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Pseudo-lok biases for preise point positioning.The algebrai approahA. Lannes1 S. Gratton2 S. Durand3

1CNRS/Supele/Univ Paris-Sud (Frane)
2UPS/INPT-IRIT/Enseeiht (Frane)
3ESGT/CNAM (Frane)AbstratAs shown in a ompanion paper devoted to GNSS net-works in algebrai graph theory, any (real- or) integer-valued funtion taking its values on the edges of theGNSS graph an be regarded as the sum of three (real- or)integer-valued funtions: a funtion taking its values onthe reeiver verties of this graph, another one on thesatellite verties, and the last one, the losure-delay (CD)funtion, taking its values on the loop-losure edges. Fora given spanning tree, this deomposition is unique. Thenotion of losure delay generalizes that of double di�er-ene (DD). In this framework, partiular satellite biasesan be estimated and broadasted to the network usersfor their preise point positioning (PPP). For example,in the ase of large networks, eah of these biases in-ludes three (or four) terms: a satellite-lok term, asatellite time-group term, a satellite ionospheri term,and (for the phase) a satellite integer ambiguity multi-plied by the orresponding wavelength. The form of thePPP equations to be solved by the network user is thenthe same as that of the traditional PPP equations. Assoon as the CD ambiguities are �xed and validated, es-timates of these �oat biases an be obtained. The mainresult of this paper is that no other ambiguity is thento be �xed, hene a better e�ieny. In partiular, inthis approah, it is not neessary to �x the arrier-phaseambiguities, a problem whih annot be easily solved.Indeed, as shown in this paper, when the CD ambigui-ties are �xed (or when a maximum set of DD ambiguitiesis �xed), the remaining �oat problem is not of full rank.Keywords. GNSS networks. Clok biases. RTK. PPP.1. IntrodutionThe global positioning tehniques are based on the fol-lowing observational equations. For eah frequeny ν, foreah reeiver-satellite pair (i, j) ≡ (ri , sj), and at eah

epoh t, the arrier-phase and ode data are respetivelyof the form (see, e.g., Teunissen and Kleusberg 1998)
Φν,t(i, j) = ρt(i, j) + Tt(i, j) − κνIt(i, j)
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(2)In these equations, whih are expressed in length units,
ρt(i, j) is the reeiver-satellite range: the distane be-tween satellite sj (at the time t − τ where the signal isemitted) and reeiver ri (at the time t of its reeption);
Tt(i, j) and It(i, j) are the tropospheri and ionospheridelays, respetively. Here,
κν = ν2

1/ν
2 = λ2

ν/λ
2
1 (3)The λν 's denote the wavelengths of the arrier waves in-volved in the observational proess. Note that κν1 = 1.The integers Nν(i, j) are the integer arrier-phase ambi-guities: Nν(i, j) ∈ Z.The instrumental biases and the lok errors dependingonly on ri and t are lumped together in the `extendedreeiver-lok biases' f (r)

φ;t(i), f
(r)
p;t (i). Likewise, the in-strumental biases and the lok errors depending only on

sj and t are lumped together in the `extended satellite-lok biases' f (s)
φ;t(j), f

(s)
p;t (j). Similarly, g(r)

φ;t(i), g
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φ;t(j), g
(s)
p;t(j) denote the biases involved in the def-inition of the time-group delays.In this model, the expetation values of the noise terms

εφ;ν,t(i, j) and εp;ν,t(i, j) are supposed to be zero. Wealso assume that these noises are not mutually orre-lated.



Lannes et al: Pseudo-lok biases for preise point positioning. The algebrai approah 69In this paper, we onsider a GNSS network and par-tiular satellite biases. Estimates of these pseudo-lokbiases are broadasted to the network users for their pre-ise point positioning (PPP). The theoretial frameworkis presented in Set. 2. One the linearization aspetshave been spei�ed (Set. 3), the orresponding approahis then introdued (Set. 4). The similarities and di�er-enes with other related approahes are examined in thatframework. Setion 5 is devoted to the optimization teh-nique that provides the pseudo-lok biases in question.Some omments on the key points of our ontributionare to be found in Set. 6.2. Theoretial FrameworkLet us onsider a GNSS network inluding m stations,and thereby m multifrequeny reeivers ri. The num-ber of satellites sj involved in the observational proessover some time interval [t1, tℓ] is denoted by n. The`observational grid' of the network is therefore a grid Goinluding m lines, n olumns, and mn points; see Fig. 1.For example, in the ase of large networks, m and n areof the order of 100 and 32, respetively. A funtion suhas Φν,tk or ρtk , with k in [1, ℓ], takes its values on somepoints (i, j) of Go. These points form a subset of Godenoted by Gk: the `GNSS grid' of epoh tk. When noonfusion may arise, subsript k is omitted: G ≡ Gk.The ith line of G is denoted by Li:
Li := {j : (i, j) ∈ G, i being �xed} (4)Likewise, the set
Cj := {i : (i, j) ∈ G, j being �xed} (5)haraterizes the jth olumn of G.2.1. GNSS graph. Edge-delay spaeIn the example presented in the upper part of Fig. 1, thepoints (i, j) of G are shown as blak dots. As illustratedin the lower part of this �gure, these points orrespond tothe `edges' (ri , sj) of the GNSS graph to be onsidered;

E denotes the set of its edges; ne is their number. Thereeivers and the satellites involved in the de�nition ofthese edges de�ne the `verties' of this graph; V denotesthe set of its verties, and nv their number:
nv = m+ n (6)A GNSS graph G is therefore de�ned by the pair (V , E):

G ≡ G(V , E). For simpliity, we now assume that G isonneted (e.g., Biggs 1996): given any two verties of V ,there exists a path of edges of E onneting these verties.(If this is not the ase, G is redued to its main onnetedomponent; G is then redued onsequently.)A funtion ϑ taking its values on G, and thereby on E ,an be regarded as a vetor of E := R
ne . The values of ϑon G are then regarded as the omponents of ϑ in thestandard basis of this edge-delay spae.
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Figure 1: GNSS grid G and GNSS graph G.In the example shown here, the observationalgrid Go inludes 12 points: m = 3, n = 4.The GNSS grid of epoh tk, G ≡ Gk, inludes
9 points; these points are shown as blakdots. The orresponding graph, G ≡ Gk, in-ludes 7 verties and 9 edges: nv = m+ n = 7,
ne = 9. The data orresponding to the reeiver-satellite pairs (r1, s2), (r2, s3) and (r3, s1) aremissing.2.2. GNSS spanning tree and loopsAs illustrated in Fig. 2, a spanning tree of G ≡ G(V , E)is a subgraph Gst ≡ G(V , Est) formed by nv verties and

nv − 1 edges, with no `yle' in it. Here, `yle' is used inthe sense de�ned in algebrai graph theory (Biggs 1996).In the GNSS ommunity, to avoid any onfusion withthe usual notion of wave yle, it is not forbidden tosubstitute the term of `loop' for that of `yle.' In thisontext, the number of loops de�ned through a given�xed (but arbitrary) spanning tree is the number of edgesof E that do not lie in Est . These edges,
c(q) := (ri(q) , sj(q)) (7)are said to be `loop-losure edges' (see Fig. 2). Theirnumber is denoted by nc:
nc = ne − (nv − 1) (nv = m+ n, ne ≤ mn) (8)To selet a GNSS spanning tree, the edges of E are �rstordered somehow. The orresponding sequene is of theform
e(q) := (riq , sjq) (q = 1, . . . , ne)The algorithm is the following: set q = 0, nst = 0, and

Est = ∅ (the empty set). Then,(1) If nst = nv − 1, terminate the proess; otherwise,set q set

= q + 1.(2) When the verties of e(q) are not onneted viaedges of Est, set Est
set

= Est ∪ {e(q)} and nst
set

= nst + 1;then go to step (1).
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Figure 2: GNSS spanning tree and loops. Theblak edges of G (the graph introdued in Fig. 1)are the edges of the seleted spanning tree Gst.The points of the orresponding subgrid Gst areshown as blak dots. The remaining points of G(the red dots of G) orrespond to the loop-losureedges (the red edges of G). We then have one loopof order 4, and 2 loops of order 6: (r2 , s4 , r1 , s1),
(r3, s3, r1, s1, r2, s2) and (r3, s4, r1, s1, r2, s2).These orders are shown as red numbers.The subgrid of G orresponding to the edges of Est isdenoted by Gst. By onstrution, the spanning tree thusfound depends on how the edges are ordered.Example 2.1. To show, in onrete manner, how thisalgorithm works, we now onsider its ation on the gridGof Fig. 2, its points being ordered line by line.The points of the �rst line of G, the points (1, 1), (1, 3)and (1, 4), de�ne the �rst 3 edges of Est:

Est
set

= {(r1, s1), (r1, s3), (r1, s4)} (nst = 3)By onstrution, four verties of G are then onneted:
r1, s1, s3 and s4.The next point of G, the �rst point of line 2, is assoiatedwith edge (r2, s1). As r2 and s1 are not onneted viaedges of Est, this edge annot be a loop-losure edge. Wetherefore set
Est

set

= Est ∪ {(r2, s1)} (nst = 4)Five verties are then onneted: r1, s1, s3, s4 and r2.The next point of line 2 is assoiated with edge (r2, s2).As r2 and s2 are not onneted via edges of Est, we set
Est

set

= Est ∪ {(r2, s2)} (nst = 5)Six verties are then onneted: r1, s1, s3, s4, r2 and s2.The next point of G, the last point of line 2, is assoiatedwith edge (r2, s4). As r2 and s4 are already onneted,this edge loses a loop with some edges of Est. As a result,this edge is the �rst loop-losure edge: c(1) = (r2, s4);see Eq. (7). The orresponding loop, (r2 , s4 , r1 , s1), isof order 4: it inludes 4 edges (see Fig. 2).

The next point of G, the seond point of line 3, is assoi-ated with edge (r3, s2). As r3 and s2 are not onnetedvia edges of Est, we then set
Est

set

= Est ∪ {(r3, s2)} (nst = 6)As all the verties of E are then onneted, the algorithmstops: Est is then ompletely de�ned.The remaining points of line 3 therefore de�ne two loop-losure edges: c(2) = (r3, s3) and c(3) = (r3, s4). Theseloops are of order 6; see Fig. 2.Remark 2.1. In the speial ase of the graph shownin Fig. 2, there exist partiular spanning trees for whihthe three loops are of order 4. As the hoie of the span-ning tree is arbitrary, it is not useful to searh for suhspanning trees.Remark 2.2. In Example 2.1, the points of G are or-dered line by line. In fat, to handle some graph tran-sitions (i.e., some senario hanges), one may be led toorder them in a more subtle manner; see Set. 7.4.3 inLannes and Gratton 2009.2.3. Referene propertiesThe properties presented in this setion are established inSet. 4.2 of Lannes and Gratton 2009. We �rst introduethe notion of `bias-delay spae.'Bias-delay spae. The subspae of E whose fun-tions β are of the form
β(i, j) = δ[r](i) + δ[s](j) with δ[s](1) = 0 (9)is denoted by F . This subspae an be referred to asthe bias-delay spae. By de�nition, the `reeiver-delayspae' F [r] is the subspae of F whose funtions β dependonly on i: β(i, j) = δ[r](i). Similarly, the `satellite-delayspae' F [s] is the subspae of F whose funtions are of theform β(i, j) = δ[s](j) with δ[s](1) = 0. By onstrution,
F is the `oblique diret sum' of F [r] and F [s]:
F = F [r] + F [s] F [r] ∩ F [s] = {0}We thus have
dimF [r] = m dimF [s] = n− 1 (10)
dimF = dimF [r] + dimF [s] = nv − 1 (11)Property 1. Given any edge-delay funtion ϑ taking itsvalues on G, for eah spanning tree Gst of G, there existsa unique set of reeiver and satellite delays
{

ϑ[r](i)
}m

i=1
∪

{

ϑ[s](j)
}n

j=1
with ϑ[s](1) = 0suh that ϑ(i, j) = ϑ[r](i) + ϑ[s](j) on the points of Gst.More onretely, the following proess provides these de-lays in a reursive manner; for further details, see Lannesand Gratton 2009.



Lannes et al: Pseudo-lok biases for preise point positioning. The algebrai approah 71Reursive di�erential proess. Set ϑ[s](1) = 0; then,span the points of Gst line by line (see Fig. 2 or Fig. 3).For eah point (i, j) thus enountered, then proeed asfollows.If ϑ[s](j) has already been �xed, and ϑ[r](i) is not �xedyet, set
ϑ[r](i) = ϑ(i, j) − ϑ[s](j)If ϑ[r](i) has already been �xed, and ϑ[s](j) is not �xedyet, set
ϑ[s](j) = ϑ(i, j) − ϑ[r](i)To obtain all these delays, Gst is to be spanned in thisway as many times as required. It is important to pointout that the only operations involved in this proess aredi�erenes. As a result, if ϑ is an integer-valued funtion,the reeiver and satellite delays ϑ[r](i) and ϑ[s](j) lie in Z.Example 2.2. To illustrate this reursive di�erentialproess, we now follow its ation on the gridGst of Fig. 2.As ϑ[s](1) is nought, we then obtain suessively:
ϑ[r](1) = ϑ(1, 1) − ϑ[s](1) = ϑ(1, 1)

ϑ[s](3) = ϑ(1, 3) − ϑ[r](1)

ϑ[s](4) = ϑ(1, 4) − ϑ[r](1)

ϑ[r](2) = ϑ(2, 1) − ϑ[s](1) = ϑ(2, 1)

ϑ[s](2) = ϑ(2, 2) − ϑ[r](2)

ϑ[r](3) = ϑ(3, 2) − ϑ[s](2)Closure delays. Aording to Property 1, the quanti-ties
ϑ[cd](i, j) := ϑ(i, j) −

[

ϑ[r](i) + ϑ[s](j)
] (12)vanish on the points of Gst. The values of ϑ[cd] of interestare therefore de�ned on the remaining points of G, i.e.,on the `CD subgrid'

Gcd := {(i, j) ∈ G : (i, j) /∈ Gst} (13)Clearly, Gcd inludes nc loop-losure points; see Eq. (8)and Figs. 2 & 3. The quantities ϑ[cd](i, j) on Gcd antherefore be referred to as the `losure delays' of ϑ, henethe notation d or CD.The notion of losure delay generalizes that of doubledi�erene. In fat, for a given loop, the losure delayof ϑ is the `alternate algebrai sum' of the values of ϑalong the edges of that loop. For example, with regardto Fig. 3, the CD ambiguity N [cd]
ν (3, 3) is the alternatesum

Nν(3, 3)−Nν(3, 2)+Nν(2, 2)−Nν (2, 1)+Nν(1, 1)−Nν(1, 3)As lari�ed in a paper to appear in the Journal of Geodesy(Lannes and Teunissen 2010/11), the CD ambiguities arethe `estimable funtions of arrier-wave ambiguities' ofde Jonge 1998. These funtions were introdued to or-ret for rank defets of the undi�erened equations; seeTeunissen 1984.
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Figure 3: Interest of the CD approah. In the se-nario onsidered here, G inludes 15 points. Theseleted spanning tree is built by spanning thepoints of G line by line. The points of Gst areshown as blak dots. The red ones are the or-responding loop-losure points; see Fig. 2. Withregard to the seleted spanning tree, we then have
3 loops of order 4, and 3 loops of order 6. Here, the`maximum number of independent double di�er-enes' is equal to 5; for further details see Eq. (46).In the orresponding DD approah, the data of gridpoint (1, 3) are not used; see Fig. 4. The CD ap-proah is therefore preferable sine all the data arethen proessed.Property 2. Any edge-delay funtion ϑ taking its valueson G an be deomposed in the form

ϑ(i, j) = ϑ[r](i) + ϑ[s](j) + ϑ[cd](i, j)For a given spanning tree, this deomposition is unique.This property is a simple transription of Eq. (12). Theuniqueness of this deomposition results from Property 1.Example 2.3. With regard to the GNSS grid of Fig. 2,let us onsider (for simpliity) the ambiguity funtion
N :

2 ∗ 1 −1

−1 1 ∗ 1

∗ −2 2 −1The reursive di�erential proess of Example 2.2 appliedto this funtion yields the following omponents:
N [r] :

2 ∗ 2 2

−1 −1 ∗ −1

∗ −4 −4 −4

N [s] :

0 ∗ −1 −3

0 2 ∗ −3

∗ 2 −1 −3

N [cd] :

0 ∗ 0 0

0 0 ∗ 5

∗ 0 7 6



Lannes et al: Pseudo-lok biases for preise point positioning. The algebrai approah 72Remark 2.3. To handle some graph transitions, onemay be led to hange the seleted spanning tree (seeRemark 2.2). The CD ambiguity variables are then trans-formed aordingly. The orresponding linear operatorsan easily be determined.Remark 2.4. It an be shown that the maximum num-ber of independent double di�erenes is less than or equalto nc; see Lannes and Teunissen 2010/11. An exam-ple where this number is stritly less than nc is givenin Fig. 3.3. LinearizationFor larity, let us now substitute k for tk. In most asesenountered in pratie, the funtional variable ρk anbe linearly expanded in terms of other variables. In thegeneral ase, some of the latter depend on k, while othersnot; see, e.g., Feng and Li 2008. In other terms, the �rstones are `loal' variables, while the others are `global'with however possible transitions from time to time.More preisely, the reeiver-satellite range an be ex-panded in the form
ρk(i, j) = ρ0

k(i, j) +
∑3

p=1 ck;p(i, j)u
(ξ)
i,k;p

+
∑

q
dk;q(i, j) vq

(14)Here, ρ0
k(i, j) is the nominal value of ρk(i, j); u(ξ)

i,k;p is the
pth inrement variable of (the position of) reeiver ri atepoh k. Note that ck;p(i, j) is a diretion-osine fun-tion; see, e.g., Eq. (14) in Lannes and Gratton 2008.The u

(ξ)
i,k;p's are the position omponents of the loalvariable uk. When the positions of some reeivers areexpanded as `pieewise polynomial funtions' of t, theparameters involved in these expansions appear in thede�nition of the global variables vq; and likewise whenorbital parameters are to be re�ned. Clearly, the vq'sare omponents of some global variable v. The fun-tions dk;q(i, j) haraterize the orresponding global ex-pansion term at epoh k.Similarly, in most ases enountered in pratie, one mayrefer to a tropospheri model of the form

Tk(i, j) = bk(i, j)u
(τ)
i,k (15)where u(τ)

i,k is the zenith tropospheri variable of reeiver riat epoh k; for further details on this point, see Ge etal 2006. The u(τ)
i,k;p's are the tropospheri omponents ofthe loal variable uk. Like ck;p(i, j), bk(i, j) is a knownfuntion whih takes into aount the reeiver-satellitegeometry.For simpliitly, we now restrit ourselves to the ase oflarge networks. In that ase, the funtions bk and ck;pe�etively depend on i and j.4. The Algebrai Approah: SurveyWe �rst introdue the referene equations of our ap-proah: Set. 4.1. We then give a survey of the methods

to be implemented for solving the problem: Set. 4.2.The related PPP equations are spei�ed in Set. 4.3. We�nally make some omments on the similarities and thedi�erenes with other related approahes: Set. 4.4.4.1. Referene equationsFor µ = φ or p, let us set
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(18)By onstrution (see Eq. (16)), we have δ[s]µ;ν,k(1) = 0.The linearized observational equations an then be writ-ten in the forms (see Eqs. (1), (2), (14) and (15))
Φ0
ν,k(i, j) =
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p=1 ck;p(i, j)u

(ξ)
i,k;p +

∑

q
dk;q(i, j) vq

+ bk(i, j)u
(τ)
i,k − κνIk(i, j)

+ [δ
[r]
φ;ν,k(i) + δ

[s]
µ;ν,k(j)]

+ λνNν(i, j) + εφ;ν,k(i, j)

(19)
P 0
ν,k(i, j) =

∑3
p=1 ck;p(i, j)u

(ξ)
i,k;p +

∑

q
dk;q(i, j) vq

+ bk(i, j)u
(τ)
i,k + κνIk(i, j)

+ [δ
[r]
p;ν,k(i) + δ

[s]
p;ν,k(j)] + εp;ν,k(i, j)

(20)where
Φ0
ν,k(i, j) := Φν,k(i, j) − ρ0

k(i, j) (21)
P 0
ν,k(i, j) := Pν,k(i, j) − ρ0

k(i, j) (22)The algebrai approah presented in this paper is basedon Property 2. With regard to the seleted spanningtree, the arrier-phase ambiguity funtions are then de-omposed in the form
Nν(i, j) = N [r]

ν (i) +N [s]
ν (j) +N [cd]

ν (i, j) (on G) (23)We are then led to introdue the quantities
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(24)As N [s]
ν (1) = 0, we have δ̄[s]φ;ν,k(1) = 0.
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Ik(i, j) = I
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k (i) + I

[s]
k (j) + I

[cd]
k (i, j) (on G) (25)The lok biases to be onsidered are then of the form
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(26)and
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(27)Again, as I [s]
k (1) = 0, we have δ̃[s]µ;ν,k(1) = 0. The phaseand ode equations to be onsidered an then be writtenin the respetive forms

Φ0
ν,k(i, j) =

∑3
p=1 ck;p(i, j)u

(ξ)
i,k;p +

∑

q
dk;q(i, j) vq

+ bk(i, j)u
(τ)
i,k − κνI

[cd]
k (i, j)

+ λνN
[cd]
ν (i, j) + β̃φ;ν,k(i, j) + εφ;ν,k(i, j)

(28)
P 0
ν,k(i, j) =

∑3
p=1 ck;p(i, j)u

(ξ)
i,k;p +

∑

q
dk;q(i, j) vq

+ bk(i, j)u
(τ)
i,k + κνI

[cd]
k (i, j)

+ β̃p;ν,k(i, j) + εp;ν,k(i, j)

(29)where, for µ = φ or p (see Eq. (9)),
β̃µ;ν,k(i, j) := δ̃

[r]
µ;ν,k(i) + δ̃

[s]
µ;ν,k(j) (30)When three arrier waves are available, this approah ispartiularly reommended. Indeed, no ionospheri modelis then introdued.4.2. Solution of the problemThe analysis presented in Lannes and Gratton (2009) anbe transposed to Eqs. (28) and (29). The loal funtionalvariables β̃φ;ν,k and β̃p;ν,k are then regarded as partiularvariables of the problem. The other loal variables u(ξ)

i,k;p,
u

(τ)
i,k and I [cd]

k (i, j) on Gcd are lumped together in somevariable uk. The global variable v inludes two mainomponents. The �rst one, vb, is that de�ned by thereal variables vq, whereas the seond, vc, is that de�nedby the values the integer CD ambiguities to be �xed.We thus have on Gcd: vc;ν ≡ N
[cd]
ν . Equations (28)and (29) are then written in the respetive funtionalforms

Φ0
ν,k = Aφ;ν,kuk + (Bkvb +λνvc;ν)+ β̃φ;ν,k + εφ;ν,k (31)

P 0
ν,k = Ap;ν,kuk + Bkvb + β̃p;ν,k + εp;ν,k (32)where Aφ;ν,k, Ap;ν,k and Bk are linear operators.

As shown in Lannes and Gratton 2009, the orrespond-ing �oat problem an be solved in the least-square sense,reursively, by using the QR method; see, e.g., Björk1996. Other reursive least-square tehniques an ofourse be implemented; see, e.g., de Jonge 1998. At eahepoh, these methods provide the `�oat ambiguity ve-tor' v̂k;c and the Cholesky fator Rk;c of the inverse of itsvariane-ovariane matrix. This upper-triangular ma-trix is then `deorrelated.' In our approah, this is doneon the grounds of the LLL algorithm; see, e.g., Set. 8.2in Lannes and Gratton 2009. One Rk;c has thus beendeorrelated, the integer ambiguity solution v̌k;c is ob-tained by using lassial integer-programming tehniques.One v̌k;c has been �xed to some v̌c (� v̌k;c → v̌c�), and
v̌c has been validated, the problem an be ompletelysolved. Indeed, we then have v̌c ≡ N [cd]. The orre-sponding estimates of uk and vb are then denoted by ǔkand v̌b, respetively.In partiular, as spei�ed in Set. 5, estimates of thesatellite biases δ̃[s]µ;ν,k(j) for j 6= 1 are thus obtained.These estimates, denoted by δ̌[s]µ;ν,k(j), are referred to asthe `satellite pseudo-lok biases.' They an be broad-asted to the network users for their preise point po-sitioning. As lari�ed in Set. 4.3, the equations to besolved by the user have then the form of the traditionalPPP equations.4.3. Related PPP equationsLet us denote by rι the user reeiver. The observationalequations (19) and (20) an then be written in the re-spetive forms
Φ0
ν,k(ι, j) =

∑3
p=1 ck;p(ι, j)u

(ξ)
ι,k;p +

∑

q
dk;q(ι, j) vq

+ bk(ι, j)u
(τ)
ι,k − κνIk(ι, j)

+ [δ
[r]
φ;ν,k(ι) + δ

[s]
µ;ν,k(j)]

+ λνNν(ι, j) + εφ;ν,k(ι, j)

(33)
P 0
ν,k(ι, j) =

∑3
p=1 ck;p(ι, j)u

(ξ)
ι,k;p +

∑

q
dk;q(ι, j) vq

+ bk(ι, j)u
(τ)
ι,k + κνIk(ι, j)

+ [δ
[r]
p;ν,k(ι) + δ

[s]
p;ν,k(j)] + εp;ν,k(ι, j)

(34)From Eqs. (24), (26) and (27), we have (with regard tothe seleted spanning tree of the GNSS network graph)
∣

∣

∣

∣

∣

∣

δ
[s]
φ;ν,k(j) ≃ δ̌

[s]
φ;ν,k(j) + κνI

[s]
k (j) − λνN

[s]
ν (j)

δ
[s]
p;ν,k(j) ≃ δ̌

[s]
p;ν,k(j) − κνI

[s]
k (j)

(35)We are then led to set
∣

∣

∣

∣

∣

∣

Φ
(ι)
ν,k(j) := Φ0

ν,k(ι, j) − δ̌
[s]
φ;ν,k(j)

P
(ι)
ν,k(j) := P 0

ν,k(ι, j) − δ̌
[s]
p;ν,k(j)

(36)
I
(ι)
k := Ik(ι, j) − I

[s]
k (j) (37)

N (ι)
ν (j) := Nν(ι, j) − N [s]

ν (j) (38)
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Φ

(ι)
ν,k(j) =

∑3
p=1 ck;p(ι, j)u

(ξ)
ι,k;p +

∑

q
dk;q(ι, j) vq

+ bk(ι, j)u
(τ)
ι,k − κνI

(ι)
k (j)

+ λνN
(ι)
ν (j) + δ

[r]
φ;ν,k(ι) + ε̃φ;ν,k(ι, j)

(39)
P

(ι)
ν,k(j) =

∑3
p=1 ck;p(ι, j)u

(ξ)
ι,k;p +

∑

q
dk;q(ι, j) vq

+ bk(ι, j)u
(τ)
ι,k + κνI

(ι)
k (j)

+ δ
[r]
p;ν,k(ι) + ε̃p;ν,k(ι, j)

(40)Clearly, as δ̌[s]µ;ν,k is an estimate of δ̃[s]µ;ν,k, ε̃µ;ν,k di�ersfrom εµ;ν,k. We are thus led to equations having the formof the traditional PPP equations, but to solve the prob-lem, the variane-ovariane matries of ε̃φ;ν,k and ε̃p;ν,kare then to be properly taken into aount.4.4. Other approahes: similaritiesand di�erenesIn its priniple, our approah is similar to that de�ned inGe et al (2005, 2006). Its implementation, whih bene-�ts from Property 2, is however muh simpler. Further-more, as the number of independent double di�erenesis at most equal to the number of losure delays (seeRemark 2.4), it is not generally optimal to work witha maximum set of independent double di�erenes; seeFigs. 3 & 4, and de Jonge 1998. Moreover, in our ap-proah, Eq. (31) is then read as
Φ̌0
ν,k = Aφ;ν,kuk + Bkvb + β̃φ;ν,k + εφ;ν,k (41)where

Φ̌0
ν,k := Φ0

ν,k − λνN
[cd]
ν (42)The CD ambiguity onstraints are thus imposed in alge-brai manner. The hoie of the ionospheri variables isalso based on Property 2; see Eqs. (25) to (29). Further-more, the satellite-bias information to be broadastedto the network user is not the same. At last but notthe least, the arrier-phase ambiguities have not to be�xed, a problem whih annot be easily solved. Indeed,as shown below, when the CD ambiguities are �xed, orwhen a maximum set of independent DD ambiguities is�xed, the remaining �oat problem is not of full rank.Let us �rst onsider the ase where the CD ambiguitiesare �xed. To show that the problem is not then of fullrank, let us assume that the reeiver ambiguities N [r]

ν (i)are also �xed, and that all the variables are known exeptthe satellite lok biases
f

[s]
φ;k(j) := f

(s)
φ;k(j) − f

(s)
φ;k(1) (43)and the satellite ambiguitiesN [s]

ν (j) for j 6= 1. The phaseequation (1) then yields an equation of the form
Γν,k(i, j) = −f

[s]
φ;k(j) + λνN

[s]
ν (j) + εφ;ν,k(i, j) (44)
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Figure 4: Equivalent sets of CD ambiguities andindependent DD ambiguities. The senario on-sidered here orresponds to that of Fig. 3 in theDD approah: grid point (1, 3) was disarded.With regard to the seleted spanning tree, we thenhave 4 loops of order 4, and one loop of order 6.The DD ambiguities of the CD funtion de�nedby the CD ambiguities (47) are the DD ambigui-ties of the maximum set of independent DD ambi-guities (46). In other words, the maximum set ofindependent DD ambiguities (46) is equivalent tothe set of CD ambiguities (47).where Γν,k is a known funtion. For any ζ(j) ∈ R, wethen have
−f

[s]
φ;k(j) + λνN

[s]
ν (j)

= −[f
[s]
φ;k(j) + ζ(j)] + λν

[

N [s]
ν (j) +

ζ(j)

λν

] (45)The solution of the orresponding �oat problem is there-fore not unique: the problem is not of full rank. As aresult, the satellite integer ambiguities N [s]
ν (j) annot beeasily obtained, hene the less ambitious approah pro-posed in this paper.As expeted, in the ase where a maximum set of inde-pendent DD ambiguities is �xed, this analysis also holds.To larify this point in an elementary manner, let us on-sider the senario of Fig. 3 in whih grid point (1, 3) isnot taken into aount; see Fig. 4. The following �veDD ambiguities then form a maximum set of indepen-dent DD ambiguities (see, e.g., Saalfeld 1999):

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

N
[dd]
ν (1) := Nν(1, 1) −Nν(1, 4) +Nν(2, 4) −Nν(2, 1)

N
[dd]
ν (2) := Nν(1, 1) −Nν(1, 4) +Nν(5, 4) −Nν(5, 1)

N
[dd]
ν (3) := Nν(2, 1) −Nν(2, 2) +Nν(5, 2) −Nν(5, 1)

N
[dd]
ν (4) := Nν(3, 2) −Nν(3, 3) +Nν(6, 3) −Nν(6, 2)

N
[dd]
ν (5) := Nν(2, 2) −Nν(2, 4) +Nν(4, 4) −Nν(4, 2)

(46)With regard to the seleted spanning tree in Fig. 4, thisset of DD ambiguities is equivalent to the following setof CD ambiguities:
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∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

N
[cd]
ν (2, 4) = N

[dd]
ν (1)

N
[cd]
ν (4, 4) = N

[dd]
ν (1) +N

[dd]
ν (5)

N
[cd]
ν (5, 2) = N

[dd]
ν (3)

N
[cd]
ν (5, 4) = N

[dd]
ν (2)

N
[cd]
ν (6, 3) = N

[dd]
ν (4)

(47)



Lannes et al: Pseudo-lok biases for preise point positioning. The algebrai approah 75We are thus brought bak to the previous CD analysis.A general study of the DD-CD relationship is to be foundin Lannes and Teunissen 2010/11.5. Reeiver and Satellite Pseudo-Clok BiasesIn Set. 5.1, we �rst de�ne the GNSS-delay spaes oftype ψ = (φ; ν) or (p; ν). In this framework, the pseudo-lok biases are obtained via the optimization priniplepresented in Set. 5.2. To illustrate our analysis in aonrete manner, we �nally onsider an important spe-ial ase (Set. 5.3).5.1. Edge-delay spae of type ψAs already spei�ed (see Set. 2.1), a funtion ϑ takingits values on G an be regarded as a vetor of the edge-delay spae E. In this Eulidean spae, the norm of ϑ isde�ned by the relation
‖ϑ‖2 =

∑

(i,j)∈G

|ϑ(i, j)|2 (48)We now adopt the notation aording whih
Ψψ,k :=

{

Φν,k if ψ = (φ; ν)

Pν,k if ψ = (p; ν)
(49)The variane-ovariane matrix of Ψψ,k is then denotedby [Vψ,k]. Let us now onsider a funtion ϑ of type ψ,for example a phase observational residual. At epoh k,the quadrati size of suh a funtion is de�ned by therelation

‖ϑ‖2
ψ,k := [ϑ]T[Vψ,k]

−1[ϑ]

≡ (ϑ · V −1
ψ,k ϑ)

(50)Here, [ϑ], is the olumn matrix whose entries are theomponents of ϑ on G; ( · ) is the inner produt of theEulidean spae E. The spae of funtions ϑ with innerprodut
〈ϑ′ | ϑ〉ψ,k := (ϑ′ · V −1

ψ,k ϑ) (51)is denoted by Eψ,k. This spae is referred to as the `edge-delay spae' of type ψ at epoh k.Let us now introdue the following Cholesky fatoriza-tion of the inverse of [Vψ,k]:
[Vψ,k]

−1 = [Uψ,k]
T[Uψ,k] (52)In this equation, [Uψ,k] is an invertible upper-triangularmatrix. From Eq. (50), we then have (see Eq. (48))

‖ϑ‖ψ,k = ‖ϑE
ψ,k‖ (53)where

ϑE
ψ,k := Uψ,k ϑ (54)
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′
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F

F ′
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Figure 5: Pseudo-lok delay. In this geometrialillustration, Eψ,k is the edge-delay spae of type ψat epoh k; F is the bias-delay spae; F ′

ψ,k is theorthogonal omplement of F in Eψ,k, whereas F ′ isthe orthogonal omplement of F in the Eulideanspae E. The funtions lying in F ′ satisfy theentralization property 3. The pseudo-lok de-lay β̌ψ,k is the orthogonal projetion of ϑ̌ψ,k on Fin Eψ,k, whereas ϑ̌′

ψ,k is the orthogonal projetionof ϑ̌ψ,k on F ′

ψ,k: ϑ̌′

ψ,k = ϑ̌ψ,k − β̌ψ,k. Aording toProperty 4, V −1
ψ,kϑ̌

′

ψ,k lies in F ′. In the speial asewhere the variane-ovariane matrix of Ψψ,k isproportional to the identity, F ′

ψ,k oinides with F ′.5.2. Optimization prinipleIn the ontext previously de�ned, Eqs. (41) and (32) areof the form
Ψ̌0
ψ,k = Aψ,kuk + Bkvb + β̃ψ,k + εψ,k (55)where (see Eq. (42))

Ψ̌0
ψ,k :=

{

Φ̌0
ν,k if ψ = (φ; ν)

P 0
ν,k if ψ = (p; ν)

(56)Note that β̃ψ,k lies in F ; see the ontext of Eq. (9). Letus then set
ϑ̌ψ,κ := Ψ̌0

ψ,κ − (Aψ,κǔk + Bkv̌b) (57)where ǔk and v̌b are de�ned in Set. 4.2. The optimalestimate of β̃ψ,k, referred to as the `pseudo-lok delay,'is therefore de�ned by the relation (see Eq. (55))
β̌ψ,k := argmin

β∈F

‖ϑ̌ψ,k − β‖2
ψ,k (58)Clearly, β̌ψ,k(i, j) = δ̌

[r]
ψ,k(i) + δ̌

[s]
ψ,k(j); see Eq. (30).As illustrated in Fig. 5, β̌ψ,k is the point of F losestto ϑ, the distane being that indued by the norm de�nedon Eψ,k; β̌ψ,k is therefore the projetion of ϑ̌ψ,k on Fin Eψ,k. Denoting by F ′ the orthogonal omplement



Lannes et al: Pseudo-lok biases for preise point positioning. The algebrai approah 76of F in E, we then have the following properties (seeFig. 5, and Set. 5.2 in Lannes and Gratton 2009).Property 3. The funtions lying in F ′ satisfy the fol-lowing `entralization onditions:'
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∣

∣

∣

∣

∣

∣

∣

∣

∑

j∈Li

ϑ(i, j) = 0 (for i = 1, . . . ,m)
∑

i∈Cj

ϑ(i, j) = 0 (for j = 2, . . . , n)Property 4. The pseudo-lok delay β̌ψ,k is the fun-tion β of F for whih V −1
ψ,k (ϑ̌ψ,k − β) lies in F ′.5.3. Referene speial aseTo illustrate our analysis in a onrete manner, we nowonsider the important speial ase where the variane-ovariane matrix of the observational data Ψψ,k is diag-onal (see Liu 2002):

[Vψ,k] = σ2
ψ diag(ηk(i, j)) (on G) (59)Here, σ2

ψ is a `referene variane;' ηk(i, j) is a nonnegativeweight funtion.For larity, let us then set
ϑ̌i,j := ϑ̌ψ,k(i, j) (60)
δ̌r,i := δ̌

[r]
ψ,k(i) δ̌s,j := δ̌

[s]
ψ,k(j) (61)and

ωi,j :=











1

ηk(i, j)
on G;

0 otherwise (62)From Properties 4 and 3, we then have (see Eqs. (4), (5)and (30))
∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

j∈Li

ωi,j
[

ϑ̌i,j −
(

δ̌r,i + δ̌s,j
)]

= 0 (for i = 1, . . .m)
∑

i∈Cj

ωi,j
[

ϑ̌i,j −
(

δ̌r,i + δ̌s,j
)]

= 0 (for j = 2, . . . n)i.e.,
∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

j∈Li

ωi,j
(

δ̌r,i + δ̌s,j
)

=
∑

j∈Li

ωi,j ϑ̌i,j (for i = 1, . . .m)
∑

i∈Cj

ωi,j
(

δ̌r,i + δ̌s,j
)

=
∑

i∈Cj

ωi,jϑ̌i,j (for j = 2, . . . n)We are thus led to introdue the quantities
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∣

∣

∣

∣

∣

∣

∣

Ωr,i :=
∑

j∈Li

ωi,j (for i = 1, . . .m)
Ωs,j :=

∑

i∈Cj

ωi,j (for j = 2, . . . n)

and
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∣

∣

∣

∣
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∣

∣

ϑ̌r,i :=
∑

j∈Li

ωi,j ϑ̌i,j (for i = 1, . . .m)
ϑ̌s,j :=

∑

i∈Cj

ωi,j ϑ̌i,j (for j = 2, . . . n)The equations to be solved to determine δ̌r,i and δ̌s,j anthen be written in the form
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∣

∣

∣

∣

∣

∣

∣

∣

∣

Ωr,i δ̌r,i +

n
∑

j=2

Ωi,j δ̌s,j = ϑ̌r,i (for i = 1, . . .m)
m

∑

i=1

Ωi,j δ̌r,i + Ωs,j δ̌s,j = ϑ̌s,j (for j = 2, . . . n)i.e., in matrix terms,
∣

∣

∣

∣

∣

[Ωr] [δ̌r] + [Ω][δ̌s] = [ϑ̌r]

[Ω]T[δ̌r] + [Ωs][δ̌s] = [ϑ̌s]
(63)Note that [Ωr] is an m×m diagonal matrix, while [Ωs] isan (n− 1)× (n− 1) diagonal matrix; [Ω] has m lines and

n− 1 olumns. The inverses of [Ωr] and [Ωs] are trivial.As lari�ed below, Eq. (63) an be solved by omputingthe inverse of a matrix with size (n− 1) × (n− 1).From the �rst equation (63), we have
[δ̌r] = [Ωr]

−1
(

[ϑ̌r] − [Ω][δ̌s]
) (64)hene, from the seond,

[Ω]T[Ωr]
−1

(

[ϑ̌r] − [Ω][δ̌s]
)

+ [Ωs][δ̌s] = [ϑ̌s]i.e.,
[Ωsr][δ̌s] = [ϑ̌s] − [Ω]T[Ωr]

−1[ϑ̌r]where [Ωsr] is the following (n− 1) × (n− 1) matrix:
[Ωsr] := [Ωs] − [Ω]T[Ωr]

−1[Ω] (65)It then follows that
[δ̌s] = [Ωsr]

−1
(

[ϑ̌s] − [Ω]T[Ωr]
−1[ϑ̌r]

) (66)If need be, Eq. (64) then yields [δ̌r].6. Conluding CommentsThis paper, whih appeals to elementary notions of al-gebrai graph theory, ompletes the study presented inLannes and Gratton 2009. One the CD ambiguitieshave been �xed, partiular satellite biases an be esti-mated and broadasted to the network users for theirpreise point positioning. For example, in the ase oflarge networks, eah of these biases inludes three (orfour) terms: a satellite-lok term, a satellite time-groupterm, a satellite ionospheri term, and (for the phase)



Lannes et al: Pseudo-lok biases for preise point positioning. The algebrai approah 77a satellite integer ambiguity multiplied by the orrespond-ing wavelength; see Eqs. (26), (27), (24), (16), (17)and (18). The form of the PPP equations to be solvedby the network user is then the same as that of the tra-ditional PPP equations; see Eqs. (39) and (40).As soon as the CD ambiguities are �xed and validated,estimates of these �oat biases an be obtained. The or-responding operation simply amounts to solving a linearsystem whose size is equal to the number of satellitesother than the referene satellite; see Eqs. (66) and (65).The main result of this paper is that no other ambi-guity is then to be �xed, hene a better e�ieny. Inpartiular, in this approah, it is not neessary to �xthe arrier-phase ambiguities, a problem whih annotbe easily solved; see Set. 4.4.The priniple of our strategy di�ers from that of Geet al (2005, 2006). Its implementation, whih is based onProperty 2, is muh simpler. In partiular, the CD am-biguity onstraints are imposed in algebrai manner; seeEqs. (41) and (42). The hoie of the ionospheri vari-ables is also based on Property 2; see Eqs. (25) to (29).Furthermore, the satellite-bias information to be broad-asted to the network user is not the same. At last butnot the least, as already emphasized, this information isobtained without �xing the arrier-phase ambiguities.AknowledgementsThis work was also supported by the Cerfas (Frane):the European Centre for Researh and Advaned Train-ing in Sienti� Computation.ReferenesBiggs N. (1996) Algebrai graph theory , 2nd editionCambridge University Press, Cambridge.Björk A. (1996) Numerial methods for least-squaresproblems, SIAM.Feng Y. and Li B. (2008) Three-arrier ambiguityresolution: generalized problems, models, methodsand performane analysis using semi-generatedtriple frequeny GPS data . Pro. ION GNSS-2008.Savannah, Georgia USA: 2831-2840.Ge M., Gendt G., Dik G. and Zhang F.P. (2005) Im-proving arrier-phase ambiguity resolution in globalGPS networks solutions. J. Geod. 79: 103�110.
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