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Abstract. The original protection level equations for 
SBAS assumed that all actual error distributions could be 
easily overbounded by zero-mean gaussian distributions.  
However, several error sources have since been found 
that could lead to significant biases for specific users.  
The expectation is that over long periods of time and all 
users, the aggregate errors should have a very small 
mean.  However, certain users, at specific times or 
locations, may have significant biases in their measured 
pseudoranges.  One source of bias is signal deformations.  
Originally thought of as a failure mode, it is now 
recognized that geostationary satellites have a noticeably 
different signal than the GPS satellites (primarily due to 
their bandwidth limit).  Recent results also show that the 
GPS satellites have measurable differences from satellite 
to satellite as well.  The magnitude and sign of the biases 
depend on the user equipment and have been shown to 
have significant unit-to-unit variation. A biased 
distribution may be overbounded by a zero mean 
gaussian, provided the sigma value has been sufficiently 
increased.  As the bias becomes larger, this inflation leads 
to a greater loss of availability than if the protection level 
equations had explicitly accounted for it.  It is therefore 
important to find the smallest possible inflation to 
adequately bound the bias.  This paper makes use of new 
overbounding methods to relate the required inflation to 
the bound. 
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1 Introduction 

The SBAS signal specification (RTCA 2001) (ICAO 
2000) defines how information is transmitted from the 
ground system to the user.  Because this link uses a 
geostationary stationary satellite with a signal structure 

nearly identical to GPS, the data capacity is very limited 
(250 bits per second).  Additionally, it was originally felt 
that all differential GPS error sources would be 
essentially zero mean (Walter et al. 1997).  
Consequently, the integrity information sent to the user 
contains no explicit provisions for protecting against 
biases.  Instead users are sent protection factors that 
correspond to zero-mean error distributions.  The users 
combine the received protection factors using their own 
local knowledge to calculate Protection Levels (PLs) that 
correspond to their position estimate.  The broadcast 
protection factors must be sufficient such that any 
individual user has less than a one in ten million chance, 
for each approach, that their true position error exceeds 
the calculated PL.  The ground system must guarantee 
these protection factors without knowing precisely where 
the users are, or which satellites they observe. 

Unfortunately, it has recently been demonstrated that 
many sources of unobservable biases exist.  Among these 
are nominal signal deformations (Phelts et al. 2004a) 
(Phelts et al. 2004b) and antenna group delay variations 
(Shallberg and Grabowski 2002).  These sources create 
biases that are transparent to the ground system and may 
be unique to each user.  The nominal signal deformations 
create biases that are dependent on the user’s receiver RF 
filter and correlator spacing.  Although it may be possible 
to restrict user designs or to calibrate the effect, 
manufacturing tolerances will still result in some non-
negligible bias.  The antenna group delay variations 
create repeatable biases in the raw GPS observables used 
by the ground network.  These biases are always present 
in the measurements and thus are not easily determined.  
Consistent values across the antennas can lead to a biased 
satellite clock estimate for example.  Calibration is also 
difficult due to limitations of anechoic chamber 
measurements and the effects of manufacturing 
variations.  Regardless there still will be some residual 
bias effects that must be taken into account. 

Recently it was noted that the two MHz bandwidth of the 
INMARSAT geostationary satellites (GEOs) creates a 
signal that is fundamentally different from the GPS 
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signals (Phelts et al. 2004a).  This difference can create 
user specific biases on their psuedorange measurements.  
The SBAS signal specification currently has no provision 
for the user to remove their specific value.  Consequently, 
this bias must be protected by the broadcast User 
Differential Range Error (UDRE) term for each GEO.  
Unfortunately, the narrowband GEO bias may be several 
meters.  However, it is desirable to still send as small a 
UDRE as possible.  This paper analyses the case of 
combining a few measurements with large biases together 
with many distributions with smaller biases.  It provides a 
means for treating each distribution separately to 
minimize any increase on the good distributions.  This 
analysis is based on the recently developed technique of 
excess mass bounding (Rife et al. 2004a) (Rife et al. 
2004b) (Rife et al. 2004c). 

2 Excess Mass Overbounding 

A long-standing problem in SBAS and GBAS integrity 
analysis is overbounding, or providing an upper bound 
for a particular error distribution.  The problem is even 
more challenging when combining many error sources 
together.  There are two related issues at stake here: the 
first is practical, what is the true error distribution given a 
limited amount of data; the second is analytical, how to 
best represent and combine the error distributions.  This 
paper will address the second part only.  To broadcast the 
information to the user on a limited data channel, each 
error distribution must be represented in a simple 
functional form.  However, this simplified form must 
predict at least as much mass in its tails as the true 
distribution.  The error bounds predicted by the 
simplified form must be as large as the true bound.  This 
concept is called overbounding. 

Originally, the requirement to have increased mass at the 
tails of the distribution meant that the central part of the 
distribution would require decreased mass, as both 
distributions had the same total area under the curve.  
However, it was recently recognized that the 
overbounding distribution did not have to integrate to 
unity.  Instead, it could have excess mass at both the tails 
and in the central core.  This would result in a loss of 
performance, but it would allow the analysis to proceed. 

A further requirement is that when the multiple error 
sources are combined together, there exists a method for 
combining the individual overbounds such that the 
convolution of errors is overbounded.  This overbounding 
has to hold for all users for any geometry they might 
have. 

2.1 Excess Mass PDF Bounding (EMP) 

Given an actual error distribution, ga(y), we wish to select 
an overbounding PDF such that 

go (y) ≥ ga (y) ∀y  (1) 

This has the property that the overbounding distribution 
has excess mass, i.e., it integrates to a value greater than 
one. 

go (y)dy ≥1
y=−∞

∞

∫  (2) 

The convolution of two excess mass overbounding 
distributions will overbound the convolution of the two 
original distributions, as all values are positive. 

ha (z) = fa (z − y)ga (y)
y=−∞

∞

∫ dy

ho (z) = fo (z − y)go (y)
y=−∞

∞

∫ dy
 (3) 

has the property that 

ho (z) ≥ ha (z) ∀z  (4) 

By induction, this can be extended to the general case of 
convolutions of multiple weighted distributions. 

2.2 Excess Mass CDF Bounding (EMC) 

One practical difficulty with PDF overbounding is that it 
requires the overbounding PDF to be everywhere larger 
than the actual PDF.  However, an experimental PDF 
may have “spikes”, or if the data is interpreted as being a 
delta function at each observed point, then it can require a 
very large amount of excess mass to overbound it at 
every point.  Instead, it is preferable to integrate over 
regions to smooth out the actual PDF.  It is possible to 
specify a weaker constraint that has the desirable features 
of EMP, and works well with real data.  This latter 
process is called Excess Mass CDF (EMC) bounding and 
was developed in Rife et al. (2004b).  One can establish 
left and right CDF bounds according to 

GL (x) = go (y)dy
−∞

x

∫
GR (x) = 1− go (y)dy

x

∞

∫
 (5) 

where now the only requirement is that  

GR (x) ≤ Ga (x) ≤ GL (x)  (6) 

where Ga(x) is the corresponding CDF of ga(y).  This has 
the property of bounding the total mass at each tail.  In 
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addition, it has been demonstrated by Rife et al. (2004b), 
that this property is maintained through convolution.  
Therefore, both EMP and EMC satisfy our requirements 
for predicting at least as large an error at the tail as the 
true distribution and maintaining this property through 
convolution.  Further, neither method places constraints 
on the true underlying distribution beyond those specified 
in Equations (1) or (6).  This is a nice feature as the actual 
distribution may not be symmetric or unimodal which 
were two requirements of the original overbounding 
analysis (DeCleene 2000). 

3 Application to SBAS 

To see how these overbounding concepts may benefit 
SBAS, one must understand the Vertical Protection Level 
(VPL) equation.  The VPL equation specifies how the 
protection terms for each individual error component are 
to be combined to find the upper bound on the 
positioning error along the vertical axis.  The WAAS 
VPL equation (see Appendix J of RTCA 2001) has the 
user combine a series of broadcast σ values and multiply 
them by a term, KV,PA, corresponding to the expected 
probability for a unit-variance zero-mean gaussian 
(Walter et al. 1997) (RTCA 2001) 

VPL = KV ,PA sU ,i
2 σ i

2

i=1

N

∑  (7) 

where sU ,i  depends upon the user’s geometry and σ i  are 
formed from overbounding sigmas broadcast to the user.  
Each individual σ i  is made up of four error terms 

σ i
2 = σ i , flt

2 +σ i, UIRE
2 + σ i , air

2 +σ i , tropo
2  (8) 

The first two terms are based on values broadcast to the 
user, the third term bounds the local aircraft’s thermal 
and multipath error, and the final term is a standard value 
specified in the MOPS.  The flt term stands for fast and 
long term corrections.  It bounds the satellite clock and 
ephemeris error terms and is derived from broadcast 
UDRE and degradation parameters.  The UIRE term 
stands for User Ionospheric Range Error and is based on 
the interpolated value of the individually broadcast Grid 
Ionospheric Vertical Error (GIVE) terms. 

The requirement is that the VPL equation will bound the 
true error to the desired probability for any sU ,i  

P sU ,iεi
i=1

n

∑ >VPL






≤ PHMI ∀sU ,i

 (9) 

where εi are errors drawn from error distributions gi(y), 
and PHMI is the allowable probability of Hazardously 
Misleading Information (HMI).  For this application, 

PHMI is 10-7 per approach.  The VPL equation does not 
directly allow for biases or excess mass distributions.   

We can choose a zero-mean gaussian as the excess-mass 
overbounding distribution.  For any real distribution 
ga(y), define an overbound such that 

 
go (y) = KN y (0,σ o ) = K

σ o 2π
e− y2 /(2σ o

2 )  (10) 

K represents the excess mass of the distribution, that is 

go (y)dy = K
y=−∞

∞

∫  (11) 

The next sections define methods for finding σo and K 
given what is known about the actual distributions. 

3.1 Bounding Non-Zero Mean Gaussian Distributions 

Assume for this section, that an actual bounding gaussian 
exists with some actual mean and sigma: µa, σa.  The first 
goal is to find an overbounding zero-mean excess mass 
gaussian with sigma σo.  The requirement for excess mass 
PDF bounding is that  

 KN y (0,σ o ) ≥ N y (µa ,σ a )  (12) 

This can be rewritten as 

K
σ o

e
−

y2

2σ o
2

≥
1
σ a

e
−

y−µa( )2

2σ a
2

 (13) 

Given values for σo, µa, and σa, this equation can be used 
to formulate a constraint on the minimum allowable value 
of K.  This constraint is given by 

KPDF _ min =
σ o

σ a

e
µa

2

2 σo
2 −σ a

2( ) (14) 

Thus, for any σo such that σo > σa, there exists a 
minimum K that satisfies (14).  Note that this is not 
specifying the minimum value of K across all possible 
values for σo, but rather merely the minimum value for a 
specific σo.  This condition creates an overbounding PDF 
that is tangent to the actual PDF at one point and above it 
at all other points.  Given a µa and σa, the next goal is to 
choose the best combination of K and σo.  The best 
combination is the one that will ultimately minimize the 
VPL for the user.  Therefore, one must look at the 
predicted error limit corresponding to PHMI.  If the bias 
and sigma information could be transmitted to the user, 
the error bound for N error sources would be given by 
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SU , i ⋅ µa, i
i=1

N

∑ + A(PHMI ) SU , i
2 ⋅σ a, i

2

i=1

N

∑  (15) 

where, for a zero mean gaussian, A is related to the 
normal CDF and is given by 

A(PHMI ) = Q−1(1− PHMI

2
) = 2 erfc−1(PHMI )  (16) 

The value KV,PA = 5.33 in the VPL equation corresponds 
to the Probability of HMI of 10-7 in (16).  Equation (15) 
represents the lowest possible VPL that could be 
transmitted to the user and will be used as a reference 
point to judge later implementations. 

The excess mass in the distributions must be taken into 
account.  A K value of two indicates there is twice as 
much mass in the tails compared to a normal distribution 
(as well as in the core) and therefore errors beyond a 
certain value are twice as likely.  This number directly 
scales the PHMI.  The zero-mean, excess mass bound is 
therefore given by 

A PHMI / Ki
i=1

N

∏




⋅ SU , i

2 ⋅σ o, i
2

i=1

N

∑  (17) 

where the PHMI is lowered by the product of the K values.  
The K’s and σo’s can then be chosen to minimize this 
bound. 

An example is provided in Figure 1.  In this example the 
following non-dimensional values are set: σa = 1 and µa = 
-.25.  Figure 1a shows the minimum K value as a function 
of σo.  For small values of σo, K must be large to ensure 
bounding at the tail.  As σo increases, K hits a minimum 
value and then starts to increase again.  This increase is 
now because the larger σo value would otherwise fail to 
bound the core of the distribution.  Figure 1b shows the 
bound from (17) normalized by the ideal bound (15) as a 
function of σo.  The solid blue line in the figure 
corresponds to an individual distribution.  For a single 
distribution, a small σo is the choice with a corresponding 
large K value.  As can be seen, it is possible to pick 
values for σo and K that match the ideal lower bound.  
The solid red line corresponds to 24 identical 
distributions convolved together.  Here the best choice is 
to accept a larger σo value with a correspondingly smaller 
K.  This result is logical as KN can grow quite rapidly 
while the RSS of the σo terms grow much more slowly. 

The next goal is to use these overbounds within the 
confines of the VPL equation.  As can be seen from (7) 
and (17), if the broadcast sigma, σB, is chosen such that 

σ B ≥
A PHMI / Ki

i=1

N

∏





KV , PA

⋅σ o  (18) 

Then the VPL requirement will be met.  Thus, it is not 
possible to safely transmit the σo values, but by inflating 
each by at least the amount in (18) one can find the safe 
broadcast values σB.  A nice feature of this inflation is 
that it is independent of the details of the user’s geometry 
( sU ,i ).  The penalty is that every distribution must be 
increased by at least this same amount, even the non-
biased ones.  Thus, the broadcast value can be found in 
this two step approach, first find an excess mass zero 
mean to bound the individual distributions, then 
uniformly inflate the first overbounding sigma, so, as 
shown above to find the broadcast value that will work in 
the VPL equation. 

In the above example, σo was chosen to be 1.08 for 24 
identical distributions with a corresponding K value of 
1.3.  Therefore, the broadcast value, σB, must be 
A(10−7 /1.324 ) / 5.33 = A(1.84 ×10−10 ) / 5.33 = 1.2 times 
larger than σo.  Thus, a broadcast value of σB = 1.3 is 
sufficient to bound 24 distributions with unity variance 
and an absolute mean value of 0.25. 

      

 

Figure 1 (a and b).  The top figure (a) shows the minimum K value as a 
function of σo.  The bottom figure (b) shows the normalized bound also 

as a function of σo. 
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3.2 Applying Excess Mass CDF Bounding 

The prior analysis used EMP bounding to derive 
appropriate bounds.  The requirement for excess mass 
CDF bounding are analogous to (13) and can be written 
in terms of the complimentary error function as 

K
2

erfc −
x
2σ o







≥

1
2

erfc −
x + µa

2σ a







∀x  (19) 

Although there is not a convenient closed form 
expression for K, it can be found numerically from the 
maximum value of the ratio 

KCDF _ min = max
erfc −

x + µa

2σ a








erfc −
x
2σ o


























 (20) 

Against biased gaussian distributions, KCDF_min will 
always be smaller than KPDF_min, although the difference 
will be small.  All of the remaining equations above will 
work for EMC, except that a slightly smaller value for K 
may be used.  Figures 1 and 2 show the comparison of 
the EMC vs. EMP.  In Figure 1a, the EMC K value, 
shown with the dashed line, is slightly smaller.  This 
improvement increases for larger values of σo.  The main 
difference is that the growth at larger σo values is 
noticeably smaller.  This is because the integration of the 
mass at the tails is nearly sufficient to cover the core 
distribution.  In Figure 1b, the dashed lines represent the 
bound from (17) normalized by the ideal bound (15) as a 
function of σo for EMC.  For the single source case 
(dashed green line) there is little difference, both can 
achieve the ideal bound (The CDF of the overbounds and 
the actual distributions are tangent at 5.33).  However, for 
the 24 identical distribution case, there is a small 
improvement.  Now the optimal value of σo is closer to 
1.09 and the bound is only about 4% greater than ideal 
compared to 5% for EMP.  Although EMC achieves 
lower bounds and is more practical with real data, the rest 
of this paper will continue to analyze EMP bounding.  
This is because of the closed form equation possible with 
EMP (14).  It is worth remembering that this adds a small 
amount of conservatism in the analysis.  If one applied 
EMC instead, one would have a small improvement.  
This results in a small margin against integrity. 

3.3 Validating Broadcast Values 

In the WAAS safety analysis, the algorithms were 
derived and then tested against real data.  The data is used 
to validate the performance of the algorithms.  Because 
the MOPS only allows discrete broadcast values for the 
UDRE (14 numeric values) and GIVE (15 numeric 
values), it is convenient to partition the data by σB.  Thus, 
rather than trying to find a σB value given a real 
distribution, the important question becomes: Does the 
chosen σB value sufficiently bound the actual histogram? 

Because the feared biases are completely transparent to 
the system, they are not present in the validation data.  
Thus, the observed histograms are all nearly zero-mean.  
The feared biases are bounded by separate analysis and 
then included in this methodology.  One can write that 
the actual gaussian bounding parameters as fractions of 
the desired broadcast value, that is: 

       

 

Figure 2 (a and b).  The top two graphs (a) show the PDF (upper) and 
CDF (lower) for the two optimum cases in Figure 1b.  The blue line 
corresponds to the optimal single error source bound while the green 

line is optimal for 24 identical distributions.  The red line corresponds to 
the actual distribution.  The bottom two graphs (b) are the same plots 

but on different scales to help see that the bounds (blue and green) 
always stay above the red on the top plots, and to the left and right on 

the bottom plots. 
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σ a = α ⋅σ B , µa = γ ⋅σ B  (21) 

where α is between 0 and 1.  The notation in this paper is 
slightly different from that in Rife et al. (2004c).  This 
paper looks in terms of reduction from the broadcast 
value rather than inflation from the actual, thus α = 1/Θ.  

From the histogram of data, it is possible to determine 
values of α and K that bound the data.  However, γ will 
be unobserved as the system will have removed known 
biases.  In Schempp and Rubin (2002) they determine 
values for α (labelled σ in their paper) for each of the 
observed UDRE and GIVE values.  The observed biases 
are very small and can be treated as zero.  The important 
question is given the observed α’s how much margin is 
there for unobserved biases?  The goal is to find the 
largest tolerable biases for given values of α. 

It is useful to define σo also in terms of σB.  From (18) it 
can be seen that another parameter, η, can be defined 
such that 

σ o = η ⋅σ B ,

η ≡
KV , PA

A PHMI / Ki
i=1

N

∏





=
KV , PA

2 erfc−1 PHMI / Ki
i=1

N

∏





 (22) 

This parameter represents an upper bound on α.  This 
parameter is related to the ξ parameter in Rife et al. 
(2004c) as ξ = η/α.  As the product of the K’s increases, 
so must the margin between σo and σB.  Figure 3 shows a 
plot of η versus the product of K’s.  Fortunately, it is a 
weak function and the product can grow quite large while 
decreasing η by only a small amount. 

To find a bound on γ, Equation (14), can be rewritten as 

KPDF _ min =
η
α

e
γ 2

2 η2 −α 2( ) (23) 

and inverted to yield 

γ max = 2 η2 −α 2( )ln KPDF _ min
α
η







 (24) 

However, KPDF_min depends on the other parameters.  An 
expression for it can be found by making a few other 
assumptions.  First, the product of the K’s can be 
expressed as a function of η, by inverting its definition in 
(22) 

Ki
i=1

N

∏ =
PHMI

erfc
KV , PA

2η







 (25) 

Next assume that the K product consists of two parts: a 
fixed allocation for nearly zero mean distributions 

(Kother), and a remainder that is evenly split among N 
satellites.  This is the key piece of the approach as it 
allows for some satellites, such as the GEOs, to be treated 
differently than the others.  Then KPDF_min is given by 

KPDF _ min =
PHMI

erfc
KV , PA

2η






Kother















1/N

 (26) 

This value can be substituted into (24) to yield the final 
expression for the maximum tolerable bias 

γ max = 2 η2 −α 2( )ln PHMI

erfc
KV , PA

2η






Kother

















1/N α
η

















 (27) 

Since α is known from the histogram and PHMI, KV,PA and 
Kother are fixed parameters, this function can be plotted 
versus η to determine the maximum value. 

An example is now provided to show how this process 
may be used.  WAAS has collected extensive data in 
support of its certification in 2003 (Raytheon 2002).  This 
data has been examined in many ways, it has been found 
that the largest αGPS for a particular σB is .65 (Schempp 
2004) for GPS UDRE and GIVE values.  The goal is to 
determine the largest allowable bias on the GEO 
satellites.  For GPS and ionospheric error distributions, 
allow K values up 1.15 to account for small biases and 
other non-gaussian behaviour.  Assuming a 12-channel 
receiver and two narrowband GEOs, allows 22 GPS or 
ionospheric induced errors and 2 GEO errors.  The 
parameter Kother is set to 1.1522 = 21.64.  For the GEO the 
αGEO is either 0.7 for a minimum UDRE value of 7.5 m 
or 0.35 for a minimum value of 15 m.  Figure 4 shows the 
results for setting Kother = 21.64 and αGEO = 0.7 (a) or 
αGEO = 0.35 (b), and assuming one or two GEO satellites. 

 

Figure 3.  The value η is shown as a function of the product of the K’s.  
As can be seen it is a slow to decrease with very large K values. 



 
 
 
 Walter et al.: Treatment of Biased Error Distributions in SBAS 271 

 

 

As can be seen from the figures, larger biases can be 
tolerated for smaller αGEO values and for fewer numbers 
of geostationary satellites.  For the UDRE of 7.5 m (σB = 
2.28 m) the maximum γ value occurs near η = 0.8 and is 
approximately 1.2 (µ = 2.74 m) for one satellite, or 0.85 
(µ = 1.94 m) for two.  For the UDRE floor of 15 m (σB = 
4.56 m) the maximum γ value occurs near η = 0.55 and is 
approximately 3.3 (µ = 15 m) for one satellite, or 2.3 (µ = 
10.49 m) for two.  However, in the latter example, η 
cannot be allowed to go as low as 0.55 as αGPS must be 
above 0.65.  This additional constraint from the GPS 
satellites implies that the lowest allowable η is about 0.7.  
Thus, the true maximum biases for the UDRE floor of 15 
m are approximately 2.9 (µ = 13.22 m) for one satellite or 
2.0 (µ = 9.12 m) for two. 

4. Conclusions 

This paper took the concepts of excess mass bounding 
and applied them specifically to the case when a few 
biased error distributions are combined with many well-
behaved ones.  Specifically the case for WAAS with two 
narrowband GEOs was examined.  It was shown that a 
methodology exists for determining the maximum 
tolerable bias under certain constraints.  This 
methodology shows that based on the WAAS validation 
data, biases as large as 2.74 m can be tolerated for a GEO 
UDRE value of 7.5 m, or as large as 13.22 m for a GEO 
UDRE value of 15 m.  These value decrease to 1.94 m 
and 9.12 when two GEOs may be visible. 

Excess mass bounding provides a methodology for 
formally accounting for biases that may be present.  This 
methodology is fully compatible with the WAAS MOPS 
VPL equation that is based on zero-mean gaussian error 
distributions.  CDF bounding in particular will work with 
a wide variety of actual distributions that are non-zero 
mean and non-gaussian.  The methodology is also very 
flexible in allowing certain distributions to be treated 
differently from the others.  Each distribution may be 
bounded with unique K and α values.  This method 
allows for the accommodation of larger biases than 
allowed by other methods. 
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