
 
 
 
 
 
Journal of Global Positioning Systems (2002) 
Vol. 1, No. 2: 122-131 

A General Criterion of Integer Ambiguity Search 

Guochang Xu 
GeoForschungsZentrum Potsdam (GFZ), Telegrafenberg, 14473 Potsdam, Germany 
 
Received: 9 October 2002 / Accepted: 6 January 2003 
 
 
Abstract. A general criterion for integer ambiguity 
searching is derived in this paper. The criterion takes into 
account not only the residuals caused by ambiguity 
parameter changing, but also the residuals caused by 
coordinates changing through ambiguity fixing. The 
search can be carried out in a coordinate domain, in an 
ambiguity domain or in both domains. The three 
searching scenarios are theoretically equivalent. The 
optimality and uniqueness properties of the proposed 
criterion are also discussed. A numerical explanation of 
the general criterion is outlined. The theoretical 
relationship between the general criterion and the 
commonly used least squares ambiguity search (LSAS) 
criterion is derived in an equivalent case in detail. It 
shows that the LSAS criterion is just one of the terms of 
the equivalent criterion. Numerical examples are given to 
illustrate the behaviour of the two components of the 
equivalent criterion. 
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1 Introduction 

It is well-known that the ambiguity resolution is a key 
problem which has to be solved in GPS static and 
kinematic precise positioning. Some well-derived 
ambiguity fixing and searching algorithms have been 
published during the last decade. These methods can be 
generally classified as four types. The first type includes 
Remondi's static initialisation approach (Remondi 1984; 
Hofmann-Wellenhof et al. 1997; Wang et al. 1988), 
which requires a static survey time to solve the ambiguity 
unknowns after any complete loss of lock. Normally, the 
results are good enough to take a round up ambiguity 
fixing. The second type includes the so-called phase-code 
combined methods (Han & Rizos 1995, 1997; Sjoeberg 
1998, 1999); the phase and code have to be used in the 

derivation as if they have the same precision, and in case 
of anti-spoofing (AS), the C/A code has to be used. A 
search process is still needed in this case. The third type 
is the so-called ambiguity function method (Remondi 
1984; Hofmann-Wellenhof et al. 1997); its search domain 
is a geometric one. The fourth type includes approaches, 
their search domain is only in domain of ambiguity, 
including some optimal algorithms to reduce the search 
area and to accelerate the search process (Euler & Landau 
1992; Teunissen 1995; Leick 1995; Han & Rizos 1995, 
1997). Because of the statistic character of validation 
criteria, sometimes no valid result is obtained at the end 
of the search processes. 

The effort to develop the KSGSoft (Kinematic/Static 
GPS Software) at the GeoForschungsZentrum (GFZ) 
Potsdam began at the beginning of 1994 due to the 
requirement of kinematic GPS positioning in 
aerogravimetry applications (Xu et al. 1998, 1999). An 
optimal ambiguity resolution method is needed in order 
to implement it into the software; however, selecting the 
published algorithms has turned out to be a difficult task. 
This has led to the independent development of this so-
called integer ambiguity search method (cf. Xu 2003). It 
turns out to be a very promising algorithm; the search 
domain could be in the domain of coordinate or 
ambiguity or both, and it is reliable and fast. Using this 
general criterion, an optimal ambiguity vector can be 
searched for and found out. The searched result is the 
optimal one under the least squares principle and integer 
ambiguity property. 

The theoretical background of this method is the well-
known conditional least squares adjustment and will be 
outlined below in the section 2. The well-known least 
squares ambiguity search (LSAS) criterion is derived in 
section 3. An analogue derivation of using coordinate 
condition is outlined in section 4. A general criterion is 
presented in section 5. Properties of the general criterion 
are discussed in section 6. The relationship between the 
general criterion and the least squares ambiguity search 
criterion is derived in an equivalent case in section 7. 
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where i is the element index of a vector or a matrix, sqrt() 
is the square root operator, sd is the standard deviation (or 
sigma) of unit weight, p[i] is the i-th element of the 
precision vector, Qc[i][i] is the i-th diagonal element of 
the quadratic matrix Qc, and 

Numerical examples are given in section 8. Conclusions 
and comments are given in the last section. 

2 Conditional Least Squares Adjustment 

Qc = Q − QCTQ2CQ (7) The principle of least squares adjustment with condition 
equations can be summarised as below (Cui et al. 1982; 
Leick 1995; Gotthardt 1978; Xu 2003): 

Q2 = (CQCT)−1 (8) 

sd = sqrt((VTPV)c/(m−n+r)) if(m > n−r) (9) 
1). Linearised observation equation system can be 
represented by: 6). For recursive convenience, (VTPV)c can be calculated 

by using: 
V = L − AX, P (1) 

(VTPV)c = LTPL − (ATPL) TXc − WTK (10) 
where 

Above are the complete formulas of conditional least 
squares adjustment. The application of such an algorithm 
for the purpose of integer ambiguity search will be further 
discussed in later sections. 

L: observation vector of dimension m, 
A: coefficient matrix of dimension m× n, 
X: unknown vector of dimension n, 
V: residual vector of dimension m, 
n: number of unknowns, 
m: number of observations, 3 Integer Ambiguity Search in Ambiguity Domain 
P: symmetric and quadratic weight matrix of 

dimension m m. × GPS observation equations can be represented with (1). 
Considering the case without conditions (2), i.e., C = 0 
and W = 0, the above equations are the same as the 
results of normal least squares adjustment. So the least 
squares solution of (1) is 

2). The condition equation system can be written as: 

CX − W = 0 (2) 

where 
X0 = Q(ATPL) = QW1 (11) C: coefficient matrix of dimension r× n, 

W: constant vector of dimension r, and 
r: number of conditions. 

(VTPV)0 = LTPL − (ATPL)TX0 (12) 
3). The least squares criterion for solving the observation 
equations with condition equations is well-known as: sd = sqrt((VTPV)0/(m−n)), if(m > n) (13) 

VTPV = min (3) p[i] = sdsqrt(Q[i][i]) (14) 

where 

VT: the transpose of the related vector V. 

4). The solution of the conditional problem (1) and (2) 
under the least squares principle (3) is then: 

Xc = (ATPA)−1(ATPL) − (ATPA)−1CTK 

= (ATPA)−1(ATPL − CTK) (4) 

and  

K = (CQCT)−1(CQW1 − W) (5) 

Where index 0 is used for convenience to denote the 
variables related to the normal least squares solution 
without conditions. X0 is the complete unknown vector 
including coordinates and ambiguities and is called a 
float solution later on. Solution X0 is the optimal one 
under least squares principle. However, because of the 
observation and model errors as well as method 
limitations, float solution X0 may not be exactly the right 
one, e.g the ambiguity parameters are real numbers and 
do not fit to the integer property. Therefore one 
sometimes needs to search for a solution, say X, which 
not only fulfils some special conditions, but also 
meanwhile keeps the deviation of the solution as small as 
possible (minimum). This can be represented by 

where AT, CT are the transpose matrices of A, C, the 
superscript −1 is an inversion operator, Q = (ATPA)−1, K is 
a gain vector (of dimension r), index c is used to denote 
the variables related to the conditional solution, and W1 = 
ATPL. 

Vx
TPVx = min (15) 

In (15) the Vx is the residuals vector in case of solution X. 
For simplification, let: 

5). The accuracies of the solutions are then: 

p[i] = sdsqrt(Qc[i][i]) (6) 
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where (VTPV)0 is the value obtained without condition 
(17). The second term on the right-hand side of (23) is the 
often-used least squares ambiguity search criterion, (cf. 
e.g. Teunissen 1995; Euler & Landau 1992; Hofmann-
Wellenhof et al. 1997), which can be expressed as 
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δ(dN) = (N0 – N)T(Q22)−1(N0 – N) (24) 
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where Y is the coordinate vector, N is the ambiguity 
vector (generally, a real vector). To use the conditional 
adjustment algorithm for integer ambiguity searching in 
ambiguity domain, the condition shall be selected as N = 
W, here W is, of course, an integer vector. Generally, 
letting C = (0, E), then condition (2) turns out to be: 

N = W (17) 

It indicates that any ambiguity fixing will cause an 
enlargement of the standard deviation. However, one may 
also notice that here only the enlargement of the standard 
deviation caused by ambiguity parameter changing has 
been considered. Any ambiguity fixing will lead to a 
related coordinate changing (cf. (20)). Furthermore, the 
condition (17) does not really exist. Ambiguities are 
integers, however, they are unknowns. The formula to 
compute the accuracy vector of the ambiguity does not 
exist too, because the ambiguity condition is considered 
exactly known in conditional adjustment (cf. Xu 2003). Using definitions of C and Q, one has: 

( )2221 QQCQ =  

4 Standard Deviation Enlargement Caused by Coordi-
nate Changing 

CQC T = Q22 

The float solution is denoted as 
Analogous to above discussion, the condition could be 
selected as Y = W, here W is a coordinate vector. 
Generally, letting C = (E, 0), where E is an identity 
matrix with dimension of r r, C has dimension r× n, 
condition (2) turns out to be: 
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where X0 is the solution of (1) without condition (17). 
The gain vector KN can be computed by: 

Y = W (25) 
KN = (Q22)−1(CQW1 − W) = (Q22)−1(N0 − W) (18) 

Using definitions of C and Q, one has: 
So under the condition (17), the conditional least squares 
solution (4) can be written as: ( )1211 QQCQ =  

CQC T = Q11 
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Simplifying (19), one gets: 

Yc = Y0 – Q12KN (20) 
where X0 is the solution of (1) without condition (25). 
The gain vector KY can be computed by using (5): 

KY = (Q11)−1(CQW1 − W) = (Q11)−1(Y0 − W) (26) and 
So under the condition (25), the conditional least squares 
solution (4) can be written as: 

Nc = N0 − Q22KN = N0 − Q22(Q22)−1(N0−W) = W (21) 

The precision computing formulas under condition (17) 
can be derived as below: 
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Simplifying (27), one gets: 
0)()( PVVPVV T

c
T =  

Yc = Y0 – Q11KY  
)()()( 0

1
220 WNQWN T −−+ −  (23) = Y0 – Q11(Q11)−1(Y0 − W) = W (28) 
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K = Q−1(CQW1 − W) = Q−1(X0 − W) (34) and 

Nc = N0 − Q21KY (29) So under the condition (33), the conditional least squares 
solution (4) can be written as: For any given constant coordinate vector W, an ambiguity 

vector Nc can be found out (or computed). In such a case, 
Nc is a float vector and Yc is exactly the same as that 
given in condition (25). If the Yc is a correct one, the 
computed Nc should be very close to an integer vector 
under the assumptions made at the beginning. The 
searched integer ambiguity vector is then Fix(Nc), where 
Fix() is a round up function for rounding up a real 
number to its nearest integer number. A more detailed 
discussion on the use of the rounding function to the 
computed vector Nc will be made in section 6. The 
precision computing formula under condition (25) can be 
derived by using definitions: 

Xc = X0 − QK = X0 − QQ−1(X0−W) = W (35) 

Precision computing formulas under condition (33) can 
be derived as below: 

Qc = 0 (36) 

(VTPV)c = (VTPV)0 + (X0 − W)TQ−1(X0 − W) (37) 

where (VTPV)0 is the value obtained without condition 
(33). 

The second term on the right side of (37) can be used as a 
general criterion for integer ambiguity search, i.e.: 

δ = (X0 − X)TQ−1(X0 – X) (38) CQQQCQQ T
c
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It indicates the enlargement of the standard deviation 
caused by fixed solution X. A minimum value of (38) is 
equivalent to a minimum value of (VTPV)c. Therefore an 
optimal fixed solution has to be searched for so that (38) 
has the minimum value. To be noticed is that the 
minimum value of (38) is not a minimization process, but 
just a searching process to find out the optimal X. (38) 
has obviously a more general form than the least squares 
ambiguity search criterion (24) does. where (VTPV)0 is the value obtained without condition 

(25). The second term on the right-hand side of (31) 
cannot be used directly as a criterion for an ambiguity 
search; however, it indicates that any coordinate change 
will cause an enlargement of the standard deviation. For 
convenience, we denote 

δ1(dY) = (Y0 – Y)T(Q11)−1(Y0 – Y) (32) 

In all above three derivations, to be noticed is that in the 
precision vector the condition related elements are not 
defined. This is because in the conditional adjustment 
conditions are considered exactly known. However, in 
integer ambiguity searching, to be tested candidates (e.g. 
integer ambiguity) are indeed not exactly known or say, 
known with uncertainty (float solution with its precision). 
The uncertainty of the computed ambiguity and selected 
coordinate vectors (related to the searching in coordinate 
domain), and the uncertainty of the computed coordinate 
and selected ambiguity vectors (related to the searching 
in ambiguity domain), as well as the uncertainty of the 
selected vector in both domains (related to the searching 
in both domains) should be taken into account in any 
cases. Therefore (38) is a more reasonable criterion and 
should be used generally in ambiguity searching no 
matter in which domain the search will be made. Under 
such criterion, the deviation of the result vector X related 
to the float vector X0 is homogenously considered. For 
computing the precision of the searched X, the formulas 
of least squares adjustment shall be further used, and 
meanwhile the enlarged residuals shall be taken into 
account by 

It is obvious that such an effect has to be taken into 
account in the ambiguity fixing. This will be further 
discussed in next section. 

5 Integer Ambiguity Search in Coordinate and Ambi-
guity Domains 

Even the to be fixed solution is an unknown vector, 
however, in order to see the enlargement of the standard 
deviation caused by the fixed solution, the condition 
could be selected as X = W, here W consists of two sub-
vectors (coordinate and ambiguity parameter related sub-
vectors). And only the ambiguity parameter related sub-
vector is an integer one. Letting C = E, condition (2) is 
then: 

X = W (33) p[i] = sd sqrt(Q[i][i]) (39) 
One has: sd = sqrt((VTPV)c/(m−n)) if(m > n) (40) 

CQ = CQC T = Q (VTPV)c = (VTPV)0 + δ (41) 
Denote X0 = QW1; here X0 is the solution of (1) without 
condition (33). The gain K can be computed by: 
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In other words, the original Q matrix and (VTPV)0 of the 
least squares problem (1) are further used. The δ has the 
function of enlarging the standard deviation. The 
formulas of (38), (39--41) are partly derived from the 
conditional adjustment, however, the formulas have 
nothing to do with the conditions. Searching for a 
minimum δ leads to a minimum of sd and therefore the 
best precision vector p[i]. The geometric explanation of 
here proposed integer ambiguity searching criterion is 
discussed in section 6. 

The general criterion of (38) is used for all three 
searching scenarios, where X0 is the float solution, Q is 
the inversion of the complete normal matrix of (1). X is 
the selected candidate vector in case of searching in both 
coordinate and ambiguity domains. In case of searching 
in coordinate domain, X consists of the selected sub-
vector of Yc in (28) and the computed sub-vector of 
Fix(Nc) in (29), i.e.: 









=

)( c

c

NFix
Y

X  (42) 

The reason why the Fix(Nc) is used here will be discussed 
theoretically in next section. In the case of searching in 
ambiguity domain, X consists of the selected sub-vector 
of Nc in (21) and the computed coordinate sub-vector Yc 
in (20), i.e.: 
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6 Properties of the General Criterion 

1). Equivalence of the Three Searching Processes 

To be emphasised is that the same searching criterion 
(38) and the same formulas of precision estimation (39—
41) are used in the three integer ambiguity search 
scenarios. And the same normal equations of (1) is used 
to compute the vector Nc using selected Yc or to compute 
the Yc using selected Nc if necessary. The three searching 
processes indeed deal with the same problem, just as 
different ways of searching are used. 

Suppose by searching in ambiguity domain, the vector X 
= (Yc  Nc)T is found so that δ reaches the minimum, where 
Nc is selected integer sub-vector and Yc is the computed 
one. In the case of searching in coordinate domain, if the 
selected coordinate sub-vector Y is exactly the same as Yc, 
then integer sub-vector N obtained by computation 
should be exactly the same as Nc. Taking the computing 
errors into account, the computed N could be a real 
vector, however, the errors must be very small and the 
rounding vector Fix(N) must be the same as Nc. (This is 
also the reason why the rounding function is used for the 
computed vector Nc in the case of search in coordinate 

domain). We see now the same results will be obtained 
theoretically in the both searching cases. Therefore, the 
searching methods in coordinate domain or in ambiguity 
domain are theoretically equivalent. 

Suppose by searching in ambiguity domain, again, the 
vector (Yc  Nc)T is obtained. And in the case of searching 
in both coordinate and ambiguity domains, a candidate 
vector X = (Y  N)T is selected so that δ reaches the 
minimum, where N is selected integer sub-vector and Y is 
selected coordinate vector. Because of the optimality and 
uniqueness properties of the vector X in (38) (please refer 
to 2, which is discussed next), here selected (Y  N)T must 
be equal to (Yc  Nc)T. So the theoretical equivalency of the 
three searching processes is confirmed. 

In practice, it could be difficult to have a selected Y that 
exactly equals the computed Yc (computed by searching 
in ambiguity domain). However, it is always possible to 
get a Y that is as close as required to Yc by selecting 
smaller search steps.  

2). Optimality and Uniqueness Properties 

The float solution X0 is the optimal and unique solution of 
(1) under the least squares principle. Using the integer 
ambiguity search criterion (38), analogously, the searched 
vector X is the optimal solution of (1) under the least 
squares principle and integer ambiguity properties. A 
minimum of δ in (38) will lead to a minimum of (VTPV)c 
in (41). The uniqueness property is obvious. If X1 and X2 
are such that δ(X1) = δ(X2) = min., or δ(X1) – δ(X2) = 0, 
then by using (38), one may assume that X1 must be equal 
to X2. 

3). Geometric Explanation of the General Criterion 

Geometrically, δ = (X0 – X)TQ−1(X0 – X) is the “distance” 
between the vector X and float vector X0. The distance 
contributed to enlarge the standard deviation sd (cf. (40)). 
Ambiguity searching is then the search for the vector, 
which own the integer ambiguity property and has the 
minimum distance to the float vector. 

In the next section, the relationship between above 
proposed general criterion and the common used least 
squares ambiguity search criterion (derived in §3) will be 
discussed. 

7 Relationship Between the Two Criteria 

We are going to prove theoretically that LSAS criterion 
(24) is just one of the terms of an equivalent criterion of 
the general criterion (38) as follows. 

The normal equation of (1) can be denoted by (use 
notation of (16)): 
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or where (cf. e.g. Cui et al. 1982; Leick 1995; Gotthardt 
1978) M11Y + M12N = W11 (45) 

M21Y + M22N = W12 (46) Q11 = (M11 – M12(M22)−1M21)−1 (57) 
Q22 = (M22 – M21(M11)−1M12)−1 (58) 

The normal equation (45) and (46) can be solved by 
block-wise elimination as follows. From (45), one has: 

Q12 = (M11)−1(–M12Q22) (59) 
Q21 = (M22)−1(–M21Q11) (60) 

Y = (M11)−1(W11 – M12N) then after comparing (57) and (58) with (52) and (48) one 
has Setting Y into (46), one gets a normal equation related to 

the second block of unknowns: 

M2N = B2 (47) 
Q11 = (M1)−1, Q22 = (M2)−1 

or 
where 

M2 = M22 – M21(M11)−1M12 (48) 
M1 = (Q11)−1, M2 = (Q22)−1 (61) 

B2 = W12 – M21(M11)−1W11 (49) 
Then (55) turns out to be 

δ1 = (Y0 – Y)T(Q11)−1(Y0 – Y) 
+ (N0 – N)T(Q22)−1(N0 – N) (62) Similarly, from (46), one has 

N = (M22)−1(W12 – M21Y) (50) 

Setting N into (45), one gets a normal equation related to 
the first block of unknowns: 

M1Y = B1 (51) 

Note that the second term on the right-hand side of (62) is 
exactly the same as the criterion of the least squares 
ambiguity search (24). In other words, the criterion of 
least squares ambiguity search is just one term of the 
equivalent criterion (62) (q.e.d). 

where 

M1 = M11 – M12(M22)−1M21 (52) 

B1 = W11 – M12(M22)−1W12 (53) 

It should be emphasised that the consistency between the 
coordinate sub-vector Y and ambiguity sub-vector N is 
implicitly used by the proof. Therefore (62) is only valid 
if the Y and N are consistent each other. The first term on 
the right-hand side of (62) is the same as the (32), which 
indicates an enlargement of the standard deviation due to 
the coordinate change caused by ambiguity fixing. 

Then the normal equation of (44) can be written by 
combining (51) and (47) as 
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 (54) 
Now, it is obvious that 

1). only if one may lead from a minimum value of (24) 

δ(dN) = (N0 – N)T(Q22)−1(N0 – N) (63) (44) and (54) are two equivalent normal equations, 
therefore the integer ambiguity search using (44) or (54) 
are also equivalent. Using the notation (16), the normal 
equation of (1) is MX = W1 and the general criterion is 
(38). Because of M = Q−1, (38) is the same as: (X0 – 
X)TM(X0 – X). So for the normal equation of (54), the 
related general criterion (38) turns out to be (put the 
diagonal M into above formula!): 

to get a minimum value of (62) 

δ1 = (Y0 – Y)T(Q11)−1(Y0 – Y) 
+ (N0 – N)T(Q22)−1(N0 – N) (64) 

then the least squares ambiguity search is equivalent to 
the general method proposed in §5. However, such a 
generality does not exist. Therefore, the LSAS criterion is 
generally not equivalent to the criterion (64) (which is 
equivalent to the general criterion (38)). Furthermore, 
using (20) and (18) one has 
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Y0 – Y = Q12(Q22)−1(N0 – N) (65) or 

δ1 = (Y0 – Y)TM1(Y0 – Y) + (N0 – N)TM2(N0 – N) (55) Putting (65) into (64), one has 

It has to be emphasised that search criterion (55) is 
equivalent to the criterion (38), however, they are not 
identical, or generally, δ ≠ δ1. Furthermore, denote 
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One may see clearly now the differences between the two 
criteria (63) and (66). 

2). If one may not lead from a minimum value of (63) to 
get a minimum value of (64), then the least squares 
ambiguity search may not find the optimal results in view 
point of the criterion (62). In this case, only criterion (62) 
reaches a minimum with a unique and optimal vector X. 

3). The coordinate change due to the ambiguity fixing has 
not been taken into account in the least squares ambiguity 
search criterion. 

A by-product of above derivation is that we have now a 
criterion (62) which is equivalent to the criterion (38). By 
computing the precision vector of (39)—(41), the δ has to 
be computed using (38), because the δ is not equal δ1 in 
general. 

8 Numerical Examples of General Criterion and 
LSAS Criterion 

Several numerical examples are given here to illustrate 
the behaviour of the two terms of the criterion. For 
convenience, we denote the first and second terms of the 
right-hand side of (62) as δ(dY) and δ(dN) respectively. 
δ1 = δ(dY)+ δ(dN) is the equivalent criterion of the 
general criterion and is denoted as δ(total). The term 

δ(dN) is the LSAS criterion. Of course, the search is 
made in the ambiguity domain. Analogues, the general 
criterion is also used for search in the ambiguity domain. 
The search area is determined by the precision vector of 
the float solution. All possible candidates are tested one 
by one, and the related δ1 are compared to each other to 
find out the minimum. 

In the first example, precise orbits and dual-frequency 
GPS data of 15 April 1999 at station Brst (N 48.3805°, E 
355.5034°) and Hers (N 50.8673°, E 0.3363°) are used. 
Session length is 4 hours. The total search candidate 
number is 1020. Results of the two sigma components are 
illustrated as 2-D graphics with the 1st axis of search 
number and the 2nd axis of sigma in Fig. 1. The red and 
blue lines represent δ(dY) and δ(dN), respectively. δ(dY) 
reaches the minimum at the search number 237, and 
δ(dN) at 769. δ(total) is plotted in Fig. 2, and it shows 
that the general criterion reaches the minimum at the 
search number 493. For more detail, a part of the results 
are listed in the Tab. 1. 

Tab. 1 Sigma values of searching process 

Search No. δ(dN) δ(dY) δ(total) 
237 183.0937 97.8046 280.8984 
493 181.7359 97.9494 279.6853 
769 93.3593 315.2760 408.6353 
771 96.0678 343.5736 439.6414 
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Fig. 1 Two components of the general ambiguity search criterion 
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Fig. 3 Example of general ambiguity search criterion 
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The δ(dN) reaches the second minimum at search No. 
771. This example shows that the minimum of δ(dN) may 
not lead to the minimum of total sigma, because the 
related δ(dY) is large. If the sigma ratio criterion is used 
in this case, the LSAS method will reject the found 
minimum and explain that no significant ambiguity fixing 
can be made. However, because of the uniqueness 
principle of the general criterion, the search reaches the 
total minimum uniquely. 

The second example is very similar to the first one. The 
sigmas of the search process are plotted in Figure 3, 
where δ(dY) is much smaller than δ(dN). δ(dN) reaches 
the minimum at the search number 5 and δ(dY) at 171. 
δ(total) reaches the minimum at the search number 129. 
The total 11 ambiguity parameters are fixed and listed in 
Table 2. Two ambiguity fixings have just one cycle 
difference at the 6th ambiguity parameter. The related 
coordinate solutions after the ambiguity fixings are listed 
in Table 3. The coordinate differences at component x 
and z are about 5 mm. Even the results are very similar, 
however, two criteria do give different results. 

Tab. 2 Two kinds of ambiguity fixing due to two criteria 

Ambiguity No. 1   2   3   4   5   6   7   8   9  10  11 

LSAS fixing 0   0   1   0   0   0  -1   0   0  -1  -1 

General fixing 0   0   1   0   0  -1  -1   0   0  -1  -1 

Tab. 3 Ambiguity fixed coordinate solutions (in meter) 

Coordinates              x            y             z     
LSAS fixng         0.2140   -0.0449    0.1078  
General fixing     0.2213   -0.0465    0.1127  

Tab. 4 Sigmas of ambiguity search process 

Search No.         δ(dN)         δ(dY)         δ(total) 
       1              248.5681    129.0555      377.6236 
       2              702.6925      58.9271      761.6195 
       3              889.5496    107.9330      997.4825 
       4              452.1952      42.3226      494.5178 
       5              186.7937    112.3030      299.0967 
       6              739.0487      55.9744      795.0231 
       7              931.4125      89.9074    1021.3199 
       8              592.1887      38.0969      630.2856 

In the third example, real GPS data of 3 October 1997 at 
station Faim (N 38.5295°, E 331.3711°) and Flor (N 
39.4493°, E 328.8715°) are used. The sigmas of the 
search process are listed in Table 4. Both δ(dN) and 
δ(total) reach the minimum at the search number 5. This 
indicates that the LSAS criterion may sometimes reach 
the same result as that of the equivalent criterion being 
used. 

9 Conclusions and Comments 

1). Conclusions 

A general criterion of integer ambiguity search is 
proposed in this paper. The search can be carried out in a 
coordinate domain, in an ambiguity domain or in both 
domains. The criterion takes the both coordinate and 
ambiguity residuals into account. The equivalency of the 
three searching processes are proved theoretically. The 
searched result is optimal and unique under the least 
squares minimum principle and under the condition of 
integer ambiguities. The criterion has a clear numerical 
explanation. The theoretical relationship between the 
general criterion and the common used least squares 
ambiguity search (LSAS) criterion is derived in detail. It 
shows that the LSAS criterion is just one of the terms of 
the equivalent criterion of the general criterion (does not 
take into account the coordinate change due to the 
ambiguity fixing). Numerical examples shown that, a 
minimum δ(dN) may have a relatively large δ(dY), and 
therefore a minimum δ(dN) may not guarantee a 
minimum δ(total). 

2). Comments 

The float solution is the optimal solution of the GPS 
problem under the least squares minimum principle. 
Using the general criterion, the searched solution is the 
optimal solution under the least squares minimum 
principle and under the condition of integer ambiguities. 
However, the ambiguity searching criterion is just a 
statistic criterion. Statistic correctness does not guarantee 
correctness in all applications. Ambiguity fixing only 
makes sense when the GPS observables are good enough 
and the data processing models are accurate enough. 
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