
whereas Fig. 4b shows that the LIM’s results are 
significantly better than that of the LSM.  

4.1.3 Results for Group3 

The network configurations for this group’s testing are 
from Table 3 and the satellite selected is PRN6. The test 
results are shown in Figs. 5a, 5b and 5c. 

 
Fig. 5a Time series plots for the original/measured DD L1 residuals and 
the residuals with corrections from the LIM and LSM respectively, for 

baseline Morn-Bacc in Cfg.1 of Table 3  

 
Fig. 5b Time series plots for the original/measured DD L1 residuals and 
the residuals with corrections from the LIM and LSM respectively, for 

baseline Morn-Bacc in Cfg.2 of Table 3  

 
Fig. 5c Time series plots for the original/measured DD L1 residuals and 
the residuals with corrections from the LIM and LSM respectively, for 

baseline Morn-Bacc in Cfg.3 of Table 3  

 
Figs. 5a and 5b show the similarity of the interpolation 
accuracies between the two models. However Fig. 5c 
shows that the DD residuals with the LIM’s corrections 
are all significantly improved, compared to the original 
residuals, whereas the residuals with the LSM’s 
corrections at some epochs are even worse than the 
original residuals.  
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4.2 Fitting Surface Planes 

The aforementioned test results are from the final 
interpolated results derived from the two error models. 
These interpolated results are calculated from equations 
(5) and (9) that virtually represent the 2D fitting surface 
planes derived from the two models. In this section, the 
snapshots of the 2D fitting surface planes from the two 
models at some epochs are created since they graphically 
represent the error variation trend at the epoch. From the 
comparisons of the error variation trends represented by 
the two models’ coefficients for the same epochs, the 
relationship between the trend difference and the 
performance difference of these two error models at each 
of the epochs can be investigated.       

4.2.1 Snapshots for an epoch in Group1 

Figs. 6a, 6b and 6c are the three sets of fitting surface 
planes at the GPS time (epoch) of 382620 second. The 
three network configurations, the test baseline and the 
satellite selected (i.e. PRN13) selected for the error 
modelling are the same as that of section 4.1.1. The two 
sets of parallel lines at the bottom part of each figure are 
the 2D contour lines. 

From both fitting planes and contour lines, the spatial 
variation trend and the variation rate (or gradient) of the 
DD residuals in any directions can be seen. The greatest 
gradient is along the intersected line of the fitting plane 
and the perpendicular plane to the set of contour lines that 
are for the fitting plane. The trend difference of two 
fitting planes can be measured by some of the plane’s 
features e.g. the spatial ascending/descending directions, 
the direction and magnitude of the (greatest) spatial 
gradient etc.    
 
Fig. 6a shows that the directions of the two sets of 
contour lines are similar. This means the spatial 
ascending/descending directions of the residuals 
represented by the two models are similar. However the 
spatial gradients of the two planes are significantly 
different. Fig. 6b shows significant difference in both 
directions of the two sets of contour lines and the spatial 
gradient of the residuals. Fig. 6c shows no significant 
differences in both the ascending direction and the spatial 
gradient are s the represented by the two planes. Thus, the 
difference in the accuracy of the final interpolated 
residuals between the two models in Fig. 6c 
(1.4cm−0.5cm=0.9cm) is much less than that of Fig .6a 
and Fig. 6b (3.1cm and 5.8cm).   
 

 
Fig. 6a  for Cfg.1 of Table 1 (5 stns). The accuracies of the interpolated 

residuals from the LIM and LSM are 1.8cm and 4.9cm respectively 

 
 

 
Fig. 6b  for Cfg.2 of Table 1 (4 stns). The accuracies of the interpolated 

residuals from the LIM and LSM are 1.8cm and 7.6cm respectively  

 

 
Fig. 6c  for Cfg.3 of Table 1 (4 stns). The accuracies of the interpolated 

residuals from the LIM and LSM are 0.5cm and 1.4cm respectively  

4.2.2 Snapshots for an epoch in Group2 

Figs. 7a, 7b and 7c are the three sets of fitting surface 
planes at the GPS time (epoch) of 513600 second. The 
three network configurations, the test baseline and the 
satellite selected (i.e. PRN29) selected for the error 
modelling are the same as that of section 4.1.2. 
 



Wu et al. : Differences in Accuracies and Fitting Surface Planes of Two Error Models for NRTK in GPSnet 
161 

 

 
Fig. 7a  for Cfg.1 of Table 2 (5 stns). The accuracies of the interpolated 
residuals from the LIM and LSM are -2.6cm and -2.8cm respectively  

 

 
Fig. 7b  for Cfg.2 of Table 2 (4 stns). The accuracies of the interpolated 

residuals from the LIM and LSM are -0.5cm and 5.2cm respectively  

 

 
Fig. 7c  for Cfg.3 of Table 2 (4 stns). The accuracies of the interpolated 
residuals from the LIM and LSM are -6.4cm and -6.3cm respectively  

 
Fig. 7b shows that both the directions of the spatial 
ascending and the overall colours (meaning the residual 
values) of the two planes are significantly different.  
These lead to the significant difference 
(5.2cm−(−0.5cm)=5.7cm) in the accuracies of the 
interpolated residuals from the two models. However Fig. 
7a and 7c are different. The similarity in the two planes in 
each of the two figures leads to the similar interpolation 
accuracies.  

4.2.3 Snapshots for an epoch in Group3 

Figs. 8a, 8b and 8c are the three sets of fitting surface 
planes at the GPS time (epoch) of 446360 second. The 
three network configurations, the test baseline and the 
satellite selected (i.e. PRN6) selected for the error 
modelling are the same as that of section 4.1.3. 
 

 
Fig. 8a  for Cfg.1 of Table 3 (5 stns). The accuracies of the interpolated 

residuals from the LIM and LSM are -0.2cm and 0.0cm respectively  

 

 
Fig. 8b  for Cfg.2 of Table 3 (4 stns). The accuracies of the interpolated 

residuals from the LIM and LSM are 1.1cm and 1.2cm respectively  

 
Fig. 8c  for Cfg.3 of Table 3 (4 stns). The accuracies of the interpolated 
residuals from the LIM and LSM are -0.3cm and -4.8cm respectively  

 
Likes Fig. 7b, Fig. 8c also shows the significant 
difference in both the spatial gradients and the colour 
ranges between the two planes, which lead to the 
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significant difference in the accuracies of the interpolated 
results from the two models (5.1cm). Figs .8a and 8b also 
show the results similar to that of Figs. 7a and 7c.   

5. Conclusions 

In this paper, comparisons for accuracies of the 
interpolated residuals derived from the two selected error 
models for NRTK: the LIM and the LSM, for three time 
series are conducted. Comparisons for the snapshots of 
the 2D fitting surface planes from the two models at three 
epochs are also presented. The test samples contain three 
difference sessions of observations, combined with 
various network configurations including five reference 
stations and four reference stations from the GPSnet sites.  
The test results show that the accuracy of the DD 
residuals with the LIM’s corrections can be always 
significantly improved. However residuals with the 
corrections of the LSM   sometimes can be much worse 
than the residuals without the corrections. The test results 
also shows that when the 2D fitting surface planes 
derived from the two error models’ coefficients at the 
same epoch show significant difference in the spatial 
variation trend, the two models’ accuracies are also 
significantly different. On the other hand, when both the 
spatial ascending/descending directions and the spatial 
gradients the two planes presented have no significant 
differences, the accuracies of the interpolated residuals 
from the two error models are similar.  
 
Based on the fact that when the LSM performs very 
poorly, the accuracy of the interpolated residual from the 
LIM is however very high and much higher than that of 
the LSM, it can be assumed that the LIM’s fitting surface 
plane is much closer to the real trend of the error’s 
spatially correlation than the LSM’s. In this case, the 
LSM’s fitting plane is assumed to be more distorted, 
compared to the LIM’s. It should be pointed out that this 
assumption is only based on the accuracy of one rover 
point’s interpolation results in GPSnet. It may not be 
conclusive to say that the LIM’s fitting plane has a 
smaller discrepancy with the real spatial trend of the error 
because of its better interpolation accuracy. However, the 
focus has been mainly on the comparison of differences 
between the two fitting planes of the two models rather 
than the differences between either of them and the real 
error plane.  
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