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Abstract 
 
Due to their fast operation, Fast Fourier Transform 
(FFT)-based coarse signal synchronization methods are 
an attractive option for Global Navigation Satellite 
System (GNSS) receiver baseband signal processing. 
However, there are several reasons why the utility of 
FFT-based methods is dependent on understanding the 
trade-off between synchronization speed and the required 
processing power. Firstly, the new signals of the GNSS 
family, for instance Galileo and GPS modernization, 
employ longer period Pseudo Random Noise (PRN) 
codes and higher signal bandwidths, which demand FFTs 
of large transform lengths. Secondly, to gain an 
advantage in positioning performance, next generation 
receivers target multiple GNSS signals, and since each 
signal has its own code length (and hence a minimum 
sampling frequency), the receiver should accommodate 
FFT blocks of varying lengths. This paper discusses the 
requirements of FFT-based algorithms for such a multi-
band receiver and analyzes the application of prime-
factor and mixed-radix FFT algorithms. A novel way of 
factorizing different transform lengths into smaller 
transforms and then combining these smaller-point FFTs 
to compute the larger required FFTs is described. It is 
shown that the use of the proposed architecture reduces 
the computational load (or processor cycles) and 
increases the re-usability of the acquisition search engine 
to process different signals. 

Keywords: Code Acquisition, GNSS Receivers, FFT, 
Multi-band GNSS, FPGA 

 

1 Introduction 

There has been a tremendous increase in interest in 
satellite-based radio navigation technologies with the 
announcement of designs for multiple satellite systems 
and new ranging signals (Rizos 2007) that will 

complement those of the venerable Global Positioning 
System (GPS). The greatest interest has been directed to 
the European Global Navigation Satellite System (GNSS) 
known as Galileo, as well as the modernization plans for 
GPS. These developments (and other GNSS and Regional 
Navigation Satellite Systems) have posed new challenges 
to the receiver development community, especially with 
regard to the baseband signal processing of multiple 
GNSS signals (Dempster 2007, Dempster and 
Hewitson 2007).  

In order to compute the receiver-satellite range and to 
demodulate the data streams, a GNSS receiver has to first 
synchronize with the satellite signal. The receiver has to 
search for the Doppler frequency and the PRN code chip 
delay. Signal synchronization is generally carried out in 
two steps: the coarse synchronization (referred to as 
Acquisition), and fine synchronization (called Tracking). 
During signal acquisition, the receiver searches for 
available satellites and estimates the approximate chip 
delay and Doppler frequency. The resolution of the 
coarse estimates of chip delay and Doppler frequency 
depends on the requirements of the succeeding tracking 
stage - typical values being 0.5 chips for the code delay 
and 500 Hz (for one millisecond coherent integration) for 
the Doppler frequency. The number of time cells to 
search depends on the code length. The number of 
frequency cells to search depends on the total frequency 
ambiguity and also on the coherent integration time. As 
an example, for a code length of 10230, Doppler 
frequency uncertainty region of ±

An acquisition engine is more useful initially when the 
receiver is powered on, rather than during normal 
operation. Hence the design goal of the acquisition engine 
in a multi-band GNSS receiver is to have the flexibility to 
search any of the desired signals using as little computer 

5 KHz and an 
integration time of 1 ms, there will be 20460 time cells 
(at 0.5 chip steps) and 21 (at 500 Hz steps) frequency 
cells to search. Generally, search algorithms in GNSS 
receivers spend more of their resources (time and 
processing power) estimating the chip delay than the 
Doppler frequency (Kaplan and Hegarty 2006).  
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resource as possible. Frequency domain methods to 
perform the code acquisition (FFT-based methods) 
provide the correlation values for all the time cells at 
once. However, this speed-up comes at a cost of 
increased computational burden due to the increased FFT 
length. There are several schemes to reduce the 
computational burden by reducing the number of points 
required to perform the FFT (see Fig. 1). Acquisition 
architecture can be modified to realize the correlation 
with smaller subsets of the signal and the local code 
(Yang 2001, Sajabi 2006). Another method is to use the 
assistance data (Diggelen 2009) from an external source 
to narrow down the search space and hence to reduce the 
size of the FFT. This assistance can be from an internal 
source such as in the case when the receiver is already 
tracking a signal at a different frequency band (from the 
same satellite) that has shorter code. This paper proposes 
methods that fall into a third category in which the FFT 
itself is computed efficiently by combining smaller FFT 
blocks.  

In a multi-band GNSS receiver, the receiver has to 
compute several FFTs of different sizes due to the 
varying code lengths of different signals. Hence the 
receiver has to accommodate dedicated FFT blocks of 
varying sizes. Moreover, depending on the code length 
and the required chip step, the FFT block requirement 
may not always be a power-of-two. For example, a triple-
band receiver designed to acquire GPS L1, Galileo E1, 
GPS L5 and GPS L2C has to have 2046, 8184, 20460 and 
40920 point FFT blocks (half chip step assumed). The 
transform lengths that are closer to a power-of-two 
number can be made power-of-two, by padding zeros 
(Yang, 2001) and then the power-of-two FFT can be 
efficiently computed. In our example this operation gives 
2046 → 2048 and 8184 → 8192. For the transform 
lengths that are far away from the power-of-two numbers, 
mixed radix FFTs can be used to realize the non-power-
of-two FFTs (Gunawardena, 2000). However these 
techniques do not solve the problem of having dedicated 
FFT blocks of different sizes for different signals.  
 
The GNSS modernization signals come with signal 
structures that employ different and new code lengths. 
Having dedicated or individual FFT blocks for all the 
signals becomes extremely demanding in terms of the 
hardware resource and the computational burden. In this 
paper, a novel method of factoring the required large-
point FFT lengths to common small-point building blocks 
is presented. The large FFTs for any signal are then 
computed by combining the small-point FFTs. This 
technique helps the receiver to eliminate the need for 
dedicated larger FFT blocks. It is shown that apart from 
reducing the resource requirements due to the 
employment of the small-point FFT blocks, the mixed-
radix method of combining the small-point FFT blocks to 
build the large required FFT block also reduces the 

number of additions and subtractions compared to the 
direct FFT computation method. 

The proposed method does not depend on the acquisition 
architecture and hence it can be used in conjunction with 
the other two categories (acquisition architecture 
modification and assistance information) to further 
reduce the computational burden. Apart from the 
reduction in the computational complexity, the proposed 
method is also useful for resource sharing in a multi-band 
receiver. 

Acquisition 
Architecture 
Modification

Assistance 
Information 

Reducing the FFT 
Computational 

Burden

Efficient FFT 
Implementation

• External (e.g. AGNSS)
• Internal (e.g. L1 to L5)

e.g.
• Partial Correlation
• Averaging

 

Fig. 1 Methods to reduce the FFT computational burden 

This paper is organized as follows. Section II gives a 
brief overview of the FFT approach for code correlation 
and the FFT factorization. Section III describes the 
receiver model and search dimensions Section IV FFT 
requirements of new GNSS signals. Section V describes 
the proposed Mixed-radix approach along with the result 
of transform length factorization for the different signal 
types. Section VI discusses the computational complexity 
by comparing the standard and proposed approaches. 
Section VII describes the FPGA resource utilization of 
the proposed methods, followed by a comparison for 
some of the signal combinations in section VIII. 

2 FFT approach for code correlation and FFT 
Factorization 

2.1 FFT approach for code correlation 

PRN code acquisition in a GNSS receiver involves 
correlating the received signal at baseband with all 
possible time-delayed versions of the local replica code 
and searching for the maximum value of correlation. The 
correlation value indicates whether proper alignment 
between the codes has been achieved. It is well known 
that the autocorrelation and power spectral density are 
Fourier Transform pairs and hence time delay searches 
for the PRN code alignment can be performed 
simultaneously for all time delay values using 
convolution according to the Wiener-Kinchine theorem 
(Proakis & Manolakis 2006). The process is to multiply 
the Fourier Transform of the received signal with the 
complex conjugate of the Fourier Transform of the local 
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replica code, and then perform the Inverse Fourier 
Transform of the product to obtain the result - which is 
nothing but a vector of correlation values for all possible 
time delays. As the sequences are periodic, this can be 
achieved by making use of FFTs and this technique has 
been proposed for GPS, with Binary-Phase Shift Keying 
(BPSK) signal modulation (Van Nee & Coenen 1991).  

Considering a sequence with period N

                         

, the 
autocorrelation in time domain is given by (1a) and via 
frequency domain by (1b), (Proakis & Manolakis 2006) 

1

0

( ) ( ) ( )
N

n

R m s n s n m
−

=

= +∑   (1a) 

                         1 *( ( ) ( ))F C k C k−=R                (1b) 
where s sand  are the received and local code plus 
subcarrier, C Cand  are the corresponding Discrete 
Fourier Transforms, and * is the complex conjugate 
operator. Fig. 2 depicts the code acquisition process using 
the FFT method. Note that R is a vector representing the 
correlation values for each time cell. To decide whether 
the proper alignment is achieved between the local code 
and the code present in the incoming signal, max (R) is 
tested against a threshold value. It can be seen that the 
parallel search using FFTs reduces the time required for 
code acquisition (Holmes 2007, Sajabi et al. 2006) by 
computing the vector R 
 

at once.  

In the case of the GPS L1 C/A code, N is 1023 and the 
transform length is larger than N

Acquisition engines that use the FFT approach for the 
code correlation are able to search all the shifts of the 
entire code length at once, which means that the number 
of searches in the code delay dimension is unity. The 

, depending on the chip 
spacing considered for the acquisition process. As an 
example, the transform length used for the UNSW 
NAMURU GPS receiver (Mumford et al. 2006), with 
sampling frequency 5.714 MHz, will require FFTs of 
length 5714 to process one millisecond of signal. Several 
methods exist (Sajabi et al. 2006, Qaisar et al. 2008, 
Starzyk & Zhu 2001) to reduce the effective transform 
length. These methods exploit the fact that during 
acquisition it is sufficient if both the codes are aligned 
within one half of a chip, which in turn reduces the 
transform length to twice that of the code length (with 0.5 
chip spacing), 2046 in this case. Binary Offset Carrier 
(BOC) modulation scheme used in some of the new 
signals may require smaller chip spacing to avoid the 
correlation loss (De Wilde et al. 2006). In the light of 
these re-sampling methods, the number of points in the 
FFT is proportional to the inverse of chip spacing and 
does not depend on the sampling frequency. 

FFT FFT -1

FFT*

( | |2 )
    N-1
∑ ( . )

     0

s(n+m)

Choose 
max 

Base-band 
signal

s(n)

 

Fig. 2: FFT method of code acquisition in GNSS receivers 

hardware resource consumed by a FFT-based acquisition 
method is higher than that of a single correlator which 
searches for one code shift at a time. Hence the aim of the 
fast acquisition search engines is to make use of a larger 
amount of hardware resources for a shorter amount of 
time, which often results in energy benefits compared to 
the single cell search engines. For this reason, the 
hardware used in an acquisition engine is not readily 
suitable for the signal tracking process which requires 
search across only one chip (which may involve more 
than one correlators depending on the tracking 
architecture, but much less than the number of cells to 
search during acquisition). 

2.1.2 Factorization of the FFT Transform Lengths

This section briefly describes the prime factor and 
Mixed-radix approaches. Detailed descriptions of the 
prime factor and Mixed-radix algorithms can be found in 
(Smith 1995) and citations therein.  

  

Prime-factor FFT algorithm 

The basic idea is to factor N (for an N-Point FFT) into 
two or more relatively prime numbers, implement the 
small-point building blocks, and combine them to obtain 
the final result. Hence prime factor algorithms are 
characterized by small-point building blocks. Thus 
if N can be factored into N = P ⋅ Q then the transform can 
be implemented as shown in Fig. 3. The small-points can 
be further factored along the same lines. The algorithm 
involves Q P-point FFT computations, P Q-point FFT 
computations and data re-ordering in between. If 
is N factored into n relatively prime factors Pi

                   

 then the 
number of real additions and real multiplications is given 
by 

1

n

P i
ii

NA A
P=

= ⋅∑        (2a) 

                  1

n

P i
ii

NM M
P=

= ⋅∑                 (2b) 

where Ai is the number of real additions in the Pi-point 
building block and Mi is the number of real 
multiplications in the Pi-point building block. 
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Re-ordering P-Point FFT

Data 
Re-ordering Q-Point FFT

 

Fig. 3: Prime factor FFT approach 

Mixed-radix FFT algorithm 

The basic idea is similar to the prime factor approach 
except that there is no constraint on the factors. The 
penalty paid is that complex-multiplications should be 
used while combining the results of small-point blocks 
instead of just re-ordering. Thus if N can be factored 
into N = P ⋅ Q then the transform can be implemented as 
shown in Fig. 4. The small-points can be further factored 
along the same lines. The algorithm involves Q P-point 
FFT computations, and P Q

           

-point FFT computations, 
data re-ordering and complex multiplications in between. 
For the two-factor approach the number of real additions 
and real multiplications is  

3 ( 1) ( 1)M Q PA P A Q A P Q= ⋅ + ⋅ + ⋅ − ⋅ −           (3a) 

           3 ( 1) ( 1)M Q PM P M Q M P Q= ⋅ + ⋅ + ⋅ − ⋅ −        (3b) 

where A(M)P ( Q ) indicates the number of real additions 
(multiplications) in the P(Q)

Data 
Re-ordering P-Point 

FFT

Data 
Re-ordering Q-Point 

FFT

Complex 
Multipliers

-point building blocks 
respectively. In the above equations we assume that the 
complex multiplications are achieved by three 
multiplications and three additions.  

 
Fig. 4: Mixed radix FFT approach 

 
 
3 GNSS Receiver Model and Search Dimensions 
 
3.1 The Receiver Model 

The received signal in a multi-band GNSS receiver 
capable of receiving the open-access signals (or 
components of these signals) GPS L1 C/A, L2 and L5, 
Galileo E1 and E5 can be represented as 

RF front-end

Digitized IF 
samples

Clock 
Source

Carrier 
Removal

Code 
Correlation Controller

Antenna

Commands

Correlation 
Values

Correlator

r(t) r1(n)

r2(n)

r5(n)

 

Fig. 5: Block diagram of a multi-band receiver 
 

                    1 2 5( ) ( ) ( ) ( )r t r t r t r t= + +                            (4) 
with the individual signals being (Kaplan and Hegarty, 
2006) 

1 1 1 1 1 1 1 1 1( ) ( ) cos( ) ( )cos( )L L L L E E E Er t A s t t A s t tω θ ω θ= + + +  (5) 

2 2 2 2 2( ) ( ) cos( )L L L Lr t A s t tω θ= +      (6) 

5 5 5 5 5 5 5 5

5 5 5 5 5 5 5

( ) ( ( ) cos( ) ( )sin( ))
           ( ( ) cos( ) ( )sin( ))

L L Q L L L I L L

E E Q E E E I E E

r t A s t t s t t
A s t t s t t

ω θ ω θ
ω θ ω θ

= + − + +
+ − +

            (7) 
where AX is the amplitude, ωX is the angular frequency, θX 
is the phase and sX is the modulating baseband component 
of the signal X. The received signal is down-converted, 
sampled and digitized to obtain an IF equivalent. As the 
first stage within the receiver, the nominal carrier 
frequency is removed. The output of this carrier removal 
then comprises only the baseband component of the 
received signal plus any Doppler. It is this baseband 

version (Doppler search is not considered in this paper) 
that is considered for the proposed code acquisition 
approach in our discussions throughout the remainder 
part of this article. Fig. 5 illustrates such a receiver. 
Because of their signal structure, each of these signals has 
a different requirement of the minimum sampling 
frequency.  

As will be explained later, the minimum number of cells 
to search within the code acquisition block depends on 
the length of the spreading code and the modulation, 
rather than on the sampling frequency. Note that only the 
baseband signal is of interest to us and the RF down 
converter and antenna are beyond the scope of this 
discussion. Also depending on the design, the receiver 
may process any combination of the above signals. 
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3.2 
Search Dimensions for the Signal Acquisition in a Mul
ti-band GNSS 
 

Receiver 

In this section we introduce new parameters to the 
concept of search engine dimensions. Acquisition has 
been discussed in the literature as a two-dimensional 
search (Kaplan and Hegarty 2006) when the receiver 
knows the PRN code which it is searching for or as a 
three-dimensional search otherwise (Djebouri 
et al. 2006). When we consider the acquisition process as 
a whole (search engine plus the controller) instead of just 
the search engine, the search is three-dimensional. The 
parameter along the code dimension in a GNSS receiver 
employing a time domain correlation approach for 
acquisition is the code delay (see Fig. 6a). In a single-
band receiver employing an FFT-based acquisition 
approach there is no parameter along the code dimension 
as the search is performed over the entire code space at 
once. As explained in the previous section, the size of the 
FFT block depends on the code length and the desired 
resolution of the code search. However in a multi-band 
receiver the code length is still a varying parameter and 
we use this along the code dimension. 

             
PRN Code 

Number

Code Length

Doppler 
Frequency    

                                       (a) 

          

PRN Code 
Number

Signal Type

Code Length

Doppler 
Frequency     

                                       (b) 
Fig.6: Search dimensions in a (a) Single-band GNSS receiver 

employing time domain correlation approach (b) Multi-band GNSS 
receiver employing FFT-based code acquisition approach 

 
With the new GNSS signals in context, because of the 
varying code length and varying search step 
requirements, the acquisition engine needs to be re-
arranged whenever the same hardware resource needs to 
be used across different signals. Hence this parameter 
introduces another dimension in the search process which 
we refer to as the ‘signal’ dimension. Fig. 6b depicts the 
four dimensions in the context of a multi-band GNSS 
receiver. Note that the variables in each dimension are 
not totally independent. For example the same PRN may 

have different code delay search requirements depending 
on the signal type. The shaded portion is the region that 
influences the size of the FFT in the search engine. This 
region comprises the code length and the signal type. In 
this paper, we describe the methods employed in the 
FFT-based acquisition methods which span this region of 
interest. The aim is to search for a computationally 
efficient FFT method which can easily adapt to different 
combinations of values along these two dimensions. 
 
4 FFT Requirements for New GNSS Signals
 

  

Fig. 7 shows the frequency bands for the Galileo and 
GPS signals. There are six signals in the spectrum as 
shown, three each for Galileo and GPS. For the following 
discussion we consider only the “open” signals intended 
for civilian users: GPS L1C/A, L2C, L5, Galileo E1 and 
E5. The code length and bandwidth parameters for these 
signals are listed in Table I (IS-GPS-200 2006; IRN-705-
003 2005; OS-SIS-ICD 2008). 
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Fig. 7: GNSS signals in the Galileo and GPS bands (from OS SIS ICD 
2008) 

Table I: GPS and Galileo signal parameters of interest 
Signal 
Name 

Code 
Length 

Chipping Rate 
(MHz) 

Receiver 
Bandwidth in 
MHz (typical) 

GPS L1 C/A  
1023 1.023 2 

GPS L2C  20460 0.5115 2 

GPS L5  10230 1.023 20 

Galileo 
E1B/ E1C  

4092 10.23 4 

Galileo E5  10230 10.23 50 

Galileo E5a 
/E5b 

10230 10.23 20 

For a particular satellite, the spreading codes in different 
signals that are transmitted by that satellite are aligned. 
This simple observation shows that a receiver can first 
synchronize to the shortest code sequence and then 
acquire longer codes with comparatively short additional 
search effort. Hence it is enough if a receiver comprises 
an FFT block required for the shortest code in that system 
(GPS or Galileo). However under certain circumstances 
we may have to use larger FFTs. Such a situation would 
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occur when the signal is affected by interference. If 
Galileo E1 or GPS L1 C/A (which has the shorter code 
sequences compared to other bands) is affected by 
interference that doesn’t allow signal acquisition, then we 
have to resort to other available signals in other bands 
because the aim of a multi-band receiver is to acquire and 
track as many satellites as possible in the minimum 
possible duration (that will improve the Time-To-First-
Fix). For this reason, the code acquisition architecture 
considered in our discussion is designed to be capable of 
acquiring any signal independent of the other, which is a 
more generic case.  

The size of the FFT depends on the code length and the 
required chip step. Whereas the chip step required for a 
signal with BPSK-like autocorrelation triangle is 0.5, the 
step size requirement for BOC signals (to ensure losses in 
SNR are restricted to 1.15dB on average) depends on the 
BOC parameters. In the case of Galileo E1 a chip step of 
0.167 is required in order to obtain the comparable 
correlation loss as for the BPSK 0.5 chip step (De Wilde 
et al. 2006). Hence for the Galileo E1B/C signal, the 
number of time cells to search increases 8184 to 24552 
for one millisecond coherent integration duration, despite 
the signal bandwidth only doubling. For an initial 
analysis of the FFT requirements and of the proposed 
approaches, we consider 1 millisecond coherent 
integration time  

As already mentioned, the transform length can be 
reduced to as much as twice the code length for some of 
the signals. This is true for the GPS L1, L2, L5, Galileo 
E5a and E5b signals where the shape of the 
autocorrelation function allows half chip (or less) 
alignment between the received and local signals with an 
effective sample size of twice the code length. For these 
signals the transform length requirements are given in 
Table II (Case 1). For the Galileo E1B/C and E5 signals, 
the effective sample sizes for one millisecond, which is 
the transform length (Shivaramaiah and Dempster, 
2008a), are shown in Table III (Case 2). Note that for the 
Galileo E1B/C, the signal can be acquired with 0.5 chip 
spacing with the side-band acquisition (SA) method (but 
with 3dB correlation loss compared to BPSK 0.5 chip 
spacing), or Direct Acquisition (DA) with a 0.167 chip 
spacing (no loss compared to BPSK 0.5 chip spacing).  

Note that there is a common transform length 
requirement among the signals mentioned above. Table 
IV combines all the signals with respect to the transform 
length, and summarizes the requirements for the signals 
under consideration. The chip step size for each of the 
signal is the same as in Tables II and III. 
 
A typical implementation of FFT-based acquisition has  

 

 
Table II: Transform length requirements Case 1 – 0.5 chip step  

Signal Name Chip Step Size Required 
Transform 
Length 

GPS L1 C/A  0.5  2046 
Galileo E1B/C – 
SA  

0.5(Side-band 
Acquisition)  

8184 

GPS L2C  0.5  40920 
GPS L5  0.5 20460 
Galileo E5a/E5b  0.5 20460 

 
Table III: Transform length requirements Case 2 – other chip steps 

Signal Name Chip Step Size  Required 
Transform 
Length  

Galileo E1B/C 
(DA)  

0.167(Direct 
Acquisition)  

24552 

Galileo E5  0.083  122760 

two problems. The first problem is due to the transform 
length. In order to simplify the FFT implementation, 
often a “next immediate of power-of-two” transform 
length is chosen instead of the transform lengths listed in 
Table IV, by zero-padding of the input sequence. Even 
though this works well for the GPS L1 signal (1024 
instead of 1023), for the codes with longer lengths one 
might have to unnecessarily increase the transform length 
by a huge amount (e.g. 65536 instead of 40920 for the 
GPS L2C) and also may reduce the SNR of the 
correlation output (Yang 2001). It should be noted that 
there are different contexts where the method of zero-
padding is used. (Yang 2001) describes the method of 
zero-padding to perform circular correlation and linear 
correlations at arbitrary lengths. On the other hand 
(Dempster 2006) describes a method of zero-padding for 
the L2C signal acquisition. In our discussions, we 
consider this zero-padding as a collective result of 
making the transform length a power-of-two (including 
any acquisition concept related zero-padding as in the 
case of L2C).  

The second problem is the fact that different signals 
require FFT blocks of different sizes. For example, 
assuming one millisecond coherent integration, a receiver 
processing GPS L1 C/A and Galileo E1B/C will have to 
have both 2046 point, as well as 8184 point FFTs (in the 
case of the SA method for E1). This results in spending 
dedicated FFT blocks for each signal, which is a very 
expensive approach. 

 
Table IV Transform length requirement summary 

Signal Name 

GPS L1 C/A  

Required Transform 
Length  
2046 

Galileo E1B/C – SA  8184  
GPS L5, Galileo E5a/E5b  20460 
Galileo E1B/C – DA  24552 
GPS L2C  40920 
Galileo E5  122760 
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5 The Proposed Approach

In this section, first the rationale behind the factorization 
of large-point FFTs is provided. Next, the computational 
complexity of the small-point FFT blocks is discussed 
and it is shown that a small modification to the brute-
force factorization method can result in efficient 
computation of the small-point FFT blocks. Finally with 
the revised factorization, a table of required small-point 
FFT blocks is given.   

  

5.1 Factoring of FFT transform lengths  

All the transform length requirements listed in Table IV 
are multiples of 1023. It should be noted that 1023 is 
easily factored into three prime numbers: 3, 11 and 31 
(Table V). All the other transform lengths can be 
factorized such that the factors are relatively prime to 
1023. This factorization is shown in Table VI.  

Table V 1023 point FFT factorization  
Transform length  
1023 

Factors 
3,11,31  

 
Table VI Transform length factorization 

Signal Name  
Transform 
Length  

GPS L1 C/A  
Factors  

2046 2, 1023  
Galileo E1B/C – SA  8184 8, 1023  
GPS L5, Galileo 
E5a/E5b  

20460 
4, 5, 1023  

Galileo E1B/C – DA  24552 3, 8, 1023  
GPS L2C  40920 5, 8, 1023  

Galileo E5  
122760 3, 5, 8, 

1023  

It can be seen that the transform of length 1023 is 
common across all the transform lengths. Hence it makes 
sense to have the 1023-point FFT as a single block. This 
can be implemented using the prime factor approach. The 
basic small-point building blocks required for all 
transform lengths in consideration are listed in Table VII. 
This list assumes a 1023 point block as a single entity (as 
mentioned above). 

Table VII FFT blocks required for GNSS signals in consideration 

2, 3, 4, 5, 8, 11, 16, 31, 1023  
Basic Building Blocks 

 

5.2 Complexity of small-point blocks  

In this sub-section, the computational complexity 
(number of real additions and the number of 
multiplications) of the prime factor and mixed-radix 
approaches using the small-point building blocks 
described in the previous section is discussed, and a 
comparison is made with the “next immediate power-of-
two” approaches. 

Many algorithms are available for computing the small-
point FFTs, such as the Winograd, Rader, SWIFT, Prime-
length, etc (Smith 1995). Each algorithm has its own 
complexity (number of additions and multiplications). 
For the sake of commonality amongst different 
combinations of small-point blocks, Table VIII lists the 
number of real additions and multiplications required 
(Smith 1995; Burrus & Selesnick 1995). Note that if there 
exists a method which can more efficiently compute the 
small-point FFTs, the improvement is directly observed 
in the proposed prime factor and Mixed-radix approaches 
as well because the proposed method uses a combination 
of the basic small-point blocks.  

A note on 1023-point and 1024-point FFTs 

As mentioned previously, 1023 is a common factor in the 
transform lengths of all the signals under consideration. 
But because 1024 is the next immediate power-of-two 
number for 1023, it can be implemented using Radix-2, 
Radix-4 or other optimized algorithms. Therefore it is 
necessary to compare the performance of the prime factor 
approach for a 1023 point FFT with a 1024 point FFT 
(with padding of one zero).  

Table VIII Complexity of small point blocks 
Transform 
Length 

Additions 

2 

Multiplications 

4 0 
3 12 4 
4 16 0 
5 34 10 
8 52 4 
11 168 40 
16 148 20 
31 776 160 

It was shown in (Proakis and Manolakis 2006) that the 
Split-radix FFT algorithm requires fewer multiplications 
and additions compared to the Radix-2 and Radix-4 
algorithms. Split-radix is a method in which at each stage, 
the transform is divided into Radix-2 and Radix-4 
branches (not FFTs) and then blended in the next stage. It 
should not be confused with the Mixed-radix which uses 
the factors (i.e. the smaller FFTs) of the transform length 
at each stage. Table IX gives the operation count 
comparison for the 1023-point FFT using the prime factor 
approach and the 1024-point FFT using the Radix-2, 
Radix-4 and Split-radix approaches. Note that the Split-
radix approach is the cheapest of all the considered 
approaches in the above table. With this information, it is 
wise to choose the 1024 point as the common factor 
instead of 1023 point. 

5.3 Revised FFT transform lengths and their factors 

The revised transform length requirements are given in  
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Table X. The revised requirements of the basic building 
blocks are given in Table XI. Since the factors are not 
relatively prime, the method to be used to combine the 
small-point blocks is the Mixed-radix method. 

Table IX Operation count for 1023 and 1024 point FFTs 

Transform 
Length  

Algorithm Additions 

1023 

Multiplications 

Prime-factor  45324 10364 
1024 Radix-2  46080 15360 
1024 Radix-4  49920 11520 
1024 Split-radix  27652 7172 

 
Table X Revised transform lengths for different signals 

Signal Name  
Revised Transform 
Length  

Factors 

GPS L1 C/A 2048 2, 1024  
Galileo E1B/C – 
SA 

8192 
8, 1024  

GPS L5, Galileo 
E5a/E5b 

20480 
4, 5, 1024  

Galileo E1B/C – 
DA 

24576 
3, 8, 1024  

GPS L2C  40960 5, 8, 1024  
Galileo E5 122880 3, 5, 8, 1024  

 
Table XI: FFT blocks required for GNSS signals in consideration – 

revised 
Basic Building Blocks 

2, 3, 4, 5, 8, 16, 1024 
 
 
 
 

6 Computational Complexity of 
the Proposed Approach

In order to compare the complexity of the proposed 
approaches, we consider the Split-radix algorithms for the 
power-of-two approaches with the number of real 
additions and real multiplications according to (Sorensen 
et al. 1986) (the complex multiplications are treated as 3 
real multiplications and 3 real additions). Table XII gives 
a comparison of the Split-radix approach and the Mixed-
radix approach. To compute the number of operations for 
the Mixed-radix algorithms, the factorization according to 
Table X and the Table IV have been used. As an 
example, consider the transform length 2048 for which 
we need 2-point and 1024-point FFT blocks. In the first 
stage, all the 1024 two-point FFTs are computed. The 
outputs of these FFTs are then multiplied with the (1024-
1)*(2-1) = 1023 complex coefficients (the other 
coefficients are unity). In the last stage two 1024-point 
FFTs are computed to obtain the final output.  

  

Comparing the complexity of these two approaches 
suggests that the Mixed-radix algorithm requires only a 
small amount of additional computations. Moreover, 
because the Mixed-radix FFT approach is made of 
smaller-point FFTs, the required FFT can be built using 
the smaller-point FFTs. Hence Mixed-radix algorithms 
are proposed to construct the different sizes of FFTs that 
are required. Figures 8 and 9 show the computational 
complexity for different GNSS signals using the data 
specified in Table XII. 
 

Table XII  Computational complexity comparison 
Split Radix Mixed Radix 
Transform Length  Additions Multiplications  Transform Length  Additions Multiplications
2048 

  
61444 16388 2048 62649 17413 

4096 135172 36868 4096 136199 37895 
8192 294916 81924 8192 295947 82955 
16384 638980 180228 16384 640019 181267 
32768 1376260 393220 20480 869399 279575 
“ “ “ 24576 1035291 330779 
65536 2949124 851972 40960 1856555 594987 
131072 6291460 1835012 122880 6110331 1866875 
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Fig. 8: Number of real additions comparison for FFT of different GNSS 

signals (Spilt-radix method is used for the standard approach) 
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Fig. 9: Number of real multiplications comparison for FFT of different 
GNSS signals (Spilt-radix method is used for the standard approach) 
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6.1 Comparing the Complexity of the FFT-based 
correlator with the Time-based correlator

It is interesting to understand the relative complexities of 
the FFT-based correlation and the time-based correlation 
method. To obtain the same search time, the time-based 
correlation process should provide the correlation values 
simultaneously for all code delays since the FFT-based 
method does the same. The acquisition performance of 
such parallel time-domain correlators is experimentally 
studied in Malik et.al (2009a) and Malik et. al. (2009b). 
A time-based correlator with 2-bit input and 2-bit local 
carrier signal should process a 4-bit input for the code 
correlation and the code correlation is a simple signum 
function in this case which is then fed to the input port of 
an accumulator (Shivaramaiah and Dempster 2010). For 
the GPS L1 C/A signal, computation of each correlation 
value involves 2046 additions/subtractions. Thus, with an 
acquisition code phase resolution of half chips, the time-
based correlator requires 2046*2046 = 4186116 
add/subtract operations. The accumulator width depends 
on the integration duration, but for one millisecond 
integration 16-bit accumulator is sufficient (Shivaramaiah 
and Dempster 2010).  

  

 
With the FFT-based correlation, the number of additions 
and multiplications to obtain all the correlation values can 
be computed using Table XII and Fig. 2 and considering 
that the FFT of the local code is pre-computed and stored 
in memory. Table XIII shows the FFT-based and time-
based correlator complexities for the GPS L1 C/A signal 
with 2046 cell searches (2048-point FFT). Note that 
according to Fig. 2, FFT operations in Table XII should 
be multiplied by two (there is an FFT and an IFFT to 
execute in real-time) with a complex multiplication in-
between. For the time-based correlator, the number of 
accumulators has to be doubled because of I and Q local 
carriers. The code correlation part of the time-based 
correlator when implemented on a Altera Cyclone family 
FPGA device consumes 39 LEs for each of the I and Q 
accumulator (i.e. an accumulator with a feature of 
add/subtract based on the code bit input). The correlation 
values for all the delays are obtained by cycling 2046 
times through each of the 2046 correlators. It can be 
observed from Table XIII that even though there are no 
multipliers required, the time-based correlator consumes 
huge number of Logic Elements. Having saved 93% of 
LEs, the multipliers requirement is easily addressed using 
the multiplier blocks available in the exiting FPGAs. As 
such, other signals are not considered due to the high 
resource consumption of the time-based correlators and 
for the same reason, the time domain correlators are not 
considered in the results section. 
 
7 Implementation and Resource Utilization on an 
FPGA 
 
As discussed in the previous section, application of the  

Table XIII Operations count for the Entire correlator Employing Time-
based (2046-tap) and FFT-based (2048-point) methods 

FFT-based Time-based 
Additions Multiplicatio

ns 
Additions/ 
Subtractions 

125301 

Multiplicatio
ns 

34829 8372232 0 
LEs Multipliers LEs 
11229 

Multipliers 
39 159588 0 

 
proposed methods reduces the number of computations 
compared to directly computing the transforms of power-
of-two lengths. In addition, instead of having separate 
FFT blocks for each signal in the receiver, the proposed 
algorithm uses basic building blocks with which we can 
construct the required larger FFTs. By ‘constructing’ is 
meant the combination of smaller blocks using the 
Mixed-radix approach. The main task of the combination 
process is to configure the complex multiplication 
coefficients between the small-point FFT blocks shown 
in Fig. 4. 
 
For hardware resource comparisons we use the number of 
LE (Logic Elements) and multipliers of the Altera 
Cyclone family FPGA devices. For the sake of 
commonality, a data and twiddle precision of 16 is 
chosen across all the stages of the FFT. Note that in the 
case of the Mixed-radix approach, by arranging the 
factors in an increasing order it is possible to use smaller 
bit widths during the initial stages of the FFT. Also, we 
make use of the fully- parallel architecture for the small-
point FFT blocks wherein each 16-bit addition consumes 
16 LEs and each multiplication consumes one multiplier 
block. The number of LEs and multiplier consumption 
was evaluated for the small-point FFTs and are listed in 
Table XIV. The reason for selecting a fully parallel 
architecture is that the blocks can be operated at higher 
throughput which helps when building larger length 
FFTs. Table XV gives the FPGA resource utilization for 
the 1024 point FFT with streaming I/O architecture 
(Altera 2007). 
 

Table XIV FPGA resource utilization for the basic building blocks 
Transform Length  LEs 
2 

Multipliers 
9 0 

3 192 4 
4 256 0 
5 544 10 
8 832 4 
16 2368 20 

 
Table XV FPGA resource utilization for 1024 point FFT 
Transform 
Length  

Altera MegaCore IP (v7.2) 
LEs 

1024 
Multipliers 

5552 18 
 

For the other transform lengths, the pipelined streaming 
input method is used by combining the appropriate 
smaller-point FFTs. Hence the resource utilization is 
influenced by the resource consumed by the combination 
pattern of the basic building blocks. The requirements of 
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the memory increases only by an amount of highest value 
(P - 1) ⋅ (Q - 1) (which is required to hold the complex 
multiplication coefficients) among all the desired signal 
combinations. For example, as shown in Fig. 10, a 2048-
point FFT will require one 2-point block which is serially 
operated on the input streaming data 1024 times and one 
1024-point FFT block which is operated twice, with 1023 
complex multiplications in between. The depth [1...1024] 
and [1, 2] indicate the serial operation of the 
corresponding FFT blocks. Table XVI lists the resource 
utilization for larger length FFTs. The * indicates that the 
Altera core doesn’t exist for these sizes and has been 
computed by combining the N/2 point FFTs as explained 
in (Altera 2004). 

2-point 
FFT

1024

1 1024-
point FFT

1
2

Multi
pliers

Complex 
Coefficients

 

Fig. 10: Example of Mixed-radix method for a 2048 point FFT 

Table XVI  FPGA Resource utilization for different transform lengths 
Standard Approach (Altera MegaCore IP ) Proposed Approach (Time-shared architecture) 
Transform 
Length 

LEs Multipliers Transform Length LEs Multipliers 

2048 7610 36 2048 5556 18 
4096 8011 36 4096 5808 18 
8192 7760 36 8192 6384 22 
16384 8167 36 16384 7920 38 
32768 17337 80 20480 9008 58 
“ “ “ 24576 9584 62 
*65536 34864 160 40960 1464 118 
*131072 69720 352 122880 38768 478 

 
8 Results and Discussion 

In this section the results of using the proposed approach 
for processing selected combinations of the signals are 
presented. The combinations considered here are as 
follows: 
• Combination-I: GPS L1 C/A and Galileo E1B/C-SA  
• Combination-II: GPS L1 C/A and GPS L2C 
• Combination-III: GPS L1 C/A, Galileo E1B/C-SA 

and Galileo E5a/E5b /GPS L5 
When using the proposed approach, depending on the 
acquisition engine design, either the FFT blocks can be 
time-shared among different signals, or each signal can 
have its own (independent) FFT processing block. The 
time-sharing mentioned here is different to the time-
sharing referred to in the previous section. In the previous 
section, the computation of a particular length FFT is 
achieved by time-sharing the smaller FFT blocks. In this 
section, time-sharing indicates the re-use of FFT blocks 
among different signals that require FFTs of different 
lengths. The hardware resource required is the same as 
that required by the largest FFT among the signals 
considered. This is referred to as the “signal-time-
sharing” approach.   
 
An example of the signal-time-sharing FFT architecture 
for Combination-I is shown in Fig. 11. In a GPS L1 C/A 
+ Galileo E1B/C receiver, first the GPS satellites can be 
searched and then the Galileo satellites or half the number 
of channels can search for GPS satellites and the other 
half can search for Galileo satellites (or any other 

scheme). The basic FFT blocks required for this 
combination are 2, 8 and 1024. For the GPS L1 C/A 
signal, 1024 serial operations of 2-point FFT block and 
two operations of 1024-point FFT are performed as 
explained in the Mixed-radix example described in the 
previous section. For the Galileo E1 B/C signals, 1024 
serial operations of 8-point FFT block and eight 
operations of 1024-point FFT are performed. Note that 
the complex multiplication and the coefficients should 
accommodate the largest FFT under consideration, 8184-
point in this case. 

8-point 
FFT

1024

1

1
2

Multi
pliers

Complex 
Coefficients

2-point 
FFT

1024

1

1024-
point FFT

8

Fig. 11: Example of the signal-time-sharing FFT architecture for 
Combination-I 

Thanks to the Mixed-radix algorithm, the complex 
multiplication process and coefficients for the 2048-point 
FFT (the smaller FFT) are subsets of 8184-point FFT (the 
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larger FFT) and hence no additional memory or 
multiplies are required for the 2048-point FFT. Another 
advantage of the Mixed-radix algorithm is that only a 
quarter of the number of coefficients needs to be stored 
and hence the memory required is 4196 (2048 real and 
2048 imaginary) locations in the current example. Hence 
in this signal-time-sharing approach the memory required 
is that of the largest FFT when implemented in the 
standard power-of-two approach plus a memory of depth 
equal to a quarter of the length of largest FFT under 
consideration. In addition there is no increase in the 
routing resources except for reading the 2048 depth 
memory into the multipliers.  

In the independent FFT block approach of the Mixed-
radix method, the hardware and routing resources and the 
memory of the individual FFTs have to be added and 
hence the requirements increase compared to the signal-
time-sharing approach. However these numbers remain 
less when compared to the standard power-of-two 
approach. Note that the time-sharing is not possible with 
the standard approach as each FFT block has to be 
independently instantiated. In what follows, we give the 
percentage improvement in resources of both of these 
methods over the standard approach. 

8.1 Resource utilization results for different 
combinations 

Figures 12 and 13 give the performance comparison of 
the standard and proposed approaches for the selected 
signal combinations respectively. For Combination-I, the 
saving is about 22% in the number of LEs, and for 
Combination-III the savings are around 35%. 
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Fig. 12: Comparison of number of LEs for different signal combinations 
 
8.2 Proposed FFT test result with the data collected 
from the real signal: A Case Study 
 
The proposed FFT method has been tested with data 
collected from the real signal for the Combination-I to 
acquire GPS L1 C/A and GIOVE-B E1C signals in the 
same platform. The GeNeRx1 receiver from Septentrio 
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Fig. 13: Comparison of number of multipliers for different signal 

combinations 

was used to collect the Intermediate Frequency (IF) 
signal samples. The IF samples were re-sampled to two 
samples per chip (so as to obtain 0.5 chip spacing). The 
samples were then fed to the Altera FPGA for processing. 
The design with the FFT blocks used Altera DSPBuilder 
tool in the Matlab Simulink and then programmed to the 
FPGA. The integration duration of one millisecond for 
the GPS L1 C/A and 8 ms for the GIOVE-B E1C signals 
were selected. 

Figures 14 and 15 show the correlation value (top half) 
from the standard and the proposed FFT methods 
respectively. Note that the proposed approach (2*1024 
point and 2* 8*1024 point FFTs) closely matched the 
standard (i.e. 2048 point and 16384 point FFTs) 
approach. The errors in the correlation values are also 
plotted in the bottom half of Fig. 14 and 15. Note that the 
proposed approach has less than two percent error 
compared to the standard approach. This difference is due 
to the rounding used during the complex multiplications 
between the stages in the Mixed–radix method. The loss 
due to this error is less than 0.1 dB in the correlation 
value and hence negligible for all practical purposes. 
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Fig. 14 Acquisition results for the GPS L1 C/A signal; PRN 17; 2048 

Point FFT; 1ms integration 
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Fig. 15 Acquisition results for the GIOVE-A E1 C signal; 16364 Point 
FFT realized using standard approach and the proposed Mixed-radix 

(2*8*1024) approach; 8ms integration  

 
9 Concluding 
 

Remarks 

This paper discussed the requirements for the FFT 
transform lengths in GNSS receivers which aim to 
process multiple signals. The proposed method of 
factorizing large FFT transform lengths into smaller-point 
FFT blocks eliminates the need for having individual 
FFTs for different signals. It has been demonstrated that 
the proposed approach of combining the small-point 
blocks to build the required large FFTs provides benefits 
both in terms of reduced computational complexity and 
increased resource sharing. It is also shown that for the 
GPS L1 C/A and Galileo E1B/C signal combinations the 
reduction in complexity is about 22% and the percentage 
reduction is also high for other signal combinations. 
From these results it can be concluded that the proposed 
approach has two advantages:  

• Code acquisition with longer codes can be practically 
achieved via the FFT-based method (through the use 
of small-point FFT blocks), without having to 
implement a FFT of large transform length.  

• Multi-band GNSS receivers can make use of small-
point FFTs from a common set of building blocks, 
hence reducing the design complexity and increasing 
the re-usability. 

The proposed method is a potential candidate for 
acquisition engines in future multi-band GNSS receivers. 
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