
Journal of Global Positioning Systems (2003)
Vol. 2, No. 1: 13-17

An invariant upperbound for the GNSS bootstrappend ambiguity
success-rate

P.J.G. Teunissen

Department of Mathematical Geodesy and Positioning, Delft University of Technology, Kluyverweg 1, 2629 HS Delft

Received: 2 June 2003 / Accepted: 16 June 2003

Abstract. Carrier phase ambiguity resolution is the key
to fast and high precision GPS positioning. Critical in
the application of ambiguity resolution is the quality of
the computed integer ambiguities. Unsuccessful ambigu-
ity resolution, when passed unnoticed, will too often lead
to unacceptable errors in the positioning results. The suc-
cess or failure of carrier phase ambiguity resolution can
be predicted by means of the probability of correct integer
estimation, also referred to as the ambiguity success-rate.
Upperbounds of the success-rate can be used to decide
that ambiguity resolution has become unreliable. In this
contribution we prove an upperbound for the bootstrapped
success-rate. The upperbound is easy to compute and it is
invariant for the class of admissible ambiguity transforma-
tions.

Keywords GNSS, integer bootstrapping, ADOP, ambigu-
ity success-rate

1 Introduction

There are many ways of computing an integer ambiguity
vector ǎ ∈ Zn from its real-valued counterpart â ∈ Rn,
also referred to as the ’float’ solution. To each such method
belongs a mapping S : Rn 7→ Zn from the n-dimensional
space of real numbers to the n-dimensional space of in-
tegers. Due to the discrete nature of Zn, the map S will
not be one-to-one, but instead a many-to-one map. This
implies that different real-valued ambiguity vectors will be
mapped to the same integer vector. One can therefore as-
sign a subset Sz ⊂ Rn to each integer vector z ∈ Zn:

Sz = {x ∈ Rn | z = S(x)}, z ∈ Zn (1)

The subset Sz contains all real-valued ambiguity vectors
that will be mapped by S to the same integer vector z ∈

Zn. This subset is referred to as the pull-in region of z.
It is the region in which all ambiguity ’float’ solutions are
pulled to the same ’fixed’ ambiguity vector z. Using the
pull-in regions, one can give an explicit expression for the
corresponding integer ambiguity estimator. It reads ǎ =
∑

z∈Zn zsz(â) with the indicator function sz(â) equal to
one if â ∈ Sz and zero otherwise.

Since the pull-in regions define the integer estimator
completely, one can define classes of integer estimators by
imposing various conditions on the pull-in regions. One
such class is referred to as the class of admissible integer
estimators [Teunissen, 1999]. These integer estimators are
defined as follows.

Definition
The integer estimator ǎ =

∑

z∈Zn zsz(â) is said to be ad-
missible if

(i)
⋃

z∈Zn Sz = Rn

(ii) Int(Sz1
)
⋂

Int(Sz2
) = ∅, ∀z1, z2 ∈ Zn, z1 6= z2

(iii) Sz = z + S0, ∀z ∈ Zn

This definition is motivated as follows. Each one of the
above three conditions describe a property of which it
seems reasonable that it is possessed by an arbitrary inte-
ger ambiguity estimator. The first condition states that the
pull-in regions should not leave any gaps and the second
that they should not overlap. The absence of gaps is needed
in order to be able to map any ’float’ solution â ∈ Rn to
Zn, while the absence of overlaps is needed to guarantee
that the ’float’ solution is mapped to just one integer vec-
tor. Note that we allow the pull-in regions to have common
boundaries. This is permitted if we assume to have zero
probability that â lies on one of the boundaries. This will
be the case when the probability density function (pdf) of
â is continuous.

The third and last condition follows from the require-
ment that S(x + z) = S(x) + z,∀x ∈ Rn, z ∈ Zn.
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Also this condition is a reasonable one to ask for. It states
that when the ’float’ solution is perturbed by z ∈ Zn, the
corresponding integer solution is perturbed by the same
amount. This property allows one to apply the integer
remove-restore technique: S(â − z) + z = S(â). It there-
fore allows one to work with the fractional parts of the en-
tries of â, instead of with its complete entries. Important
examples of admissible integer estimators are the estima-
tors based on the principles of integer rounding, integer
bootstrapping and integer least-squares. In this contribu-
tion we will focus on the principle of integer bootstrapping.

With the division of Rn into mutually exclusive pull-in
regions, we are in the position to consider the distribution
of ǎ. This distribution is of the discrete type and it will be
denoted as P (ǎ = z). It is a probability mass function,
having zero masses at nongrid points and nonzero masses
at some or all grid points. If we denote the continuous
probability density function of â as pâ(x), the distribution
of ǎ follows as

P (ǎ = z) =

∫

Sz

pâ(x)dx , z ∈ Zn (2)

Note that the dependence on the chosen integer estimation
principle enters through the pull-in regions Sz . The above
expression holds for any distribution the ’float’ ambiguities
â might have. In most GNSS applications however, one as-
sumes the vector of observables to be normally distributed.
The estimator â is then normally distributed too, with mean
a ∈ Zn and vc-matrix Qâ. Its probability density function
(pdf) reads

pâ(x) =
1

√

det(Qâ)(2π)
1

2
n

exp{−1

2
‖ x − a ‖2

Qâ
} (3)

with the squared weighted norm ‖ . ‖2
Qâ

= (.)T Q−1

â (.).
The probability P (ǎ = a) equals the probability of cor-

rect integer ambiguity estimation, the ambiguity success-
rate. In this contribution we will concentrate on the prin-
ciple of bootstrapping and derive an invariant upperbound
for its success-rate.

2 Integer Bootstrapping

The bootstrapped estimator follows from a sequential con-
ditional least- squares adjustment and it is computed as fol-
lows. If n ambiguities are available, one starts with the
first ambiguity â1, and rounds its value to the nearest inte-
ger. Having obtained the integer value of this first ambigu-
ity, the real-valued estimates of all remaining ambiguities
are then corrected by virtue of their correlation with the
first ambiguity. Then the second, but now corrected, real-
valued ambiguity estimate is rounded to its nearest integer.
Having obtained the integer value of the second ambiguity,
the real-valued estimates of all remaining n−2 ambiguities
are then again corrected, but now by virtue of their correla-
tion with the second ambiguity. This process is continued

until all ambiguities are considered. The components of
the bootstrapped estimator ǎB are given as

ǎB,1 = [â1]

ǎB,2 = [â2|1] = [â2 − σ21σ
−2

1
(â1 − ǎB,1)]

... (4)

ǎB,n = [ân|N ] = [ân −
n−1
∑

j=1

σn,j|Jσ−2

j|J (âj|J − ǎB,j)]

where the shorthand notation âi|I stands for the ith least-
squares ambiguity obtained through a conditioning on the
previous I = {1, . . . , (i − 1)} sequentially rounded am-
biguities, ′[.]′ denotes the operation of integer rounding,
σi,j|J denotes the covariance between âi and âj|J , and σ2

j|J
denotes variance of âj|J . For a review of the theory of in-
teger bootstrapping we refer to [Teunissen, 2001].

The bootstrapped estimator is admissible. The first two
conditions of the definition are satisfied, since - apart from
ties in rounding - any ’float’ solution gets mapped to a
unique integer ambiguity vector. Also the third condition
of the definition applies. To see this, let ǎ′

B be the boot-
strapped estimator which corresponds with â′ = â − z. It
follows then from (4) that ǎB = ǎ′

B + z.
The real-valued sequential conditional least-squares so-

lution can be obtained by means of the triangular decompo-
sition of the ambiguity variance-covariance matrix. Let the
triangular decomposition of the variance-covariance ma-
trix be given as Qâ = LDLT , with L a unit lower trian-
gular matrix and D a diagonal matrix. Then (â − z) =
L(âc − z), where âc denotes the conditional least-squares
solution obtained from a sequential conditioning on the en-
tries of z. The variance-covariance matrix of âc is given
by the diagonal matrix D. This shows, when a compo-
nentwise rounding is applied to âc, that z is the integer
solution of the bootstrapped method. Thus ǎB satisfies
[L−1(â − ǎB)] = 0. Hence, if ci denotes the ith canoni-
cal unit vector having a 1 as its ith entry, the bootstrapped
pull-in regions SB,z follow as

SB,z = {x ∈ Rn | | cT
i L−1(x − z) | ≤ 1

2
,

i = 1, . . . , n}, ∀z ∈ Zn (5)

When using the bootstrapped pull-in region for the proba-
bility mass function (2) with the pdf (3), the success-rate
of integer bootstrapping can be shown to follow as [Teu-
nissen, 1998]

P (ǎB = a) =

n
∏

i=1

(

2Φ(
1

2σi|I
) − 1

)

(6)

where the function Φ is defined as Φ(x) =
∫ x

−∞
1√
2π

exp{− 1

2
v2}dv. This shows that the boot-

strapped success-rate is determined by the conditional
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variances σ2

i|I , i = 1, . . . , n. They are the entries of the

diagonal matrix D of Qâ = LDLT .
The outcome of integer bootstrapping and its success-

rate depends on the chosen ambiguity parametrization. For
instance, a simple reordering of the ambiguities will al-
ready affect the success-rate. The fact that the bootstrapped
success-rate will not remain invariant when an arbitrary
ambiguity transformation is applied is a consequence of
the uniqueness of the triangular decomposition of Qâ. The
bootstrapped success-rate will change since the diagonal
matrix D of the triangular decomposition changes when
an arbitrary ambiguity transformation is applied. This
lack of invariance of the bootstrapped success-rate implies
that one can try to improve the performance of bootstrap-
ping by choosing an appropriate ambiguity parametriza-
tion. Since integer least- squares is known to be optimal
and since bootstrapping becomes identical to integer least-
squares when the variance-covarianec matrix is diagonal,
one should aim at reducing the correlations between the
ambiguities. This is possible when using the decorrelating
ambiguity transformation of the LAMBDA method [Teu-
nissen, 1995]. For more information on the LAMBDA
method and its applications, we refer to e.g. [Teunissen,
1993], [Tiberius and de Jonge, 1995], [Han, 1995], [de
Jonge et al., 1996], [Boon and Ambrosius, 1997], [Boon et
al., 1997], [Cox and Brading, 1999], [Peng et al., 1999].

Although the bootstrapped success-rate (6) is easy to
compute for a particular ambiguity parametrization ones
the corresponding conditional variances are given, it would
still be very helpful if one could come up with an easy-to-
compute invariant bound. Such a single bound needs then
to be computed only once and it would cover all possible
ambiguity parametrizations. In Section 4 we present an in-
variant upperbound of the bootstrapped success-rate. As
this bound turns out to be driven by the ambiguity dilution
of precision (ADOP) we first present some properties of
the ADOP.

3 The ambiguity dilution of precision

The scalar ambiguity dilution of precision (ADOP) was in-
troduced in [Teunissen, 1997a] as

ADOP =
√

detQâ

1

n (cycle) (7)

The ADOP is invariant for the class of admissible ambigu-
ity transformations. An ambiguity transformation ẑ = Zâ
is said to be admissible if and only if all the entries of ma-
trix Z and its inverse are integer. These two conditions are
needed in order to retain the integer nature of the ambigu-
ities. It can be shown that the determinant of admissible
ambiguity transformations always equals ±1. We there-
fore have det (Qẑ) = det

(

ZQâZT
)

, which shows the
invariance of the ADOP. Thus the same ADOP-value is
obtained, irrespective of which satellite is chosen as refer-
ence in the DD definition of the ambiguities. Likewise, the

same ADOP-value is also obtained when one uses, instead
of the original variance matrix, the variance matrix of the
transformed ambiguities, as produced by the LAMBDA
method.

Different approaches can be used for computing the
ADOP. First, one may use the variance-covariance matrix
of the original DD ambiguities or of any transformed set
of ambiguities. Second, for computing the determinant,
one may use eigenvalues, conditional variances or, if ap-
plicable, the analytical closed form expressions as given in
[Teunissen, 1997b].

When the eigenvalues λâi
of the ambiguity variance

matrix are used, we have

ADOP =

n
∏

i=1

λ
1

2n

âi
(8)

Instead of working with eigenvalues, a cheaper way would
be to make use of the conditional variances. This approach
is based on using a triangular decomposition or a Cholesky
decomposition of the ambiguity variance matrix or its in-
verse. The entries of the diagonal matrix D in the LDLT

decomposition of the variance matrix are the sequential
conditional variances of the ambiguities. Since the deter-
minant of the diagonal matrix D equals the determinant of
the variance matrix, the ADOP becomes

ADOP =

n
∏

i=1

σ
1

n

âi|I
(9)

In case of bootstrapping the conditional variances σ2

âi|I
are

usually already available.
When the ambiguities are completely decorrelated, the

ADOP equals the geometric mean of the standard devia-
tions of the ambiguities. This follows from det(Qâ) =
∏n

i=1
σ2

âi
det(Râ), where Râ is the ambiguity correlation

matrix. Since the decorrelating ambiguity transformation
of the LAMBDA method produces ambiguities that are
largely decorrelated, the ADOP approximates the average
precision of these transformed ambiguities.

4 The invariant upperbound and its proof

We now come to the main result of this contribution. As
the following theorem shows, the invariant ADOP can be
used to obtain an upperbound for the bootstrapped success-
rates.

Theorem (Invariant upperbound)
For any admissible ambiguity parametrization the boot-
strapped succes- rate can be bounded from above as

P (ǎB = a) =

n
∏

i=1

(

2Φ

(

1

2σi|I

)

− 1

)

≤
(

2Φ

(

1

2ADOP

)

− 1

)n

(10)
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Note that the upperbound is sharp in the sense that it will be
reached when all ambiguities are completely decorrelated.
The above easy-to- compute upperbound can be used to de-
cide on the potential usefulness of bootstrapping for ambi-
guity resolution. If in any application the upperbound turns
out be too small the conclusion must be that one can not
expect carrier phase ambiguity resolution to be successful
when it is based on the principle of integer bootstrapping.

The above upperbound was introduced without explicit
proof in [Teunissen, 1998]. We will now give its proof.
The proof is rather lengthy and will therefore be given in
a number of steps. For the proof we also make use of two
important results which are given in the Appendix.

Step 1: The above theorem will be proven by solving the
maximization problem

max
xi

n
∏

i=1

F (xi) subject to
n
∏

i=1

xi = c (11)

where F (x) = 2Φ(x) − 1, xi = 1/(2σi|I) > 0 and c is
a known constant. The constraint has been included to re-
flect the fact that the product of the ambiguity conditional
variances,

∏n
i=1

σ2

i|I , is invariant for any arbitrary admis-
sible ambiguity transformation. The constant is therefore
given as

c =

(

1

2ADOP

)n

(12)

In order to make the above maximization problem more
manageable we transform it such that the constraint be-
comes linear and the objective function can be written as a
sum instead of as a product. For that purpose we take the
logarithm of the objective function, the logarithm of the
constraint and reparametrize by replacing the parameters
xi with xi = exp vi. As a result we get the maximization
problem

max
vi

n
∑

i=1

ln F (exp vi) subject to

n
∑

i=1

vi = ln c (13)

We may now think of applying the optimization theorem
as given in the Appendix (note: maximizing an objective
function is equivalent to minimizing −1 times the objec-
tive function). For the theorem to be applicable we need to
show that the objective function

∑n
i=1

ln F (exp vi) is con-
cave (or

∑n
i=1

− ln F (exp vi) is convex) with continuous
first derivatives and that the feasible set of the constraint is
convex. The latter is easily shown since the constraint is
linear. It is also easily shown that the first order derivative
of F (x) is continuous. This leaves us to show that the ob-
jective function is concave. But since the sum of concave
functions is again concave, it suffices to show that

ln F (exp v) is concave (14)

Step 2 We will now use Prekopa’s theorem of the Ap-
pendix to show that (14) is indeed true. Since F (x) =
2Φ(x) − 1 = P (u ≤ x2), with u distributed as a central
Chi-squared distribution with one degree of freedom, u ∼
χ2(1, 0), we have F (exp v) = P ( 1

2
ln u ≤ v). We there-

fore need to show that ln F (exp v) = ln P ( 1

2
ln u ≤ v) is

concave, or that

ln P

(

1

2
ln u ≤ αv + (1 − α)w

)

≥

α ln P

(

1

2
ln u ≤ v

)

+ (1 − α) ln P

(

1

2
ln u ≤ w

)

∀α ∈ [0, 1]

According to Prekopa’s theorem this is true when

ln p 1

2
ln u (αv + (1 − α)w) ≥

α ln p 1

2
ln u (v) + (1 − α) ln p 1

2
ln u (w) ∀α ∈ [0, 1]

(15)

with p 1

2
ln u(v) the pdf of 1

2
ln u. In order to verify (15) we

need to determine this pdf. Since u ∼ χ2(1, 0), its pdf is

given as pu(x) =
(√

2Γ( 1

2
)
)−1

x− 1

2 exp− 1

2
x, 0 < x <

∞. Using the transformation y = 1

2
ln x the pdf of 1

2
ln u

follows as

p 1

2
ln u(y) =

pu(exp 2y)
1

2
exp−2y

= 2

(√
2Γ(

1

2
)

)−1

exp y exp{−1

2
exp 2y}

We therefore have

ln p 1

2
ln u(y) = ln

(

2

(√
2Γ(

1

2
)

)−1
)

+ y − 1

2
exp 2y

which is easily shown to be concave. Therefore (15) is true
and by Prekopa’s theorem also (14) is true. The conclusion
reads therefore that all conditions for the optimization the-
orem to be applicable are satisfied.

Step 3 Application of the optimization theorem as given
in the Appendix boils down to finding the solution of
∂vi

L(vi, λ) = 0, i = 1, . . . , n, with the Lagrangian

L(vi, λ) =

n
∑

i=1

ln F (exp vi) + λ(

n
∑

i=1

vi − ln c)

This gives

∂vi
L(vi, λ) =

F ′(exp vi)

F (exp vi)
exp vi + λ = 0 ,

for i = 1, . . . , n (16)

in which F ′ denotes the first derivative of F . These n
equations are satisfied when all vi are equal. And since
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they also need to satisfy the constraint
∑n

i=1
vi = ln c, it

follows that vi = 1

n ln c, or in terms of the original pa-
rameters, that xi = c1/n. Together with (12) this finally
gives

xi =
1

2ADOP
, for i = 1, . . . , n

We have therefore proven that
∏n

i=1
F ( 1

2ADOP
) is the

solution of (11). This concludes the proof of (10).
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6 Appendix

In this appendix the two theorems are given which are
used in the proof of the invariant upperbound for the boot-
strapped success rate.

Theorem (global optimization)
Let f : Rn 7→ R, f ∈ C1, be a convex function on the set
of feasible points

Ω = {x ∈ Rn | h(x) = 0}

where h : Rn 7→ Rm, h ∈ C1, and Ω is convex (C1

denotes the class of functions with continuous first order
derivatives). Suppose there exists x̂ ∈ Ω and λ̂ ∈ Rm such
that

∂xf(x̂) + λ̂T ∂xh(x̂) = 0

Then x̂ is a global minimizer of f over Ω.

Proof: see [Chong and Zak, 1996, p. 379]

Theorem (Prekopa)
Let p(x), x ∈ Rn, be a density function for which

ln p (αx + (1 − α)y) ≥ α ln p(x) + (1 − α) ln f(y) ,

∀α ∈ [0, 1]

Then

ln P (x ∈ αA + (1 − α)B) ≥
α ln P (x ∈ A) + (1 − α) ln P (x ∈ B)

where A,B are any sets in Rn and their convex combina-
tion is defined as

αA + (1 − α)B =

{z ∈ Rn | z = αx + (1 − α)y, x ∈ A, y ∈ B}

and P denotes the probability.

Proof: see [Prekopa, 1971]


