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Abstract. Kalman filters have been widely used for 
navigation and system integration. One of the key 
problems associated with Kalman filters is how to assign 
suitable statistical properties to both the dynamic and the 
observational models. For GPS navigation, the 
manoeuvre of the vehicle and the level of measurement 
noise are environmental dependent, and hardly to be 
predicted. Therefore to assign constant noise levels for 
such applications is not realistic.  

In this paper, real-time adaptive algorithms are applied to 
GPS data processing. Two different adaptive algorithms 
are discussed in the paper. A number of tests have been 
carried out to compare the performance of the adaptive 
algorithms with a conventional Kalman filter for vehicle 
navigation. The test results demonstrate that the new 
adaptive algorithms are much robust to the sudden 
changes of vehicle motion and measurement errors. 
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1 Introduction 

For some navigation applications, we need to know the 
precise position when a vehicle turns. In map matching 
processing, for example, the turning points of a vehicle 
have to be accurately determined in order to establish 
reliable map matching (Yu et al, 2002).  In most cities, 
the local maps are based on local datum and they have to 
be transformed to WGS 84 coordinate system for the use 
of satellite navigation technology. One of the quick ways 
to establish the transformation parameters is to drive a car 
equipped with a GPS receiver in the different parts of the 

cities. Then the turning points of the trajectory are 
extracted and compared with the map data at the same 
locations to determine the transformation parameters (Hu 
et al, 2003). Currently Kalman filters have been widely 
used in different GPS receivers. However, a conventional 
Kalman filter is vulnerable for the determination of the 
turning points precisely. 

The Kalman filtering is an optimal estimation method 
that has been widely applied in real-time dynamic data 
processing. A Kalman filter estimates the state of a 
dynamic system with two different models namely 
dynamic and observation models. The dynamic model 
describes the behaviour of state vector, while the 
observation model establishes the relationship between 
measurements and the state vector. Both models are 
associated with statistical properties to describe the 
accuracy of the models. For many applications, the model 
statistic noise levels are given before the filtering process 
and will maintain unchanged during the whole recursive 
process. Commonly, this a priori statistical information is 
determined by test analysis and certain knowledge about 
the observation type beforehand. If such a priori 
information is inadequate to represent the real statistic 
noise levels, Kalman estimation is not optimal and may 
cause to an unreliable results, sometimes even leads to 
filtering divergence (Mohamed and K.P. Schwarz 1999). 
For vehicle navigation, sudden acceleration or 
deceleration and sudden change of the directions are 
impossible to predict. Therefore it is difficult to design a 
system with constant noise variances that will satisfy all 
situations. One of the common problems with vehicle 
navigation using Kalman filter is so called ‘over 
shooting’ problem. That is the effect that the dynamic 
model keeps position estimation along with previous 
trend while a vehicle actually turns to another direction. 

Adaptive filtering is trying to determine the statistic 
parameters of the dynamic system based on the behaviour 
of the system during data processing, and it has been paid 
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much attention in Kalman filtering theory (Jia and Zhu, 
1984, and Gustafsson, 2000). Different adaptive Kalman 
filtering algorithms have been studied for surveying and 
navigation applications. Chen (1992) and Mohamed and 
Schwarz (1999) applied adaptive Kalman filters for the 
integration of GPS and inertial navigation system (INS). 
Wang et al (1997) applied a simplified adaptive algorithm 
in kinematic GPS positioning. Chen et al (1999) uses 
adaptive filters to estimate the velocity of permanent GPS 
stations.  

In this paper, we investigate the performance of two 
different adaptive Kalman filters for vehicle navigation 
using GPS, one based on the fading memory and one 
based on the variance estimation.  Both algorithms make 
use of the predicted residuals. The fading memory 
approach tries to estimate a scale factor to increase the 
predicted variance components of the state vector. The 
variance estimation method, on the other hand, directly 
calculates the variance factor for the dynamic model. 
Both algorithms closely examine whether there are 
divergence in the filtering process. If there is no 
divergence, the conventional Kalman filtering is used. 
Otherwise, the adaptive algorithms are applied. Two 
examples of vehicle navigation with DGPS are given in 
the paper. It demonstrates that the positioning accuracy 
with the adaptive approaches is significantly better than 
the conventional Kalman filtering, especially when the 
vehicle turns around the corners. 

2 The Adaptive Kalman Filtering Algorithms 

Considering a general linear dynamic system: 
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where k denotes epoch number; kX is the state vector at 

epoch k; ,kkΦ 1+ is the state transition  matrix; ,kkΓ 1+ is 

vector of system disturbance; kΩ is vector of dynamic 

model noise; 1+kL  is vector of observation at epoch k+1; 

1+kB  represent design matrix for observation; V is 

observation noise; and kjδ is the δ -function of 
Kronecker.  

Kalman filtering estimation can be expressed as:  
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where kkX /1
ˆ

+ is the predicted state vector; )/1( kkXQ + is 

the variance matrix for kkX /1
ˆ

+ ; 1+kK is the gain matrix; 

1/1
ˆ

++ kkX is the estimation of filtering; and )/kX(kQ 11 ++ is 
its variance matrix.  

The adaptive filtering with fading memory algorithm 

The Kalman filtering estimation at epoch k can be 
considered as ‘weighted’ adjustment between the new 
measurements (observation model) and the predicted 
state vector based on the dynamic model and all previous 
measurements. If too much ‘weight’ were put to the 
dynamic model, the estimation would ignore the 
information from measurements and causes the 
divergence of the filtering process. The idea of fading 
memory is simple. By applying a factor S>1 to the 
predicted covariance matrix to deliberately increase the 
variance of the predicted state vector (Eq. 8), more 
‘weight’ will be given to the measurements.   

)( 11111
T
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T
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        (8) 

The main difference between different fading memory 
algorithms is on how to calculate the scale factor S. One 
approach is to assign the scale factor as a constant, S =1
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〜1.4. When S =1, it becomes the conventional Kalman 
filtering. Obviously there are some drawbacks with a 
constant factor. For example, as the filtering proceeds, the 
precision of the filtering will decrease because the effects 
of old data will become less and less. The best way is to 
use a variant scale factor that will be determined base on 
the dynamic and observation model accuracy. In this 
paper, an algorithm is derived based on the size of the 
predicted residuals, which represent the difference 
between the measurements and the predicted state vector. 
The predicted residual vector is expressed as: 

)ˆ( 1111 /kkkk/kk XBLV ++++ −=                        (9)  

For a linear dynamic system, we have (Jia and Zhu, 1984) 
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Let us introduce a scale factor S≥1 to the predicted 
covariance matrix  
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As 1≥s , we can further obtain that                                                
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By combining Eqs 13 and 14 finally we can have 
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In practice, the number of measurements may vary from 
epoch to epoch, such as the GPS signal is blocked off by 
obstacles or the newly rising and down of satellite.  Eq 
(15) can be modified as  
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where mi is the number of measurements at epoch i.  

When S≤1，it indicates that the filtering is in a steady 
state processing. When S>1, it indicates that the filtering 
may be in an unstable state or in a state of divergence. In 
practice, in order to avoid false alarm, a threshold S0>1 is 
selected. When S>S0, the adaptive algorithm is applied. 
Otherwise S =1 and the conventional Kalman filtering 
algorithm is used. 

The adaptive filter with variance component 
estimation    

This approach tries to estimate the variance factor of the 
dynamic model directly using the predicted residuals. 
Considering the prediction vector as a pseudo-
observation, the Kalman filter equation can be expressed 
as a Gauss-Markov model:  
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The predicted residual vector can be stated: 
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The covariance matrix of the predicted residuals can be 
expressed as:  
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where m  is the number of measurements at the epoch. 

In our approach, we only try to estimate the variance 
factor of the dynamic model, as GPS measurement noise 
can be assigned to a reasonable level based on the type of 
GPS receiver used. Then the variance factor of the 
observation 12

0)( −=
kLLk PσLcov  is assumed to be 

known. From Eq. 20, the estimation of the variance factor 
2
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Similarly we can derive the variance factor for the 
dynamic model noise: 
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3 Examples 

In order to evaluate the performance of the adaptive 
algorithms on GPS positioning, a number of tests were 
carried out. In the first example, we used two TOPCON 
Java Legacy-E dual frequency GPS receivers. One 
receiver was set on the roof of the Tang Ping Yuan 
Building in the Hong Kong Polytechnic University as a 
reference station. Another GPS receiver was installed on 
roof of a car that was driven along the road, which is 
about 15 km from the university. Fig. 1 shows the 
trajectory of the car. Both dual frequency pseudorange 
and carrier phase measurements were collected during the 
test. The data collected were then post-processed using 
in-house GPS software developed by Hong Kong 
Polytechnic University. Firstly the reference trajectory 
was obtained with kinematic GPS positioning using 
carrier phase measurements. Then the L1 C/A code data 
were processed using different Kalman filters. A constant 
velocity model is adopted as the dynamic model for the 
Kalman filters. The state vector consists of geocentric 
coordinate ),,( ZYX  and velocity ),,( ZYX &&& . The 

accelerations ),,( ZYX &&&&&& are considered as the dynamic 
model noise. The double difference pseudoranges were 
formed as the observation, and therefore, the receiver 
clock bias errors were not modeled in data processing. 

The conventional Kalman filtering method was firstly 
used to process the DGPS data. In our test, two different 
dynamic noise levels, X&&σ =0.1m/s2 and X&&σ =0.05m/s2, 
had been chosen to analyze the dependence of the model 
noise on the positioning performance. Fig.s 2 and 3 show 
the positioning errors of the conventional Kalman filter 
with these two dynamic noise levels.  It is clearly shown 
that the positioning errors are significantly different when 
different dynamic noise levels were selected. The peaks 
in Fig. 3 are larger than those in Fig. 2. The RMS errors 
are 2.18 m (Easting) and 1.85 m (Northing) and 4.02 m 
(Easting) and 2.80 m (Northing) for the noise levels of 
0.1m/s2 and 0.05m/s2 respectively.  
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Fig. 1 Trajectory of the Car 
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Fig.2 Positioning Error with conventional Kalman Filter ( X&&σ =0.1 

m/s2) 
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Fig. 3 Positioning Error with conventional Kalman Filter ( X&&σ =0.05 

m/s2) 

It is much clearer to compare the estimated trajectories 
with differential pseudorange with the ‘true’ one 
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estimated by carrier phase measurements. Fig. 4 and 5 
show the ‘true’ trajectory estimated with carrier phase 
measurements and the estimated trajectory using C/A 
code pseudorange, using conventional Kalman filter.  On 
the straight lines, the positioning errors are similar with 
different noise levels. However, with tight constraint on 
the dynamic noise level (0.05 m/s2), the positioning errors 
are significantly larger when the car turns.  
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Fig. 4 Estimated trajectory with conventional Kalman filter ( X&&σ =0.1 

m/s2) 
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Fig. 5 Estimated trajectory with conventional Kalman filter ( X&&σ =0.05 

m/s2) 

Then the same data set was processed using the adaptive 
filters discussed in section 2. Fig. 6 and 7 show the 
positioning errors with the two adaptive Kalman filters 
respectively. Comparing Fig. 5 and 6 with Fig. 1 and 2, it 
is clearly shown that the positioning errors with the 
adaptive filters are significantly smaller than the 
conventional filter. For fading memory filter, the 
positioning errors are reduced to 0.91 m and 1.34 m RMS 
for easting and northing respectively. Better results can 
be achieved with the variance estimation method, with 
the RMS error of 0.72 m and 1.21 m for easting and 
northing respectively. Also, the errors in Fig. 6 and 7 are 
uniformly distributed and this means the positioning 
errors are not associated with the sudden manoeuvre 
changes of the car. Tab. 1 summarizes the RMS error of 
positioning error using different filtering algorithms. For 
the adaptive filters, the initial noise levels are chosen as 
the same as the conventional Kalman filter. The dynamic 
noise level strongly affects the performance of the 
conventional Kalman filter. For fading memory filter, the 
positioning errors are significantly reduced. However, the 
positioning accuracy is still affected by the selection of 
initial dynamic noise level. The variance estimation filter 

has better performance than the fading memory filter and 
it is not affected by the selection of the initial dynamic 
noise level. A number of other tests have also been 
carried out and the results confirm the above conclusions. 
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Fig. 6 Positioning Error with Fading Memory Filter 
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Fig.7 Positioning Error with Variance Estimation Filter 
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(a)Conventional Kalman filter 
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(b)Adaptive Kalman filter 

Fig.8 Estimated trajectories with different filtering types   for example 2 
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Tab. 1 Positioning Errors with Different Filters (Example 1) 

Filter type Conventional 
KF 

Fading 
Memory 

Variance 
Estimation 

Noise Level   
(m/s2) 

0.1 0.05 0.1 0.05 0.1 0.05 

Easting (m) 2.18 4.02 0.91 1.28 0.72 0.72 
Northing 

(m) 
1.85 2.80 1.34 1.55 1.21 1.21 

 

The second example comes from cross section surveying 
of highway. Leica SR229 GPS receivers were used to 
survey the cross section profile (as shown in Fig. 8). The 
position of the profile is determined by GPS RTK 
technique with the accuracy of centimeter level. Then the 
conventional Kalman filters and the two adaptive filters 
discussed in this paper are used to process differential 
psuedorange data.  The positioning errors with these three 
methods are plotted in Fig. 8. It is clear to see in Fig. 8 
that the position estimation accuracy with the 
conventional Kalman filter is much worse than that with 
the adaptive filters. The peak errors in Fig. 8 associated 
with the turns of the trajectory.  Tab. 2 shows the RMS 
error of the three filters.  

Tab. 2 Positioning Errors with Different Filters (m) (Example 2) 

Filter type Convent-
ional KF 

Fading 
Memory 

Variance Estimation 

Easting 1.25 0.92 0.88 
Northing 0.93 0.53 0.41 

4.  Conclusion 

Conventional Kalman filter is very sensitive to the 
selection of the dynamic model noise level. One of the 
approaches tries to use adaptive filters to adjust the 
dynamic model noise based on the divergence of the 
dynamic and the observation models. In this paper, two 
adaptive Kalman filtering algorithms have been derived, 
one is simply applying a scale factor to the predicted 
covariance matrix (fading memory) and another to 
estimate the variance factor directly. The test 
demonstrates that both adaptive algorithms are better than 
the conventional Kalman filter, especially when the car 
changes its manoeuvre along the road. The computation 
for the variance estimation filter is slightly more complex 

than the fading memory filter. However, the positioning 
accuracy with variance estimation filter is better. 
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