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Abstract. In this invited contribution a brief review will
be presented of the integer estimation theory as developed
by the author over the last decade and which started with
the introduction of the LAMBDA method in 1993. The re-
view discusses three different, but closely related classes
of ambiguity estimators. They are the integer estimators,
the integer aperture estimators and the integer equivariant
estimators. Integer estimators are integer aperture estima-
tors and integer aperture estimators are integer equivari-
ant estimators. The reverse is not necessarily true how-
ever. Thus of the three types of estimators the integer es-
timators are the most restrictive. Their pull-in regions are
translational invariant, disjunct and they cover the ambi-
guity space completely. Well-known examples are integer
rounding, integer bootstrapping and integer least-squares.

A less restrictive class of estimators is the class of inte-
ger aperture estimators. Their pull-in regions only obey
two of the three conditions. They are still translational
invariant and disjunct, but they do not need to cover the
ambiguity space completely. As a consequence the inte-
ger aperture estimators are of a hybrid nature having either
integer or non-integer outcomes. Examples of integer aper-
ture estimators are the ratio-testimator and the difference-
testimator. The class of integer equivariant estimators is
the less restrictive of the three classes. These estimators
only obey one of the three conditions, namely the condi-
tion of being translational invariant. As a consequence the
outcomes of integer equivariant estimators are always real-
valued.

For each of the three classes of estimators we also
present the optimal estimator. Although the Gaussian case
is usually assumed, the results are presented for an arbi-
trary probability density function of the float solution. The
optimal integer estimator in the Gaussian case is the inte-
ger least-squares estimator. The optimality criterion used
is that of maximizing the probability of correct integer es-
timation, the so-called success rate. The optimal integer
aperture estimator in the Gaussian case is the one which
only returns the integer least-squares solution when the in-
teger least-squares residual resides in the optimal aperture

pull-in region. This region is governed by the probability
density function of the float solution and by the probabil-
ity density function of the integer least-squares residual.
The aperture of the pull-in region is governed by a user-
defined aperture parameter. The optimality criterion used
is that of maximizing the probability of correct integer esti-
mation given a fixed, user-defined, probability of incorrect
integer estimation. The optimal integer aperture estimator
becomes identical to the optimal integer estimator in case
the success rate and the fail rate sum up to one.

The best integer equivariant estimator is an infinite
weighted sum of all integers. The weights are determined
as ratios of the probability density function of the float so-
lution with its train of integer shifted copies. The optimal-
ity criterion used is that of minimizing the mean squared
error. The best integer equivariant estimator therefore al-
ways outperforms the float solution in terms of precision.

Keywords: GNSS ambiguity resolution, integer esti-
mation, integer aperture estimation, integer equivariant
estimation
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1 Introduction

Global Navigation Satellite System (GNSS) carrier phase
ambiguity resolution is the process of resolving the carrier
phase ambiguities as integers. It is the key to fast and high
precision GNSS positioning and it therefore applies to a
great variety of GNSS models which are currently in use
in navigation, surveying, geodesy and geophysics. It will
be clear that a rigorous theoretical framework is needed in
order to understand, execute and validate carrier phase am-
biguity resolution properly. This theory was lacking in the
early days of ambiguity resolution. In the last decade how-
ever the contours of a rich and rigorous theory has emerged
from the contributions of many. The current invited contri-
bution will focus on a part of this theoretical framework. It
presents a brief review of the integer estimation theory as
developed by the author and which started with the intro-
duction of the LAMBDA method in 1993. The theory pre-
sented is non-Bayesian throughout. Although the theory
is applicable to any linear(ized) model with integer param-
eters, the motivation for its development stems first and
foremost from the desire to have a rigorous theory avail-
able for solving the very significant ’carrier phase ambigu-
ity problem’ of GNSS. Although the first applications of
the theory have been for single baseline positioning with
GPS, the applications have grown to cover network po-
sitioning, attitude determination, formation flying, other
GNSS, such as Glonass and Galileo, augmented and inte-
grated GNSS, and other systems than GNSS, such as in the
field of interferometric synthetic aperture radar (InSAR).

As our point of departure we take the following system
of linear observation equations
���������
	�������
�������������������

(1)

with
���! "�

the mathematical expectation operator,
�

the # -
vector of observables,

�
the $ -vector of unknown integer

parameters and
�

the % -vector of unknown real-valued pa-
rameters. All the linear(ized) GNSS models can in prin-
ciple be cast in the above frame of observation equations.
The data vector

�
will then usually consist of the ’observed

minus computed’ single-, dual- or multi-frequency double-
difference (DD) phase and/or pseudorange (code) observa-
tions accumulated over all observation epochs. The entries
of vector

�
are then the DD carrier phase ambiguities, ex-

pressed in units of cycles rather than range, while the en-
tries of the vector

�
will consist of the remaining unknown

parameters, such as for instance baseline components (co-
ordinates) and possibly atmospheric delay parameters (tro-
posphere, ionosphere).

The procedure for solving the above GNSS model can
be divided conceptually into three steps. In the first step
one simply discards the integer constraints

�&�'� �
and

performs a standard adjustment. As a result one obtains
the so-called ’float’ solution (� and (� . This solution is real-
valued. Then in the second step the ’float’ solution (� is

further adjusted so as to take in some pre-defined way the
integerness of the ambiguities into account. This gives

(�*)+�-,/. (�*0 (2)

in which
,

is an $ -dimensional mapping that in some way
takes the integerness of the ambiguities into account. This
estimator is then used in the final step to adjust the ’float’
estimator (� . As a result one obtains the so-called ’fixed’
estimator of

�
as

(�1)�� (�3254�67 68 4:9<;68 . (�=2 (�*)>0 (3)

in which
4 68 denotes the vc-matrix of (� and

4 67 68 denotes
the covariance matrix of (� and (� .

The above three-step procedure is still ambiguous in the
sense that it leaves room for choosing the $ -dimensional
map

,
. Different choices for

,
will lead to different am-

biguity estimators and thus also to different baseline esti-
mators (�?) . One can therefore now think of constructing
family of maps

,
with certain desirable properties. In this

contribution we will review three such classes of ambigu-
ity estimators. They are the integer estimators, the inte-
ger equivariant estimators and the integer aperture estima-
tors. These classes were introduced by the author in re-
spectively (Teunissen, 1999), (Teunissen, 2002) and (Teu-
nissen, 2003). The three classes of estimators are subsets
of one another. The first class is the most restrictive class.
This is due to the fact that the outcomes of any estima-
tor within this class are required to be integer. The most
relaxed class is the class of integer equivariant estimators.
These estimators are real-valued and they only obey the in-
teger remove-restore principle. The class of integer aper-
ture estimators is a subset of the integer equivariant esti-
mators but it encompasses the class of integer estimators.
The integer aperture estimators are of a hybrid nature in the
sense that their outcomes are either integer or non-integer.
We also present the optimal estimator for each of the three
classes of estimators. The optimality criterion for the first
class is the maximization of the probability of correct inte-
ger estimation. For the second class it is the minimization
of the mean squared error and for the third class it is the
maximization of the probability of correct integer estima-
tion given a user-defined fixed probability level of incorrect
integer estimation. The theory presented is non-Bayesian
throughout. There is therefore no need to work with priors.
All the results presented in this review are given without
proof. The proofs can be found in the references cited.

In this review we focus only on the estimation of the
integer ambiguities and therefore refrain from discussing
the probabilistic consequences for the baseline estimator.
For the probabilisty distribution of the GNSS baseline we
refer to (Teunissen, 1999b).
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2 Integer Estimation

2.1 The pull-in regions

We will start with the requirement that the estimator (� )
needs to be integer. In that case

,�� � ���� � �
. Integer

estimators will be denoted as �� . Thus �� � (� ) in case,���� ���� � �
. The map

,
will not be one-to-one due to

the discrete nature of
� �

. Instead it will be a many-to-one
map. This implies that different real-valued vectors will
be mapped to one and the same integer vector. One can
therefore assign a subset

,	��
 � �
to each integer vector� ��� � :

, � � ������ ��� � �-,/.� 0 � � � � � � (4)

The subset
,��

contains all real-valued vectors that will be
mapped by

,
to the same integer vector � � � �

. This
subset is referred to as the pull-in region of � . It is the
region in which all vectors are pulled to the same integer
vector � .

Since the pull-in regions define the integer estimator
completely, one can define classes of integer estimators by
imposing various conditions on the pull-in regions. The
following class of integer estimators was introduced by Te-
unissen (1999).

Definition 1 (Integer estimators)
The mapping ��:�-,/. (� 0 is said to be an integer estimator if
its pull-in regions satisfy

.�� 0 �������� , � � � �
.���� 0

Int
. ,���� 0��

Int
. ,��! ?0��#" �%$ � ; � �'& ��� � � � ;)(� �'&

.������ 0 , � � � �,+*!� $ � � � �
This definition is motivated as follows. Each one of the
above three conditions describes a property of which it
seems reasonable that it is possessed by an arbitrary in-
teger estimator. The first condition states that the pull-in
regions should not leave any gaps and the second that they
should not overlap. The absence of gaps is needed in order
to be able to map any float solution (� � � � to

� �
, while

the absence of overlaps is needed to guarantee that the float
solution is mapped to just one integer vector. Note that we
allow the pull-in regions to have common boundaries. This
is permitted if we assume to have zero probability that (�
lies on one of the boundaries. This will be the case when
the probability density function (pdf) of (� is continuous.

The third and last condition of the definition follows
from the requirement that

,�.�  � 0 � ,/.,�0/ � �-$� �
� � � � ��� � . Also this condition is a reasonable one to ask
for. It states that when the float solution (� is perturbed by� ��� � , the corresponding integer solution is perturbed by
the same amount. This property allows one to apply the
integer remove-restore technique:

,/. (��2 � 0  � � ,/. (� 0 .

It therefore allows one to work with the fractional parts of
the entries of (� , instead of with its complete entries.

Using the pull-in regions, one can give an explicit ex-
pression for the corresponding integer estimator �� . It reads

����/.�0��� � �21 � . (�*0436587�9 1 � . (� 0��;:%< 58= (�+� , �> 58= (� (� ,�� (5)

Note that the 1 � . (�*0 can be interpreted as weights, since? �0��� � 1 � . (�*0�� < . The integer estimator �� is therefore
equal to a weighted sum of integer vectors with binary
weights.

2.2 Three integer estimators

Integer rounding: The three best known integer estima-
tors are integer rounding, integer bootstrapping and integer
least-squares. The simplest way to obtain an integer vec-
tor from the real-valued float solution is to round each of
the entries of (� to its nearest integer. The corresponding
integer estimator reads therefore

��A@5� .CB (� ;ED �? � ? ��0B (� � D 0-F (6)

where ’[.]’ denotes rounding to the nearest integer. The
pull-in region of this integer estimator equals the multi-
variate version of the unit-square. It is given as

, @HG ��� ���� � ���I�KJ FL3.� 2 � 0 �AM <N �O� � < �� ? � 1� $ � �$ � � � � (7)

where
J L

denotes the
��PCQ

canonical unit vector having a 1
as its

��PCQ
entry and zeros otherwise.

Integer bootstrapping: Another relatively simple inte-
ger ambiguity estimator is the bootstrapped estimator. The
bootstrapped estimator can be seen as a generalization of
the previous estimator. It still makes use of integer round-
ing, but it also takes some of the correlation between the
ambiguities into account. The bootstrapped estimator fol-
lows from a sequential conditional least-squares adjust-
ment and it is computed as follows. If $ ambiguities are
available, one starts with the first ambiguity (� ; , and rounds
its value to the nearest integer. Having obtained the inte-
ger value of this first ambiguity, the real-valued estimates
of all remaining ambiguities are then corrected by virtue
of their correlation with the first ambiguity. Then the sec-
ond, but now corrected, real-valued ambiguity estimate is
rounded to its nearest integer. Having obtained the inte-
ger value of the second ambiguity, the real-valued esti-
mates of all remaining $ 2 N

ambiguities are then again
corrected, but now by virtue of their correlation with the
second ambiguity. This process is continued until all am-
biguities are considered. The entries of the bootstrapped
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estimator ���� �&. ���� G ; �? � ? ?� ���� G � 0 F � � � are thus given as

���� G ; � B (� ;ED���� G & � B (� &�� ; D � B (� & 2�� & ; � 9 &; . (� ; 2 ���� G ; 0 D
... (8)

���� G � � B (� � � � D � B (� � 2 � 9<;.
�
	 ;

� � G � � � � 9 &� � � . (� � � � 2 ���� G � 0 D
where

� L G � � � denotes the covariance between (� L and (� � � � ,
and

� &� � � is the variance of (� � � � . The shorthand notation
(� L � � stands for the

�
th least-squares ambiguity obtained

through a conditioning on the previous  � � < �� ? � 1��.,��2< 0 � sequentially rounded ambiguities.
Because of the close relationship that exists between se-

quential conditional least-squares estimation and the trian-
gular factorization of the vc-matrix,

4 68 ������� F
, the unit

lower triangular matrix
�

can be used to describe the boot-
strapped pull-in regions. They are given as

, � G � � �0���� ���I�KJ FL�� 9<; .� 2 � 0 �IM <N �� � < �? � ? 1� $ �!� $ � � � � (9)

The pull-in regions of integer rounding are unit-cubes,
while those of integer bootstrapping are multivariate ver-
sions of parallelograms. The bootstrapped pull-in regions
reduce to multivariate unit-cubes in case the vc-matrix is a
diagonal matrix,

� �  � . Bootstrapping reduces namely
to rounding in the absence of any correlation between the
ambiguities.

Note that the bootstrapped estimator is not unique. The
outcome of bootstrapping and its performance depend on
the chosen ambiguity parameterization. Thus although the
principle of bootstrapping remains the same, every choice
of ambiguity parameterization has its own bootstrapped es-
timator. Bootstrapping of DD-ambiguities, for instance,
will generally perform poorly due to the high correlation
and poor precision of DD ambiguities when short obser-
vation time spans are used. One should therefore make
use of an appropriate parameterization when using boot-
strapping. This can be done by applying the decorrelating�

-transformation of the LAMBDA (Least-squares AMBi-
guity Decorrelation Adjustment) method. When this trans-
formation is applied, one works with the more precise and
decorrelated ambiguity vector (� � � (� , instead of with the
original ambiguity vector (� . For more information on the
LAMBDA method, we refer to e.g. (Teunissen, 1993), (Te-
unissen, 1995) and (de Jonge and Tiberius, 1996) or to the
textbooks (Hofmann-Wellenhof et al., 2002), (Strang and
Borre, 1997), (Teunissen and Kleusberg, 1998), (Misra
and Enge, 2001) and (Seeber, 2003).

Integer least-squares: The integer least-squares estima-
tor minimizes the weighted squared norm of the ambiguity

residual over all integers. It is defined as

���� )+��������� 5���0������� (� 2 � � & "!# (10)

with �  � & !# � .  0 F 4 9<;68 .  0 . In contrast to integer round-
ing and integer bootstrapping, an integer search is needed
to compute ��$� ) . The integer least-squares (ILS) proce-
dure is mechanized in the LAMBDA method, which is
currently one of the most applied methods for GNSS car-
rier phase ambiguity resolution. Practical results obtained
with it can be found, for example, in (Boon and Ambrosius,
1997), (Boon et al., 1997), (Cox and Brading, 1999), (de
Jonge and Tiberius, 1996a), (de Jonge et al., 1996), (Han,
1995), (Jonkman, 1998), (Peng et al., 1999), (Tiberius and
de Jonge, 1995), (Tiberius et al., 1997).

To determine the ILS pull-in regions we need to know
the set of float solutions (�
� � � that are mapped to the
same integer vector � � � � . This set is described by all � � �

that satify � �%�&�
��� 5'�)( ����� �  2+* � & !# . The ILS
pull-in-region that belongs to the integer vector � follows
therefore as

, �>) G � � ���� � ��� �  2 � � & !# M �  2,* � & !# �-$-* ��� � �
(11)

It consists of all those points which are closer to � than to
any other integer point in

� �
. The metric used for mea-

suring these distances is determined by the vc-matrix
4 68 .

It is possible to give a representation of the ILS pull-in re-
gions that resembles the representation of the bootstrapped
pull-in regions. This representation is given as

,.�>) G ��� /021 ��� � �0�� � � � �KJ FL 4:9<;68 .� 2 � 0 �M <N � J L � & !# ���H$ � � � � (12)

This shows that the ILS pull-in regions are constructed
from intersecting half-spaces. One can show that at mostN � 2 < pairs of such half spaces are needed for construct-
ing the pull-in region. The ILS pull-in regions are convex,
symmetric sets of volume 1, which satisfy the conditions
of Definition 1. They are hexagons in the two-dimensional
case. Two-dimensional examples of the pull-in regions of
integer rounding, integer bootstrapping and integer least-
squares are given in Figure 1.

2.3 Optimal integer estimation

For the evaluation of the integer ambiguity estimator one
needs the distribution of �� . This distribution is of the dis-
crete type and it will be denoted as 3 . ��:� � 0 . It is a prob-
ability mass function (pmf), having zero masses at nongrid
points and nonzero masses at some or all grid points. In
order to obtain this pmf we need the probability density
function of the ’float’ solution (� . This pdf will be denoted
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Fig. 1 Two-dimensional pull-in regions of integer rounding (unit-squares), integer bootstrapping (parallelograms) and integer least-squares (hexagons).

as � 68 ., � �*0
, in which we explicitly show the dependence

on the unknown but integer vector
�
. In the Gaussian case

we therefore have� 68 .� � �*0�� <� ��� 7 . 4 68 0?. N�� 0 �  ���
	�� 2 <N �  2 � � & !#�
The pmf 3 . ���� � 0 follows from integrating � 68 ., � �*0 over
the pull-in regions

,��
:

3 . ��:� � 0���� )�� � 68 .� � � 0�� �� � ��� � (13)

This distribution is of course dependent on the pull-in re-
gions

, �
and thus on the chosen integer estimator. Since

various integer estimators exist which are admissible, some
may be better than others. Having the problem of GNSS
ambiguity resolution in mind, one is particularly interested
in the estimator which maximizes the probability of cor-
rect integer estimation. This probability equals 3 . ��+� �*0 ,
but it will differ for different ambiguity estimators. The an-
swer to the question which estimator maximizes the proba-
bility of correct integer estimation was given by Teunissen
(1999a).

Theorem 1 (Optimal integer estimation)
Let � 68 .� � �*0 be the pdf of the float solution (� and let���� � �%�&�
� ��� �

8 ��� � � 68 . (� � � 0 (14)

be an integer estimator. Then

3 . ��
� � � �*0�� 3 . ����
�*0 (15)

for any arbitrary integer estimator �� .
The above theorem holds true for an arbitrary pdf of the
float ambiguities (� . In most GNSS applications however,
one assumes the data to be normally distributed. The esti-
mator (� will then be normally distributed too, with mean�-� � �

and vc-matrix
4 68 , (����� . ��� 4 68 0 . In this case

the optimal estimator becomes identical to the integer least
squares estimator����>) � �&�
� � 5'�

8 �������  2 � � & !# (16)

The above theorem therefore gives a probabilistic justifi-
cation for using the integer least-squares estimator when
the pdf is Gaussian. For GNSS ambiguity resolution one
is thus better off using the integer least-squares estimator
than any other admissible integer estimator.

3 Integer Equivariant Estimation

3.1 A larger class of estimators

The result of the above theorem holds true for the de-
fined class of integer (I) estimators. One may now wonder
what happens if the conditions of Definition 1 are relaxed.
Would it then still be possible to find an ambiguity esti-
mator which in some sense outperforms the float solution?
In order to answer this question the class of integer equiv-
ariant (IE) estimators was introduced in (Teunissen, 2002).
This class is larger than the class of integer estimators and
it is defined as follows.

Definition 2 (Integer equivariant estimators)
The estimator (� ��� �! #" . (�*0 , with

 #"�� � � �� �
, is said

to be an integer equivariant estimator of the linear function� �%$ F �
if " .,: � 0��& " .� 0 '$,F � �H$+�� � � � � � � � (17)

This definition was motivated by the fact that of the condi-
tions of Definition 1 one should at least retain the property
that the integer remove-restore principle applies. It will
be clear that integer (I) estimators are also IE-estimators.
Simply check that the above condition is indeed fulfilled
by the estimator �� �!$ F �� . The converse, however, is not
necessarily true. The class of IE-estimators is therefore in-
deed a larger class than the class of I-estimators.

The class of IE-estimators is also a larger class than the
class of linear unbiased estimators, assuming that the float
solution is unbiased. Let

 F" (� , for some
 #"�� � �

, be the
linear estimator of

� �($ F �
. For it to be unbiased one
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Fig. 2 The set relationships between different classes of estimators: inte-
ger equivariant estimators ��� , unbiased estimators � , unbiased integer
equivariant estimators ����� , unbiased integer estimators ��� , and linear
unbiased estimators ��� .

needs, using
��� (�>�+� �

, that
 F" ��� (�>���!$ F � , $ � � � �

holds true, or that
 #" � $

. But this is equivalent to stat-
ing that

 F" . (� -� 0��  F" (�� $ F � , $ (� � � � � �
� � � .
Comparison with (17) shows that the condition of linear
unbiasedness is more restrictive than the condition of inte-
ger equivariance. The class of linear unbiased estimators is
therefore a subset of the class of integer equivariant estima-
tors. This result implies that IE-estimators exist which are
unbiased. Thus, if one denotes the class of IE-estimators
as  � , the class of unbiased estimators as � , the class of
unbiased IE-estimators as  � � , the class of unbiased in-
teger estimators as 	� , and the class of linear unbiased
estimators as

� � , one may summarize their relationships
as:  � � �  � / � (� "

,
� � 
  � � and 
� 
  � �

(see Figure 2).

3.2 Best integer equivariant estimation

Having defined the class of IE-estimators one may now
look for an IE- estimator which is ’best’ in a certain sense.
Assuming that such an estimator exists, it immediately fol-
lows that it must be better or at least as good as the float
solution. Afterall the float solution is an IE-estimator as
well. We will denote the best integer equivariant (BIE) es-
timator as (� � ��� and use the mean squared error (MSE) as
our criterion of ’best’. The best integer equivariant estima-
tor of

� ��$ F �
is therefore defined as

(� � ��� �%����� � 5���� � ��� ��� .  #" . (�*0 2 � 0 & � (18)

in which  � stands for the class of IE-estimators. The min-
imization is thus taken over all integer equivariant func-
tions that satisfy the condition of Definition 2.

The reason for choosing the MSE-criterion is twofold.
First, it is a well-known probabilistic criterion for measur-
ing the closeness of an estimator to its target value, in our
case

� � $ F �
. Second, the MSE-criterion is also often

used as measure for the quality of the float solution itself.
It should be kept in mind however that the MSE-criterion
is a weaker criterion that the probabilistic criterion used in
the previous section for determining the optimal integer es-

timator. The following theorem, due to Teunissen (2002a),
gives the solution to the above minimization problem.

Theorem 2 (Best integer equivariant estimation)
Let � 68 ., � �*0

be the pdf of the float solution and let (� � � �
be the best integer equivariant estimator of

� � $ F �
. Then

(� � � � �&$ F (��� ��� , with

(��� ��� � .�0����� ��� � . (� 0 ��� � (19)

� � .� 0�� � 68 .�� ��2 � � � 0? ( ��� � � 68 .,:�� 2 * � �*0
Note the resemblence in structure between the BIE-
estimator and an arbitrary integer estimator, see (5). The
BIE-estimator is also a weighted sum of all integer vectors
in
� �

. In the present case, however, the weights are not
binary. They vary between zero and one, and their values
are determined by the float solution and its pdf. As a con-
sequence the BIE-estimator will be real-valued in general,
instead of integer-valued.

An important consequence of the above theorem is that
the BIE-estimator is always better than or at least as good
as any integer estimator as well as any linear unbiased esti-
mator. Afterall the class of integer estimators and the class
of linear unbiased estimators are both subsets of the class
of IE-estimators. The nonlinear BIE-estimator is therefore
also better than the best linear unbiased (BLU) estimator.
The BLU-estimator is the minimum variance estimator of
the class of linear unbiased estimators and it is given by the
well-known Gauss-Markov theorem. One therefore has

������. (� � ��� 0 M ���	��. (� � ��� 0 (20)

The two estimators (� � ��� and (� � ��� both minimize the
mean squared error within their class, see (Teunissen,
2002a).

The above results hold true for any pdf the ’float’ so-
lution (� might have. In many applications however it is
assumed that the pdf of (� is Gaussian. In that case we have
the following corollary.

Corollary (BIE in the Gaussian case)
Let (� be distributed as (� � ��. ��� 4�68 0 and let (� � ��� be the
best integer equivariant estimator of

� �&$ F �
. Then

(� � � � �&$ F (� � ��� (21)

with

(��� � � � .�0��� � �
� ��	 �!2 ;& � (�=2 � � & !# �? �0��� � ���
	 �!2 ;& � (� 2 � � & !# �

For the proof see (Teunissen, 2003a). Since the space of in-
tegers

� �
can be seen as a certain discretisized version of

the space of real numbers
� �

, one would expect if the inte-
ger grid size gets smaller in relation to the size and extend
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of the pdf, that the difference between the two estimators
(��� ��� and (� gets smaller as well. Similarly, if the pdf gets
more peaked in relation to the integer grid size, one would
expect that the BIE-estimator (�$� ��� tends to an integer es-
timator. This is made precise in the following lemma.

Lemma (limits of the integer grid)
(
�
) If we replace

? �0��� � by � @�� � � in (21), then

(� � ��� � (�
(
���

) Let the vc-matrix of (� be factored as
4�68 ��� &��

. Then

� 5����� * (��� � � � �� � �>)
It is interesting to observe that the above expression given
for (� � ��� is identical to its Bayesian counterpart as given
in (Betti et al., 1993) (Gundlich and Koch, 2001), and
(Gundlich and Teunissen, 2002). This is not quite true
for the general case however. Still, the above equivalence
nicely bridges the gap which existed so far between the
current theory of integer inference and the Bayesian ap-
proach. Despite the similarity in the above case however,
there are important differences in the probabilistic evalu-
ation of the solutions. Like the BLU-estimator, the BIE-
estimator is a random variable with the property of be-
ing unbiased and of minimum variance. In the Bayesian
framework the solution is considered to be nonrandom due
to the conditioning that takes place. Furthermore, in the
Bayesian framework the unknown parameters are assumed
to be random variables for which probability distributions
need to be specified a priori. The theory presented in
the present contribution is non-Bayesian throughout with
no need at all to make assumptions about prior distribu-
tions. As a final note we remark that the theory of integer
equivariant estimation can be extended to linear functions
of both the ambiguities and the baseline components, see
(Teunissen, 2003a). A probabilistic performance compari-
son between the BIE- estimator and the ’float’ and ’fixed’
ambiguity estimators can be found in (Verhagen and Teu-
nissen, 2003).

4 Integer Aperture Estimation

4.1 Aperture pull-in regions

The two classes of ambiguity estimators discussed so far
are related as  
  � . That is, integer estimators are inte-
ger equivariant, but integer equivariant estimators are not
necessarily integer. We will now discuss a third class of
ambiguity estimators. This class was introduced in (Te-
unissen, 2003) and is referred to as the class of integer
aperture (IA) estimators. This class will be larger than
the I-class, but smaller than the IE-class,  
  	 
  � .
Whereas the IE-class was defined by dropping two of the

three conditions of Definition 1, the IA-class will be de-
fined by dropping only one of the three conditions, namely
the condition that the pull-in regions should cover

� �
com-

pletely. We will therefore allow the pull-in regions of the
IA-estimators to have gaps.

In order to introduce the new class of ambiguity estima-
tors from first principles, let � 
 � �

be the region of
� �

for which (� is mapped to an integer if (�+� � . It seems rea-
sonable to ask of the region � that it has the property that
if (�+� � then also (�  � � � , for all � ��� � . If this prop-
erty would not hold, then float solutions could be mapped
to integers whereas their fractional parts would not. We
thus require � to be translational invariant with respect to
an arbitrary integer vector: �  � � � , for all � � � � .
Knowing � is however not sufficient for defining our esti-
mator. � only determines whether or not the float solution
is mapped to an integer, but it does not tell us yet to which
integer the float solution is mapped. We therefore define

� � � � /�, � �H$ � � ��� (22)

where
, �

is a pull-in region satisfying the conditions of
Definition 1. Then

.�� 0	� � � � �
� � . � / , � 0�� � / .�� � , � 0�� � /�� �
� �

.���� 0 � � � / � �  ��&. � / � � � 0 /�. � / � �  ?0
� � / . , � � / , �  �0��#" �	$ � ; � � & � ��� � � ; (� � &

.,� ��� 0 � *3 � � . � / ,+* 0  � �&. �  � 0./ . ,+*  � 0
� � / ,���� � �!� $ � �����

This shows that the subsets � � 
 , � satisfy the same con-
ditions as those of Definition 1, be it that

� �
has now been

replaced by � 
 � �
. Hence, the mapping of the IA-

estimator can now be defined as follows. The IA-estimator
maps the float solution (� to the integer vector � when
(�+� � � and it maps the float solution to itself when (� (� � .
The class of IA-estimators can therefore be defined as fol-
lows.

Definition 3 (Integer aperture estimators)
Integer aperture estimators are defined as

(� �� � (�  .�0��� � . � 2 (�*0�� � . (�*0 (23)

with
� � .� 0

the indicator function of � � � � / , �
and

� 
 � �
translational invariant.

Note that an IA-estimator is indeed also an IE-estimator,
just like an I-estimator is. There is also resemblence be-
tween an IA-estimator and an I-estimator. Since the indi-
cator functions 1 �!.,�0 of the pull-in regions

,��
sum up to
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unity,
? �0����� 1 � .� 0�� < , the I-estimator (5) may be writ-

ten as

��:� (�  .����� � . � 2 (�*0 1 � .,�0 (24)

Comparing this expression with that of (23) shows that the
difference between the two estimators lies in their binary
weights, 1 � .� 0 versus

� � .��0
. Since the 1 �!.,�0 sum up to

unity for all
 � � �

, the outcome of an I-estimator will al-
ways be integer. This is not true for an IA-estimator, since
the binary weights

� � .,�0
do not sum up to unity for all�� � �

. The IA-estimator is therefore an hybrid estimator
having as outcome either the real-valued float solution (�
or an integer solution. The IA-estimator returns the float
solution if (� (� � and it will be equal to � when (� � � � .
Note, since � is the collection of all � � � � *  � , that the
IA-estimator is completely determined once � * is known.
Thus � * 
 ,+*

plays the same role for the IA-estimators
as
, *

does for the I-estimators. By changing the size and
shape of � * one changes the outcome of the IA-estimator.
The subset � * can therefore be seen as an adjustable pull-
in region with two limiting cases. The limiting case in
which � * is empty and the limiting case when � * equals,�*

. In the first case the IA-estimator becomes identical to
the float solution (� , and in the second case the IA-estimator
becomes identical to an I-estimator. The subset � * there-
fore determines the aperture of the pull-in region.

4.2 Three examples of IA-estimators

Various examples can be given of IA-estimators. In fact
one can devise one’s own IA-estimator by specifying the
aperture pull-in region � * . Here we will give three exam-
ples of IA-estimators.

The ratio-testimator: In the practice of GPS carrier phase
ambiguity resolution various tests are in use for discrimi-
nating between the ’best’ and the so-called ’second-best’
solution. These tests are usually referred to as discernibil-
ity tests. In (Verhagen, 2003) the probabilistic characteris-
tics and performance of the test statistics were evaluated.

One such a discernibility test is the popular ratio-test.
The ratio-test is defined as follows. Let (� be the float so-
lution, �� � ����� � 5�� �0��� � � (� 2 � � & !# the integer least-
squares solution and ������%�&�
��� 5'� �0��� �����8 � (��2 � � & !# the
so-called ’second-best’ solution. Then �� is accepted as the
fixed solution if

� (�=2 �� � & !#� (� 2 �� � � & !# M�� (25)

This test has been used in e.g. (Euler and Schaffrin, 1990),
(Wei and Schwarz, 1995) and (Han and Rizos, 1996). Thus
with the ratio-test �� is accepted as the fixed solution if the
float solution (� is sufficiently more closer to �� than to the

’second-best’ solution �� � . The non-negative scalar
�

is a
user-defined tolerance level.

In (Teunissen, 2003b) it was shown that the proce-
dure underlying the above test is actually that of an IA-
estimator. The rejection region of the above test is integer
translational invariant and thus an example of

� �	� � . For
this region the outcome will be (� . The outcome will be the
integer � ��� � however, when the test is passed and (� lies
in the least-squares pull-in region of � .

The aperture of the pull-in region of the ratio-test is gov-
erned by the choice of the single parameter

�
. One has a

zero aperture in case
� � >

and a maximum aperture in
case

� � < . In the first case the procedure of the ratio-test
will always output the float solution, while in the second
case it will always output the integer least-squares solution�� . Changing the value of the aperture parameter

�
will thus

change the performance of the ratio-test.

The difference-testimator: Although perhaps less popu-
lar, tests other than the ratio-test have been proposed in the
GPS literature as well. One such test is the difference-test.
This test was introduced in (Tiberius and de Jonge, 1995).
This test also makes use of the integer least-squares solu-
tion and the ’second best’ solution. It is defined as follows.
The integer least-squares solution �� is accepted as the fixed
solution with the difference-test if

� (� 2 �� � � & !# 2 � (� 2 �� � & !# ��
 (26)

where the non-negative scalar



is a user-defined tolerance
level. As with the ratio-test, the difference-test accepts �� as
the fixed solution if the float solution is sufficiently more
closer to �� than to the ’second best’ solution �� � . ’Close-
ness’ is however measured differently. The procedure un-
derlying the difference-test can also be shown to be that of
an IA-estimator, see (Teunissen, 2003b).

The ellipsoidal IA-estimator: The procedures currently
in place for GPS ambiguity resolution all make use of com-
paring, in some pre-defined sense, the ’best’ solution with
the so-called ’second best’ solution. But when one thinks
of the concept of the aperture region, there is in principle
no need to compute or to make use of the ’second-best’
solution. That is, one can do without the ’second-best’ so-
lution, as long as one is able to measure and evaluate the
closeness of the float solution to an integer. The ellipsoidal
IA-estimator is one such IA-estimator. The aperture pull-in
regions of the ellipsoidal integer aperture (EIA) estimator
are defined as
� ���
� *  � ��� * � , * /��� G * � $ � � ��� (27)

with
,�*

being the least-squares pull-in region and
� � G *��

�� � � � � �  � & !# M�� & �
, an origin-centred ellipsoidal

region of which the size is controlled by the aperture pa-
rameter

�
.

Thus the EIA-estimator equals (� ��� � � � if (� � � �
and (� ���� � (� otherwise. From the definition follows that
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� � � �0 � , � � � �2 � � & �!# M � & �
. This shows that

the procedure for computing the EIA-estimator is rather
straightforward. Using the float solution (� , its vc-matrix4 68 and the aperture parameter

�
as input, one only needs

to compute the integer least-squares solution �� and verify
whether or not the inequality

� (��2 �� � & !# M�� & (28)

is satisfied. If the inequality is satified then (� � �� � �� ,
otherwise (� ��� � � (� . A comparison with the ratio-test
(25) and with the difference-test (26) shows that (28) is
indeed the simplest of the three inequalities. Instead of
working with a distance-ratio or a distance-difference the
EIA-estimator simply evaluates the distance to the closest
integer directly. There is therefore no need to make use of
a ’second-best’ solution.

The simple choice of the ellipsoidal criterion (28) is mo-
tivated by the fact that the squared-norm of a normally dis-
tributed random vector is known to have a Chi-square dis-
tribution. That is, if (� is distributed as (� � ��. ��� 4�68 0 then3 . (�5����� G � 0�� 3 ��� & . $ ����� 0 M�� &�� , in which

� & . $ ����� 0
denotes a random variable having as pdf the noncentral
Chi-square distribution with $ degrees of freedom and
noncentrality parameter

� � �'. � 2 �*0 F 4 9 ;68 . � 2 �*0 . This
implies that one can give exact solutions to the fail-rate and
to the success-rate of the EIA-estimator, provided the ellip-
soidal regions

� � G �
do not overlap, see (Teunissen, 2003c).

4.3 Optimal integer aperture estimation

In order to evaluate the performance of an IA-estimator
as to whether it produces the correct integer outcome

���
� �

, it is helpful to classify its possible outcomes. An IA-
estimator can produce one of the following three outcomes:�+��� �

(correct integer), � � � � � � �>� (incorrect integer),
or (� � � � � � � (no integer). A correct integer outcome
may be considered a success, an incorrect integer outcome
a failure, and an outcome where no correction at all is given
to the float solution as indeterminate or undecided. The
probability of success, the success-rate, equals the integral
of the pdf � 68 .� � �*0

, over � 8 , whereas the probability of
failure, the fail-rate, equals the integral of � 68 ., � � 0

over
� � � 8 . The respective probabilities are therefore given as	
 � 3 ) � �� # � 68 .� � � 0��  .�������� � ��� 0

3 � � ? ���	 8 ��� � � 68 .� � � 0��  . = � 5 � � � � 0
3 � � < 2 3 )�2 3 � .�� � �
� � 5 �
� � 0 (29)

Note that these three probabilities are completely governed
by � 68 .� � �*0

, the pdf of the float solution, and by � * ,
the aperture pull-in region which uniquely defines the IA-
estimator. Hence one can proceed with the evaluation of
IA-estimators once this information is available.

So far we have discussed different IA-estimators of
which the aperture pull-in regions were chosen a pri-
ori. It will be clear however, that it is of importance to

know which IA-estimator performs best of all possible IA-
estimators. As the optimal IA-estimator we choose the
one which maximizes the success-rate subject to a given
fixed fail-rate. Would one maximize the success-rate with-
out a constraint on the fail-rate, one would get as solution
the I-estimator of Theorem 1. Since the outcome of an I-
estimator is always integer and therefore 3 � � >

, the fail-
rate of an I-estimator equals one minus its success-rate.
Thus although the optimal I-estimator has the largest pos-
sible success-rate, one can not excercise any control over
its fail-rate. That is, the fail-rate of an I-estimator is deter-
mined completely by the strength, or the lack of strength
for that matter, of the underlying mathematical model. It
can not be fixed a priori independently of the model. This
situation changes however in case of IA-estimation. Due
to the fact that IA-estimators allow one to excercise con-
trol over the aperture of the pull-in region, it also gives one
the possibility to excercise control over the fail-rate. The
idea is therefore to constrain the fail-rate to a user-defined
fixed value and then to find the size and shape of the pull-
in region which maximizes the success-rate. In (Teunissen,
2003b) it was shown that the aperture pull-in region of this
optimal IA-estimator is given as follows.

Theorem 3 (optimal integer aperture estimation)
Let � 68 .� � �*0

be the pdf of the float solution (� , and let 3 )
and 3 � be respectively the success-rate and the fail-rate of
the IA-estimator. Then the solution to

��� ������ ) � 3 ) ������� � � 7 7�� � 5! � � 3 � (30)

is given by the aperture pull-in region

� * � �0�� ,+* � .�0��� � � 68 .�: � � �*0 M#" � 68 .,��� � �*0 �
(31)

with

, * � �0������ � > ������� ��� ��0� @�� � 68 .� � � 0 �
and with the aperture parameter

"
chosen so as to satisfy

the a priori fixed fail-rate 3 � .

With this result we are now able to make a connection with
the theory of integer estimation of Section 2. First note that
the above

,�*
equals the pull-in region of the optimal inte-

ger estimator of Theorem 1. In the Gaussian case it reduces
to the ILS pull-in region. The size of the aperture pull-in
region � * 
 , *

is governed by the aperture parameter
"

,
which on its turn is governed by the user-defined fixed fail-
rate 3 � . � * is empty in case

" � < and its size will get
larger when

"
gets larger. For a large enough value of

"
,

� * will become identical to
,�*

, in which case the optimal
integer aperture estimator becomes identical to the optimal
integer estimator.
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For most applications one would like the fail-rate 3 � to
be smaller than the success-rate 3 ) . The result of the above
theorem can be used to determine the value of the aperture
parameter that guarantees this to be the case. Since 3 � �? �0����� ��� 8�� � � � � 68 .�  � � �*0 �� and 3 ) � � � # � 68 .�� � ��*0�� 

it follows that 3 � M . " 2 < 0 3 ) . This shows that the
fail-rate will be smaller than the success-rate when

"�� N
.

The above result applies to an arbitrary pdf of (� . In most
cases however the pdf of the ’float’ solution is assumed to
be Gaussian. In case the ’float’ solution is normally dis-
tributed as (� � ��. ��� 4+68 0 , the optimal aperture pull-in re-
gion becomes

� *�� �0�� ,+* � .�0����� ��� * � ���
	 � 2 <N �  2 � � & !# �
M . " 2 < 0 ���
	 �!2 <N �  � & !# � � (32)

with
,�*

being the ILS pull-in region. The computational
steps involved in computing the optimal integer aperture
estimator are now as follows. First compute the integer
least-squares solution �� � ) � ����� � 5'� �0��� � � (��2 � � & !# .
Then form the ambiguity residual �� � (��2 �� � ) and check
whether �� � � * . If this is the case then the outcome of
the optimal estimator is ����>) , otherwise the outcome is (� .
For the purpose of computational efficiency it is advised
to compute ���� ) with the LAMBDA method and use the
LAMBDA-transformed ambiguities also for the evaluation
of �� � � * .

Note that the contribution of the exponentials in the sum
of (32) gets smaller the more peaked the pdf of the ’float’
solution is. The aperture pull-in region � * will therefore
get larger the more peaked the pdf is. This is also what
one would expect. With (32) we are now also in a position
to make an interesting link with one of the IA-estimators
presented in the previous section, namely the difference-
testimator. If we approximate � * by retaining only the
largest term in the sum of the inequality of (32) we ob-
tain the inequality of the difference test. This shows that
the difference-testimator is a close to optimal IA-estimator
in case the pdf is peaked. More details, including an ex-
tention of the theory of integer aperture estimation which
starts form predefined integer estimators, can be found in
(Teunissen, 2003b+c). There is furthermore an interesting
link with the concept of penalized ambiguity resolution as
introduced in (Teunissen, 2003d).

5 Summary

In this contribution a brief review was presented of the es-
timation theory which has been developed over the last
decade for estimating integer parameters such as the car-
rier phase ambiguities of GNSS. Three different classes of
estimators were discussed, the integer (I) estimators, the

Fig. 3 The set relationships between integer (I) estimators, integer aper-
ture (IA) estimators and integer equivariant (IE) estimators: �����	�
�
��� .

integer aperture (IA) estimators and the integer equivari-
ant (IE) estimators. These three classes of estimators are
related as  
  	 
  � , see Figure 3.
Of the three type of estimators the integer estimators are
the most restrictive. Their pull-in regions are translational
invariant, disjunct and cover

� �
completely. Every integer

estimator can be represented as

���� (�� .�0����� . � 2 (�*0 1 � . (� 0
with 1 � .� 0 being the indicator function of the pull-in re-
gion

, �
. Well-known examples of integer estimators are

integer rounding, integer bootstrapping and integer least-
squares. In the Gaussian case, the integer least-squares es-
timator is the optimal estimator. The optimality criterion
used is that of maximizing the probability of correct inte-
ger estimation, the so-called success rate.

A less restrictive class of estimators is the class of inte-
ger aperture estimators. The pull-in regions of these esti-
mators only need to obey two of the three conditions. They
are still translational invariant and disjunct, but they do not
need to cover

� �
completely. Hence gaps are allowed. As

a consequence the outcomes of integer aperture estimators
are either integer or non-integer, this in contrast to integer
estimators which always have integer outcomes. Every in-
teger aperture estimator can be represented as

(� �� � (�  .�0��� � . � 2 (�*0�� � . (�*0
with

� � .� 0
being the indicator function of the aperture

pull-in region � � . The outcome of an integer aperture es-
timator equals therefore � in case (� � � � and (� otherwise.
Well-known examples of integer aperture estimators are
the ratio-testimator and the difference-testimator. The fact
that the aperture pull-in regions do not need to cover

� �
completely allows one to excercize control over the proba-
bility of incorrect integer estimation, the so-called fail rate.
In the Gaussian case, the optimal integer aperture estimator
is the one which returns the integer least-squares solution���� ) in case � �� . �� 0 M " � 68 . ��  � � �*0 in which � ��?.� 0 denotes
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the pdf of the residual �� � (��2 �� � ) . The optimality crite-
rion used is that of maximizing the probability of correct
integer estimation given a fixed, user-defined, probability
of incorrect integer estimation. The optimal integer aper-
ture estimator becomes identical to the optimal integer es-
timator in case the success rate and the fail rate sum up to
one.

The class of integer equivariant estimators is the less
restrictive of the three classes. These estimators only obey
one of the three conditions, namely the condition of being
translational invariant. That is, they only obey the integer
remove-restore principle. As a consequence the outcomes
of integer equivariant estimators are always real-valued. In
the Gaussian case, the best integer equivariant estimator
can be represented as

(��� ��� � (�  .�0��� � . � 2 (�*0 � � . (�*0
with the weighting function � � .� 0 � � 68 .�5 ��2 � �
�*0�� ? ( ����� � 68 .� �� 2 * � �*0 . The optimality criterion used
is that of minimizing the mean squared error. The best inte-
ger equivariant estimator therefore outperforms the ’float’
solution (� in the sense that it will always have a smaller
variance, i.e. a better precision. This optimal integer equiv-
ariant estimator becomes in the limit identical to the inte-
ger least-squares estimator when the variance of the ’float’
solution approaches zero.

A comparison between the representations of the three
types of estimators shows that they only differ in the
weighting functions used. These weighting functions are
respectively 1 � .��0 , � � .,�0 and � �!.,�0 . The functions 1 �!.,�0
are binary and sum up to unity for any


, the functions� � .,�0

are also binary but do not sum up to unity for any


,
and the functions � � .��0 do sum up to unity for any


, but

are not binary.
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