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Abstract 
 
Fingerprinting is a common technique for indoor 
positioning using short range Radio Frequency (RF) 
technologies such as Wireless Location Area Network 
(WLAN) and Bluetooth (BT). It works in two phases: 
The first phase is a data training phase in which a radio 
map for the targeted area is generated in advance, while 
the second phase is the real-time location determination 
phase using the radio map. Considering the work amount 
for generating the radio map, only a few samples of the 
Radio Signal Strength Indicator (RSSI) are typically 
collected at each reference point.  The limited samples 
are not able to represent the real signal distribution well 
in the conventional fingerprint approach such as in an 
occurrence-based solution. This paper presents a new 
solution using the Weibull function for approximating 
the Bluetooth signal strength distribution in the data 
training phase. This approach requires only a few RSSI 
samples to estimate the parameters of the Weibull 
distribution. Compared to the occurrence-based solution, 
the Weibull function utilizes the shape, shift, and scale 
parameters to describe the distribution over the entire 
RSSI domain. This study indicates that the reliability and 
accuracy of the fingerprint database is improved with the 
Weibull function approach. A Histogram Maximum 
Likelihood position estimation based on Bayesian theory 
is utilized in the positioning phase. The test results show 
that the fingerprinting solution using the Weibull 
probability distribution performs better than the 
occurrence-based fingerprint approach. 
 
Keywords: Bluetooth, indoor positioning, RSSI, 
fingerprint, Baysian estimation  
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1. Introduction  
 
Location-based Service (LBS) is now becoming one of 
the standard features in mobile devices. More and more 
research concentrates on the personal navigation for both 
outdoor and indoor environments. However, Global 
Navigation Satellite System (GNSS) technologies are 
still struggling for indoors due to the unavailability or 

attenuation of the GNSS signals. There are many radio 
technologies such as cellular networks, Wireless Local 
Area Network (WLAN), and Bluetooth (BT) that are 
now adopted for indoor positioning without modifying 
neither the user terminals, nor the existing infrastructure.  
Radio Signal Strength Indicator (RSSI), a standard 
measure in most radio technologies, has attracted a lot of 
attentions (Bahl & Padmanabhan, 2000 and Ekahau Inc.) 
for being adapted as measurements in indoor positioning. 
 
Bluetooth is a technology with low power consumption 
for short-range wireless data and voice communication 
(Muller, 2001). It has been utilized in the communication 
and proximity market (Naya et al., 2005) for a long time. 
As widely supported by mobile devices, Bluetooth is a 
potential technology to become an alternative for indoor 
positioning (Simon & Robert, 2009, Anastasi et al., 2003, 
Bargh & Groote, 2008, Jevring & Groote, 2008, Huang, 
2005, Bruno & Delmastro, 2003, Hallberg et al., 2003, 
and Pandya et al., 2003). The effective range of the radio 
signal of a class 1 Bluetooth device (e.g. the Bluegiga 
Access Point(AP) 3201) is up to 200 meters, while that 
for the class 2 device (e.g. the Bluetooth module in a 
smart phone) is about 20-30 meters according to the 
specifications of Bluetooth 2.0 (Specification of the 
Bluetooth System, Core Specification v2.0+EDR, 2004). 
  
Bandara et al. (2004) developed a multi-antenna 
Bluetooth AP for location estimation based on RSSIs. 
The test obtained 2 meters of error in a 4.5m x 5.5m area 
with four antennas. Sheng and Pollard (2006) modified 
the Bluetooth standard to estimate the distance between a 
reference transmitter and a mobile receiver, using RSSI 
measurements and a line-of-sight radio propagation 
model within a single cell. The high-density Bluetooth 
infrastructure is necessary to acheive an accurate 
position in the above two approaches. In order to 
minimize the Bluetooth infrastructure, Damian et al. 
(2008) used only one class 1 Bluetooth AP for a home 
localisation system, which combined the measurements 
of the link quality, RSSI, and celluar signal quality to 
obtain room-level accuracy. In this paper, we present a 
Bluetooth locating solution in a reduced Bluetooth 
infrastructure area by using RSSI only. 
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2. The RSSI Measurement 
 
There are two types of possible solutions for acquiring 
the Bluetooth RSSI measurements: the connection-based 
solution and the inquiry-based solution (Naya et al., 
2005). In the connection-based solution, a 
communication connection between an AP and a mobile 
phone is needed to establish before carrying out the 
RSSI measurements. The RSSI measurements can be 
updated at a frequency of 1 Hz via the established 
communication channel. However, APs might 
continually adjust the transmission power of the 
communication link to reduce the transmission errors 
and save the energy. The transmission power adjustment 
makes it impossible to use the RSSI measurement to 
infer the distance between a mobile phone and an AP. 
Nevertheless, this is not the case for the inquiry-based 
solution because it retrives the RSSIs from the inquiry 
response that utilizes static transmission power instead 
of the adjustable one. Therefore, the RSSI measurements 
of the inquiry-based solution reflect the distances 
between the mobile devices and APs. After the above 
analyzing, the inquiry-based solution is adopted in our 
study even though the RSSI update frequency is lower 
than that of the connection-based solution. 
 
As shown in Figure 1, the components of the proposed 
inquiry-based Bluetooth locating system in this paper 
consist of two parts: the Bluetooth network and mobile 
phones. The server connected with several APs over a 
WLAN/Ethernet network is responsible for the system 
kernel functions, especially positioning calculations. The 
APs are synchronized by the Server when inquiring the 
mobile phones in their surroundings and relay the 
positions from the Server to mobile phones.  
 
Whenever RSSI measurements are needed for 
positioning, the server will send a trigger to all APs to 
scan the mobile devices in their surroundings.  
 
Mobile device might be miss-detected for three reasons: 
1) The time or frequency domain between the mobile 
device and AP does not overlap during the inquiring 
process; 2) the mobile device is waiting to answer the 
inquiry from another AP. One mobile device can only 
answer one AP at a time; and 3) the inquiring process 
times out without obtaining a successful measurement 
for a reason e.g. that the communication between the AP 
and the corresponding mobile phone is blocked. The 
probability of being miss-detected for each device will 
increase when the number of participating APs increases 
(Peterson et al., 2006a) as shown in Table 1. The 
occurrence of the miss-detected cases will decrease the 
number of RSSI measurements in a certain sampling 
duration.  
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Mobile Phone

Mobile Phone
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Access Point

Access Point
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Figure 1: System components of the inquiry-based 

Bluetooth indoor locating system. 
 

Table 1. Rates of missed-detection 
Number of 
participating APs 

Missed-detection Rate 
After 6.4 s 

1 0 % 
2 7.5% 
3 8.3% 
6 8.9% 

 
Having completed the inquiring task, all APs will send 
the RSSI measurements back to the server either for the 
purpose of calculating the current positions of the mobile 
devices or generating the radio map database. 
 
3. Fingerprinting with RSSIs 
 
As mentioned above, fingerprinting with RSSIs consists 
of two phases: the data training phase and the 
positioning phase as shown in Figure 2. The training 
phase includes the steps of obtaining a radio map for the 
targeted area based on a RSSI training data set, while the 
positioning phase includes the steps of finding a location 
based on the fingerprints stored in the radio map. 
  
For the data training phase, the targeted area is divided 
into cells. The center of the each cell is considered as a 
reference point. The coordinates of the reference points 
(xn, yn

 

) are determined in advance.  The RSSI 
measurements at each reference point from all “visible” 
APs are collected and stored as fingerprints in the 
database of the radio map. 
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Figure 2: Two phases for Bluetooth positioning 

 
During the positioning phase, the unknown coordinates 
(xu, yu

 

) of a mobile device are estimated by matching 
the snap shot of the current RSSI measurements to the 
fingerprints stored in the radio map (Youssef et al., 2003 
and Roos et al., 2002). 

3.1 Fingerprint Database 
At each reference point, the RSSI probability 
distributions of all APs are stored. If we denote the 
fingerprint for the i-th reference point as iR , then, we 
have 
 



















=

)|()|()|(

)|()|()|(
)|()|()|(

21

22221

11211

ivkiviv

ikii

ikii

i

ROAPROAPROAP

ROAPROAPROAP
ROAPROAPROAP

R









(1)  

 
where A  stands for the AP, while O refers to the RSSI 
measurement. 
 
In the conventional fingerprinting approach, the 
probability of a RSSI measurement nO  between the 

reference point iR  and the AP mA  can be expressed as 
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O
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where

nOC is the number of  occurrences that the  RSSI 

measurement nO  appeared in the training data set of the 

i-th reference point. Here iN is the total number of 
training samples collected at the i-th reference point. The 
entire fingerprint database is expressed as  

 

[ ]w21 R,...,R,R=D                                          (3) 

 
where w is the maximum number of the reference points 
in the radio map. 
 
To speed up the computation process, a bin-based 
solution is adopted. The signal strength distribution is 
divided into p bins. The fingerprints for the i-th reference 
point can be redefined as 
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In the conventional occurrence-based solution, at the i-th 
reference point, the probability of the RSSI 
measurements within the bin nB   for AP mA  can be 
expressed as 

∑
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Where 1−nE  and nE  are the left and right edges of bin 

nB  respectively. 
jOC  stands for the number of 

occurrences that the value of the RSSI measurement  
appeared within the range of [ )nn EE ,1− . All the RSSI 

measurements in the bin nB are cumulated for counting 
the occurance probability. 
 
3.2 Modelling Fingerprints with the Weibull 

Function  
The bin-based solution requires a large training data set 
in order to obtain a good estimate of the RSSI 
probability distribution. In this paper, we introduce the 
Weibull function to proximate the RSSI probability 
distribution. The Weibull function is a traditional method 
for modelling the signal strength of radio propagation 
(Sagias & Karagiannidis, 2005).  The probability density 
function can be expressed as 
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While the cumulate distribution function is defined as 
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where x is the variable of the function, k  is the shape 
parameter, λ is the scale parameter, and θ is the shift 
parameter. When θ=0, this reduces to a 2-parameter 
distribution. 
 
The parameters of the Weibull function can be estimated 
with a limited number of RSSI sample measurements 
(e.g. 20). The function parameters ( )θλ ,, k  can be 
calculated with (Papoulis, 2002): 
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where O  is the mean value of the RSSI  measurement 

set iO , δ is the standard deviation. Γ is the gamma 

function. The term )15.0( +k  is an approximation of 

the expression )/11()/21(`/1 2 kk +Γ−+Γ  when 

5.21.5 ≤≤ k . 
 
For each possible RSSI measurement in this study, the 
distribution probability can be expressed as 
 

)5.0()5.0()( −−+= xFxFxP                  (13) 
 
Because the RSSI measurements are rounded to an 
integer.  The probability for each bin in the fingerprint 
database can be generated as 
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where w is the width of the bin, x is the RSSI value at 
the left edge of bin. 
 
In theory, the radio map can be represented by a set of 
Weibull functions. Each Weibull function has three 
parameters representing the probability distribution of 
the RSSI measurements between an AP mA and a 

mobile phone at a reference point iR . The size of the 

radio map can be reduced in this case because it just 
requires storing three parameters for each vector 
between an AP and a reference point.  
 
Using a Weibull function based fingerprint database, we 
can calculate the probability for any arbitrary RSSI 
measurement. Considering the computation cost, we still 
adopt the bin-based solution in this paper by pre-
generating the fingerprint database using Weibull 
functions derived from limited samples. 
 
3.3 Positioning with Bayesian Histogram Maximum 

Likelihood algorithm  
The Bayesian theorem and Histogram Maximum 
Likelihood algorithm are used for positioning (Youssef 
et al., 2003 and Roos et al., 2002).  
 
Given the RSSI measurement 

vector }...,{ 21 kOOOO = from APs, the problem is to 

find the location l  with the conditional 

probability )|( OlP  being maximized. Using the 
Bayesian theorem 

]
)(
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lPlOPOlP ll =       (15) 

where )(OP  is constant for all l , therefore, the Equation 
(15) can be reduced as 
 

)]()|([maxarg)]|([maxarg lPlOPOlP ll =         (16) 
 
We assume that the mobile device has equal probability 
to access each reference point, so )(lP  can be 
considered as constant in this case, Equation (16) can be 
simplified as 
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Now it becomes a problem of finding the maximum 
conditional probability of 
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where the conditional probability )|( lOP n  is derived 
from the RSSI distribution pre-stored in the fingerprint 
database. If the RSSI measurement nO belongs to the 

bin jB , Equation (18) can be expressed  as 
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while taking Equation (5) and (14) into account. 
Therefore, the problem becomes to find the maximum 

∏
=

k

m
ijm RBAP

1

)|(  in the fingerprint database. 

 
4. Results and Discussions 
 
In order to evaluate the preformance of the solution 
proposed in this paper, two test cases have been carried 
out. The first case is a static test with a long session of 
collecting 11589 RSSI samples, while the second case is 
a dynamic test conducted inside the official building of 
the Finnish Geodetic Institute. The objectives of the first 
test case are to  
• determinate if  the shapes of the Weibull functions 

derived from a limited RSSI samples can 
approximate the reference shape derived from the 
long session of 11589 RSSI measurements, and 

• compare the positioning performance (in static case) 
of the Weibull-based solution to that of the 
conventional occurrence-based solution. 

 
The objective of the second test case is to evaluate the 
positioning performances of the Weibull-based solution 
in a dynamic scenario. 
 
4.1 Static Test 
In order to establish a reference for comparison, we 
conducted a long-term measurement campaign. It lasted 
for 20 hours and 11589 RSSI samples were collected. 
Considering that the occurrence-based probability 
distribution derived from 11589 RSSI samples is close to 
the real RSSI probability distribution, we utilized it as 
the benchmark distribution for the purpose of  
comparison. 
 
By using Equations (8)-(12), the parameters of the 
Weibull function derived from 11589 RSSI samples 
were calculated as follows: shape k=2.5, scale λ=10.275 
and shift θ=61. By using Equation (13), we got the 
Weibull-based probability distribution as the blue line 
shown in Figure 3.  The red solid line is the benchmark 
distribution. The shapes of the two lines are similar.  
 
From our experience, it is scarcely bearable for a person 
collecting samples at one reference point for more than 
two minutes. About 20 RSSI samples can be obtained 
over a two-minute sampling duration. Therefore, we 
selected 20 samples as the limited sampling case for 
comparison. 
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Figure 3: Weibull-based (k=2.5, λ=10.275, θ=61) vs. 
occurrence-based probability distribution with 11589 
samples  
 
In Figure 4, the blue dash line stands for the probability 
distribution derived from a Weibull-based solution using 
20 RSSI samples randomly selected from the large data. 
The green dash line is the probability distribution 
derived from the occurrence-based solution for the same 
data set of 20 RSSI measurement samples, while the red 
solid line is the benchmark distribution. 
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Figure 4: Weibull-based (k=2.5, λ=9.275, θ=61)  vs. 
occurrence-based probability distributions with 20 
samples 
 
It is obvious that the shape of the Weibull function 
derived from 20 RSSI samples is similar to that of 
benchmark distribution. By comparing the probabilities 
estimated with the conventional occurrence-based 
solution for the case of 20 samples to that estimated with 
the Weibull function, it is obvious that probabilities 
estimated with the Weibull function are closer to those 
derived from the benchmark distribution. For example, 
the true probability for the RSSI measurements values of 
68 and 69 should be close to 0.1 based on benchmark 
distribution. These values are zero while they are 



Pei, et al.: Using Inquiry-based Bluetooth RSSI Probability Distributions for Indoor Positioning 
127 

 

estimated with the conventional occurrence-based 
approach, and about 0.11 if they are estimated with the 
Weibull function.   
 
Comparing to the benchmark distribution, Figure 5 
shows the probability distributions  derived from the 
Weibull-based solution with 11589 samples (red line), 
Weibull-based solution with 20 samples (blue line), and 
occurrence-based solution with 20 samples (green line). 
Table 2 presents the numerical statistics of the 
probability differences.  
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Figure 5: Comparison of the probability distributions. 

 
It can be seen from the results that the Weibull-based 
probability distributions estimated from 11589 samples 
and that from 20 RSSI measurement samples have 
similar shapes. The probability distributions estimated 
with the Weibull-based solution are significantly better 
than that obtained from the conventional occurrence-
based approach. 
 
Table 2.  Statistics of the probability differences 
 Weibull-

based 
(11589 
samples) 

Weibull-
based  
(20 samples) 

Occurrence-
based  
(20 samples) 

Mean 0.0105 0.0099 0.0275 
Std 0.0136 0.0122 0.0471 
Max 0.0502 0.0431 
 

0.2490 

For a more detailed investigation, as shown in Figure 6, 
the large data set of 11589 RSSI measurements is 
divided into hundreds of sessions that contain 20 
samples each (blue lines in Figure 6). The Weibull 
function for each session is derived and compared with 
the benchmark distribution (red line in Figure 6).  
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Figure 6: Probability densities estimated with  Weibull 
functions for all sessions of 20 RSSI measurement 
samples. The red line is the benchmark distribution. 
 
In order to reduce the computation time, the Weibull 
functions are “digitized”.  Using Equation (14), the 
probability densities shown in Figure 6 are cumulated as 
the bin-based probability in each bin as shown in Figure 
7. In our study, the bin edge x is defined as [-55 -60 -65 -
70 -75 -80 -85 -90 -95]. The width of the bin w is -5. All 
the RSSI values lager than -55 belong to the 1st
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-bin. The 
minimum possible RSSI value is -95. Thus, there are 
nine bins designed in our study. 

 
Figure 7: Bin-based probabilities estimated with Weibull 
functions (blue line) and that estimated with the 
benchmark distribution (red line).  
 
It is not difficult to see that the shapes of most Weibull 
functions derived from 20 RSSI samples are close to that 
of the benchmark distribution (the red line in Figure 7). 
Table 3 gives the statistics for the differences between 
the probabilities deriving from the Weibull functions and 
that from the benchmark distribution. According to the 
statistics, the Weibull functions derived from 20 RSSI 
measurement samples effectively approximate the 
probability distributions. The largest difference of mean 
value between two probabilities is 0.37 appearing in the 
4th-bin. Probability distributions represented with the 
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Weibull functions obtained from 20 RSSI samples are 
similar to the benchmark distribution.  The maximum 
difference standard deviation is less than 0.0758. 
 
The static positioning test is intended to evaluate the 
locating accuracy and stability over time. In this study, 
two sets of overnight static tests were carried out in two 
days at the same reference point, one lasted for about 20 
hours, while the other lasted for about 24 hours. The test 
data sets are applied for position estimation using the 
occurrence-based and Weibull-based fingerprint 
databases respectively.  The occurrence-based fingprint 
database is generated by using Equation (5), while the 
Weibull-based solution is derived from Equation (14). 
The test results are presented in Table 4. We can see that 
the Weibull-based solution performs significantly better 
than the occurrence-based solution. The accuracy of the 
Weibull-based solution in the 20 hours test case is 1.43 
meters better than that derived from the occurrence-
based solution for the same data set.  In 24 hours test 
case, the error of Weibull-based solution is 1.88 meters 
lower than that of the occurrence-based solution. 
Compared to the occurrence-based solution, the Weibull-
based solution improves the accuracy by 25.91% and 
32.53% respectively for two long-term static positioning 
test cases. 
 
4.2 Dynamic Indoor Positioning  
The dynamic indoor test cases were carried out at the 
Finnish Geodetic Institute (FGI) with only three 
Bluetooth APs (red points in Figure 8) mounted inside 
the office building.  The distance between two adjacent 
APs is about 20 meters. From our field test results, most 
mobile phones such as Nokia N8, N95, N95 8G, 
Navigator 6710, Xpress 5800, and HTC Desire can be 
scanned by the AP in a range of 30 meters without 
blockage. The length of each corridor is more than 40 
meters. 
 
We used a NovAtel SPAN GPS/IMU reference system 
with 1 Hz output as the reference (green line in Figure 8). 
The Nokia N95 8G phone was used as the user terminal 
in the test cases. In order to initialize the SPAN system, 
the test started from the outside of the building for 
unobstructed GPS availability. Having initiated the 
SPAN system, a user who held the Bluetooth-enabled 
handset (Nokia N95 8G) entered into the building and 
walked along the corridor. Finally, the user got out of the 
building from another exit as shown in Figure 8. The 
purple-circled line in Figure 8 stands for the Bluetooth 
positioning solutions.  
 

 
Figure 8: Test route 

 
For comparison, the same location determination 
algorithms are applied for the WLAN positioning 
solutions (black-pointed line in Figure 8) using the same 
mobile device.  There are 8 WLAN APs installed in the 
same test environment.  As shown in Figure 9, the 
horizontal error is 5.1 meters for Bluetooth-based 
solutions, while that for the WLAN positioning solution 
is 2.2 meters. It is easy to understand that the Bluetooth-
based solution has a lower positioning accuracy 
compared to the WLAN solution because the number of 
APs for the Bluetooth-based solutions is much less than 
that of the WLAN positioning solution.   
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Figure 9: WLAN and Bluetooth locating errors 
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Table 3. The statistics of the difference between the Weibull-based probability distribution using 20 samples and the 
occurrrence-based probability distribution using total measurements 

BIN number 1 2 3 4 5 6 7 8 9 
Mean 0 -0.0001 -0.1299 0.0217 0.1607    0.0194    0.0192    0.0136    0.0006 

Std 0 0.0009 0.0684 0.0690 0.0758 0.0500 0.0082 0.0005 0 
Max 0 0.0135 0.2293 0.3723 0.3657 0.3002 0.1259 0.0137 0.0006 

 
Table 4. Static locating test 

Database Weibull-based  Occurrence-based  
Time 20 h  24 h   20 h 24 h 
Error 4.09 m  3.90 m  5.52 m  5.78 m  

 
5. Conclusions and discussion 
 
Bluetooth as an existing wireless infrastructure has been 
widely utilized in personal area network communication. 
The proximity approaches based on Bluetooth have also 
been investigated in recent years. To pursue a practical 
Bluetooth locating solution with sufficient accuracy in a 
wider area, this study enlightens an inquiry-based 
Bluetooth indoor locating approach via RSSI probability 
distributions.  
 
The test result shows that RSSI probabilistic approach is 
a reasonable way for Bluetooth locating. Since the 
Weibull function is utilized for approximating the 
probability distribution of Bluetooth signal strength, the 
reliability and accuracy of the fingerprint database is 
improved significantly. It reduces the amount of work 
needed for generating the fingerprint database. 
 
6. Future work 
 
The following aspects will be considered to improve the 
locating performance in the related future research 
efforts: firstly, the Weibull-based fingerprint database 
will be optimized; secondly, without a timely update, 
more intelligent position estimation algorithms are 
needed for better location prediction; and finally, more 
Bluetooth features such as link quality and celluar signal 
quality will be studied. 
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