
 
 
 
 
 
Journal of Global Positioning Systems (2005) 
Vol. 4, No. 1-2: 95-105 

Real-time Doppler/Doppler Rate Derivation for Dynamic Applications 

Jason Zhang 
School of Mathematical and Geospatial Sciences, RMIT University 
e-mail: jzhang@eos-aus.com Tel: + 61-02-6222 7949 
 
Kefei Zhang, Ron Grenfell, Yong Li and Rod Deakin 
School of Mathematical and Geospatial Sciences RMIT University 
 
Received: 6 November 2004 / Accepted: 15 October 2005 
 
 

Abstract. Precise GPS velocity and acceleration 
determination relies on Doppler and/or Doppler rate 
observations. There are no direct Doppler rate 
measurements in GPS. Although every GPS receiver 
measures Doppler shifts, some receivers output only 
“raw” Doppler shift measurements and some don’t output 
any at all. In the absence of raw Doppler and Doppler rate 
measurements, a differentiator is necessary to derive 
them from other GPS measurements such as the carrier 
phase observations. For real-time dynamic applications, 
an ideal differentiator should have a wideband frequency 
response to cover all the dynamics. It should also have a 
group delay as short as possible. In addition, a low-order 
differentiator is more favourable for easy implementation. 

This paper provides an overview of methods in 
differentiator design for applications of GPS velocity and 
acceleration determination. Low-order Finite Impulse 
Response (FIR) differentiators proposed by Kavanagh are 
introduced. A class of first-order Infinite Impulse 
Response (IIR) differentiators are developed on the basis 
of Al-Alaoui’s novel differentiator. For noise attenuation, 
it is proposed to selectively use Kavangagh’s FIR 
differentiators, and the first-order IIR filters derived for 
adaptation to different dynamics. 

Key words: GPS velocity determination, GPS 
acceleration determination, differentiator design, FIR 
filter, IIR filter, Doppler. 

 

1. INTRODUCTION 

Previously proposed methods for GPS velocity and 
acceleration determination fall in two categories. One is 
to derive velocity and acceleration directly from GPS 
determined positions, another is based on the Doppler 
shift method. The latter has several advantages: it doesn’t 
rely on the precision of the positions from GPS, nor will 
the accuracy dramatically degrade with an increase in 
sampling rate (say 10Hz or more). Since there is no direct 
Doppler rate observation in GPS measurements, as a 
“virtual” observable, it must be derived in order for the 
formulae presented by Jekeli and Garcia (1997) to be 
applied directly in the Doppler shift method. 

Every GPS receiver measures Doppler shifts. However, 
this is primarily an intermediate process to obtain 
accurate carrier phase measurements. Thus the quality of 
Doppler shift output varies from receiver to receiver 
depending on manufacturer. The Trimble 5700™ 
geodetic receiver, for instance, has a measurement 
precision of ±1mm/s. The observed Doppler is from a 
tracking loop that is updated at a very high rate. This also 
enables the receiver to sense phase accelerations (Harvey 
2004). Unfortunately the sensed phase acc-elerations and 
the Doppler shift on L2 are discarded. Some other GPS 
receivers, for example the Superstar II™ from NovAtel, 
have only code and L1 phase outputs (SuperstarII 2004) 
and the Doppler shifts are masked out of the 
measurements. For our purposes to obtain accurate 
velocity and acceleration using these types of receivers, it 
is necessary to derive the Doppler shifts, i.e. the change 
rates of the carrier phase from the measured carrier phase 
measurements.  

Differentiators are required to get the Doppler rate 
“observable” for any type of receiver, or to get the 
Doppler shift from the carrier phase. In real-time and 
dynamic applications it is also desirable that the designed 
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differentiator should have a wideband frequency response 
to cover the system dynamics. It should also have a group 
delay as short as possible so as to get the Doppler shift or 
Doppler rate instantaneously. For those receivers that 
output only “raw” Doppler shifts, the derivation of 
precise Doppler from the carrier phase plays a key role in 
precise velocity and acceleration determination. This is 
because the precision of carrier phase observables can be 
fully exploited. The objective of this paper is to explore 
the techniques to derive Doppler rate from GPS 
measurements, or to derive precise Doppler shift from the 
carrier phase in real time and in dynamic situations. 

Several investigations have been conducted for this 
purpose in the GPS measurement domain, and the 
proposed methods can be categorised into:  

(1) Curve fitting (Fenton and Townsend, 1994); 

(2) Kalman smoother/filtering (Hebert, Keith et al. 
1997); 

(3) Taylor series approximation (Hebert, Keith et al. 
1997; Cannon, Lachapelle et al. 1998; Bruton, 
Glennie et al. 1999); 

(4) Finite Impulse Filter (FIR) by using Fourier series 
with window techniques (Bruton, Glennie et al. 
1999); and 

(5)  FIR optimal design using the Remez exchange 
algorithm (ibid).  

The FIR filtering technique based on Taylor series 
approximations was recently adopted to derive phase 
accelerations by Kennedy (2003). 

This paper briefly describes the digital differentiator 
theory and states the design problems in real-time 
dynamic GPS applications. It is followed by a 
comprehensive literature review on each method referred 
to in the above section. By comparing the various 
differentiator designs, a series of first-order Infinite 
Impulse Filters (IIR) are presented which are capable of 
delivering the derivatives from input signals in real-time 
dynamic situations. An adaptive scheme is also proposed 
for noise attenuation. 

2. Digital filter and digital differentiator Design 

2.1. Digital Filtering 

Suppose there is a discrete signal sequence of xn (n is an 
integer) with a sampling period of T. A digital filter can 
be regarded as a linear combination of the discrete 
samples xn-k, together with the previous output yn-k., which 
can be defined by the following formula (Hamming 1977, 
p2): 
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where yn is the output of the filter, ck and dk are filter 
coefficients which are referred to as the impulse response 
of the filter, which is the filter response for a unit input 
signal pulse (ibid). 

The coefficients of a filter completely define the property 
of the filter and selectively suppress or enhance particular 
parts of signals. When the coefficients of the second term 
on the right hand side of Eq. (1) are nonzero, the filter is 
referred to as a recursive filter since the output of yn-k has 
been used recursively. The filter coefficients ck and dk are 
usually time-invariant in classical filter designs. Their 
values are carefully chosen to achieve the desired 
filtering result. However, their values can be assigned on-
line to respond to the change of situations in the so-called 
adaptive filter design. For practical applications, the 
length of a realisable digital filter is always finite. 

2.1.1. Transfer function 

The transfer function of a discrete filter is defined as the 
Z-transform of the filter output signal over the Z-
transform of the input signal, i.e.  
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where z is a complex variable, and the Z-transform is a 
linear transform whereby a discrete-time signal value of 
xn is defined as  

n
k

knkn xz)z(X)x(Z −
−− ==    (3) 

and where z-1 serves as a unit delay operator. The transfer 
function is most important in filter design and analysis. 
With the transfer function having been determined, one 
can directly write out the impulse response of the filter 
(filter coefficients), and further analyse the performance 
of the filter either in the time domain or in the frequency 
domain.  

2.1.2. Frequency and amplitude response 

The frequency response of a filter is defined as the 
discrete Fourier transform of output signals over the 
discrete Fourier transform of input signals 
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The above frequency response function is obtained by 
simply replacing the variable z in the transfer function by 
the Fourier transform variable ejw. The frequency 
response function allows us to evaluate the frequency 
response of a filter on the unit cycle. 

Factoring the magnitude of the frequency response into 
the following form  

)(je)(G)(H ωΘ⋅ω=ω     (5) 

gives the amplitude response G(ω) which is the gain of 
the filter. The phase response Θ(ω) shows the radian 
phase shift experienced by each sinusoidal component of 
the input signal. The phase and group delays of a filter 
give the time delay in seconds experienced by each 
sinusoidal component of the input signals: 
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In the case of a filter that has a linear phase response, the 
group delay and the phase delay are identical, for 
example when ω⋅π=ωΘ 2)( . 

2.1.3. Noise amplification 

A digital filter is a linear combination of input signals 
that are usually contaminated by noise. For simplicity we 
assume that the noise is Gaussian white, and thus the 
error propagation law applies. This allows us to estimate 
the noise amplification of the filter. Assume that the noise 
of a series of L1 carrier phase measurements 

nnn xx ε+= 0  is Gaussian white, where 0
nx  stands for 

the true value of xn, and then the outcome of the finite 
non-recursive filter is 
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and the variance of the filter can be evaluated by 
(Hamming 1977, p14) 
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This shows that the sum of the squares of each coefficient 
of a filter determines the noise amplification of the 
filtering process. 

Supposing that the variance of a recursive filter is 2
yn

σ , 
and applying the preceding procedures, we have 
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Let us further assume that 2
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and then the variance of the filter can be estimated by  
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This indicates that we can either roughly estimate the 
variance of the recursive filter or “precisely” calculate the 
filter variance by computing the initial variance of the 
recursive filter using Eq. (10), and then estimating the 
variance of the filtered signals using Eq. (9). 

2.2. Statement of Problem of Differentiator Design 

Differentiator design has been the subject of extensive 
investigation in digital signal processing. A main issue is 
that a differentiator amplifies noise at high-frequencies 
(Carlsson, Ahlen et al. 1991). As GPS signals are of low  
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Fig. 1: Power spectral densities for the 1Hz and 10Hz carrier phase signals  

frequency character, (see Fig. 1), it is suggested that a 
low pass filter would be suitable for the design of 
differentiators. However, the change of dynamics in a 
system is normally of high frequency. Hence we have to 
deal with the complicated high frequencies with a 
broad/full band differentiator. Another complication 
arises from the signal correlation. It is shown that the 
GPS carrier signals can be regarded as Gaussian white 
only when the sampling rate is lower than 1Hz; when the 
sampling rate goes higher, time correlations must be 
considered (Bona 2000; Borre and Tiberius 2000). 
Thirdly, the differentiation may be affected due to lack of 
information on future signals since the application is real 
time oriented. Finally there might be aliasing problems 
due to sampling. 

So the problem is to get the derivative from GPS 
observations where both the signals and noise have 
random characteristics. In the case of corrupting noise 
being wideband white and the signal being a Gauss-
Markov process (mostlikely for GPS applications), it is 
apparent that no differentiator is going to be perfect in 
passing the desired derivative whilst suppressing the 
noise (Brown and Hwang 1992, p172 ). This is a typical 
Wiener filter problem (ibid). The solution is a 
compromise between good differentiation and low noise 
sensitivity to achieve a small total error. 

The Kalman filter is a space-state solution of the Wiener 
filter problem (ibid), which is formulated by using the 
minimum mean-square-error estimation criterion in a 
two-step recursive procedure. By assuming that both the 
process driving noise and the measurement noise are 
Gaussian white and there is no correlation between them, 
it first predicts the signal state using the system dynamic 
equation, and then updates the prediction with 
measurements to get estimates. A successful Kalman 
filter is subject to proper modelling of system dynamics 
and the associated stochastic random process. It is 
suggested that the less than satisfactory performance of 

the Kalman filter in the case of Heber et al. (1997) is not 
due to the Kalman filter approach itself, but due to the 
improper modelling of the system state when it is highly 
dynamic. 

When the sampling rate is high, the theoretical difficulties 
in Kalman filtering are mainly in the determination of the 
random process of system driving noise, and the handling 
of correlations of measurement noise and the cross-
correlation between the measurement and signal noises. 
Another associated practical problem is the heavy 
computational load in real-time data processing. Finally 
the outcome of a Kalman filter is a smooth, band-limited 
solution (Bruton, Glennie et al. 1999). Therefore, it is 
reasonable to find solutions in the frequency domain 
rather than in the state space using Kalman filters. 

The digital differentiator design oriented in the frequency 
domain should still consider the variance of the output. 
Thus the criteria of the differentiator may be summarised 
as follows: 
• the magnitude of frequency response is accurate in 

low frequencies and is as close to the ideal 
differentiator ω=ω j)(H  (Stearns 2003, p127) as 
possible in a broad band sense depending on the 
system dynamics; 

• the phase response is linear or approximately linear; 
• the group delay is acceptably small; 
• the sum of the squares of filter coefficients can be 

minimized; and 
• easy to be implemented in real time , i.e. to be causal 

and low order since there are cycle slips and loss-of-
lock of signals. 
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3. Taylor series approximations 

Taylor series approximations have been widely used to 
derive differentiators. The differentiators used by 
(Cannon, Lachapelle et al. 1998), Hebert (1997) and 
Kennedy (2002; 2003) are of low order Taylor series. 
They are all in the form of central difference 
approximations such as 

∑
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N
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where N is the order of Taylor series approximation. Fig. 
2 depicts the frequency responses of some low order 
central difference Taylor series approximations. 
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Fig. 2: Frequency response of low order central difference Taylor series 

approximation 

 
It is apparent that the higher the order, the closer that a 
Taylor series approximation is to the ideal differentiator. 
This suggests that broad band differentiators can be 
designed based on Taylor series, and this can be observed 
in Khan and Ohba (1999), who gave the explicit 
coefficients ck by 
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Fig.3: Frequency responses for arbitrary order Taylor series 

approximations 

 

As can be seen from Fig. 3, this type of differentiator is 
characterised as having zero amplitude response in both 
ω=0 and ω =1 (Nyquist frequency). Actually this is the 
property of type III FIR filters (Chen 2001,p299 ) which 
will be discussed later.  

4. Curve fitting with window 

Jekeli and Garcia (1997) used fifth-order B-splines to 
derive phase accelerations, and Fenton and Townsend 
(1994) adopted parabolic functions to obtain the precise 
Doppler. The referenced curve fitting techniques use 
sliding windows wherein the data are fitted into 
polynomials using the least squares approach. The 
derivative of the central point of a window is obtained by 
differentiating the polynomials with respect to time 
accordingly. 

Bruton (1999) gave an in-depth review of the curve 
fitting differentiators. It is concluded that whether a curve 
fitting uses a polynomial, a parabola, or a cubic spline, 
the resultant differentiator approaches the ideal only at 
lower frequencies. Since it is band-limited and lowpass, it 
is suitable only for low dynamic or static applications. 
Furthermore, performing the least squares estimation 
involves intensive computation. Moreover, to obtain the 
current derivative at t0, the curve fitting with window 
requires the input at tk, which is a signal in the future. 
Therefore we may conclude that the windowed curve 
fitting approach is inappropriate for real-time dynamic 
applications. 

5. FIR filters 

A Finite Impulse Response (FIR) filter consists of a 
series of multiplications followed by a summation. The 
FIR filter operation can be represented by the following 
equation (Hamming 1977) 
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A filter in this form is named FIR because the response to 
an impulse dies away in a finite number of samples. Note 
that this form is non-causal and unrealisable. In order to 
present a causal FIR differentiator, changing the form is 
required. This leads to 
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The Fourier series with window are classical in the design 
of FIR filters where the impulse response is calculated by 
the inverse discrete Fourier transform of the transfer 
function, i.e. (Chen 2001) 
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where M=N/2 and the infinite length of Fourier terms is 
truncated into finite terms. The truncation may cause a 
discontinuity at the edges of the window and leads to 
residual oscillations named Gibbs oscillations (ripples in 
the amplitude response against frequency). Different 
window methods can be used to smooth the glitches, 
truncate the filter coefficients, and sharpen the frequency 
response. Fig.4 gives the comparison between direct 
truncation and applying the Kaiser window technique. 

5.1. Type III FIR Differentiator Design 

A FIR filter of type III has an odd length and anti-
symmetric impulse response. In this case, the 
differentiator’s coefficients are 
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where the sine term in Eq. (15) vanishes. To eliminate the 
Gibbs phenomenon due to the finite truncation, a window 
function is required. Among many windows that are 
available, the Kaiser window is most popular. It can be 
evaluated to any desired degree of accuracy using the 
rapidly converging series of the zero-order Bessel 
function of the first kind (Farlex 2004). The ripple of the 
stopband can also be controlled by an adjustable variable 
α to meet the optimal criteria given by Kumar and Roy 
(1988) and Selesnick (2002). With the above procedures, 
one can also design FIR differentiators with different cut-
off frequencies. 
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Fig. 4: Magnitude responses of FIR differentiators based on the window 

technique 

 
Theoretically, FIR filters of type III can be designed to 
meet requirements at nearly all frequencies, as long as we 
increase the filter order. However, since the frequency 

response to the Nyquist frequency is zero, it is impossible 
to design a full band type III differentiator. Although 
such filters are causal and are linear in phase, the actual 
derivative obtained is with respect to time t-(N/2)T. This 
means that the more taps in a FIR filter, the longer the 
group delay will be. This property of the FIR filter is 
detrimental to the real-time requirements. However it can 
be alleviated if the sampling period T is small. The 
difficulty is that increasing the sampling frequency will 
result in more noisy derivatives. Therefore trade-off and 
compromise must be made to introduce this type of FIR 
in real-time applications. 

5.2. Type IV FIR Differentiators 

Since a FIR filter of type III has the limitation that the 
amplitude response must go to zero at the Nyquist 
frequency, it is impossible to get a full band differentiator 
using a finite number of coefficients. This can be shown 
in Fig. 3 where transition frequency range of 0.85~1.0 is 
associated with the 150th order (length of 301) central 
difference Taylor series differentiator. 

A FIR filter of type IV has an even length and anti-
symmetric impulse response. The type IV FIR is 
preferable to a type III as a differentiator in terms of the 
frequency response. This can be evidenced by the 
simplest FIR differentiator of yn=xn-xn-1, which has a 
frequency response of 
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The corresponding amplitude response against low order 
Taylor series approximations is shown in Fig. 5 
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Fig. 5: Frequency response of the simplest IV differentiator against low 

order Taylor Series FIR filters 

 
It can be seen that even though the differentiator is the 
simplest form, it is closest to the ideal at low frequencies 
(<0.2). It has a better amplitude response for the rest of 
frequency band than its type III counterpart of first-order. 
It also has a linear frequency response and therefore has a 
constant group delay at half the sampling period. The 
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type IV FIR differentiators are superior to the type III 
FIR differentiators in terms of the frequency response, 
since they have no disadvantageous characteristic of 
being zero at ω=1. 

Details of type IV differentiator design are referred to 
Chen (2001,p332 ). An example differentiator of length 8 
(7th order) is given with the transfer function of 
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Therefore it is an optimal differentiator in the sense of 
least squares with an excellent frequency response at high 
frequency band. The noise amplification can be 
calculated from Eq. (10) as σ2yn=3.2887, which is acc-
eptable so far.  

It may be expected that a type IV FIR obtained from the 
Remez exchange algorithm (Parks and McClellan 1972) 
would be able to deliver a better performance. This is 
because the Remez exchange algorithm is a minimax 
optimal, i.e. minimize {maximum [Hideal(ω)-Hdisigned(ω)]} 
for all frequencies, and is more difficult to 
mathematically compute, but guarantees that the worst 
case error has been reduced to a quantifiable value. To 
verify this, the frequency responses have been depicted in 
Fig. 6 for the 7th and 25th-order filters respectively by the 
Remez algorithm  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Fig. 6: Frequency response of type IV FIR filters by the Remez 
exchange algorithm 

 

The FIR filter design by the Remez algorithm is referred 
to as the equal ripple design. This is because the method 
can suppress the ripples from the Gibbs phenomenon 
(Antoniou 1993) to a certain level and turn them into 
equal ripples in both the passband and stopband. 

It seems that type IV FIR differentiators using the Remez 
exchange algorithm will give us a closing solution. 
However, the resultant filters provide the first derivative 
with system biases and higher level of noise. 

Type IV FIR differentiators based on Taylor series 
(Khan, Ohba et al. 2000) have also been tested in this 
research. It has been found that wideband type IV 
differentiators are associated with heavy noise 
amplifications and big biases. Our investigation of type 
IV FIR filters for differentiator design is still at an early 
stage and continuing. 

5.3. Other FIR Differentiators 

In a series of publications, Kumar and Dutta (1988; 1988; 
1989; 1989) presented optimal and maximally linear FIR 
differentiators for low-frequency, mid-frequency, and 
around specific frequency respectively. They gave the 
explicit formulae and efficient recursive algorithms to 
calculate the impulse response of filters. Their 
contributions are highly appreciated, for example, as the 
state of art differentiators by Al-Alaoui (1993). In the 
case of signals that have low frequency components 
contaminated by wideband noise, FIR differentiators of 
optimum white-noise attenuation are desired. Kavanagh 
(2001) investigated the impact of quantization noise on 
signal from systems with low-frequency rates of change. 
It is showed that the differentiator proposed by Vainio et 
al. (1997)  
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)1N(N
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has an optimum white-noise attenuation and a constant 
group delay. Kavanagh also proposed a better 
differentiator for the rate experiencing slow changes 
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This differentiator has the characteristic of minimising 
the worst-case error. Clearly when N=2 (type IV), this 
becomes the simplest two-point differentiator and when 
N=3 (type III), this turns into the three-point first-order 
differentiator of a Taylor series approximation. 
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6. IIR filters 

There is another category of filters known as the Infinite 
Impulse Filter (IIR). A causal IIR filter is represented by  
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where the output signal at a given instant is obtained as 
the weighted sum of the signal xn-k, and the past outputs 
of yn-m. As suggested by its name, an impulse input has a 
response that lasts forever since the output will be 
recursively used. It is the recursive characteristic that 
allows IIR filters to be implemented with a lesser order 
and better performance when compared with FIR filters. 
Thus IIR filters are attractive for real-time applications.  

An IIR filter is unstable if its response to a transient input 
increases without bound. Poles and zeros are used to 
analyse the stability of an IIR filter. The poles are the 
roots of the denominator and the zeros are the roots of the 
numerator in the transfer function. An IIR filter is stable 
if and only if, all poles of H(z) are inside the unit circle 
on the z-plane (Stearns, 2003, p83). 

The IIR filter cannot be designed by calculating the 
impulse response from the known frequency response as 
is the case in FIR designs. Many IIR filters can be 
derived from the analogue filter designs and then 
transformed into the sampled z-plane. Another popular 
method is the bilinear transform. The IIR differentiator 
design has been of considerable interest (Rabiner and 
Steiglitz, 1970). Among various recursive differentiator 
designs, Al-Alaoui’s second order IIR family (1992; 
1993; 1994) has been highly acknowledged and widely 
used, for example (Chen and Lee, 1995).The novel 
approach of designing digital differentiators by Al-Alaoui 
is an extension of the method in designing analogue 
differentiators by using integrators. That is, in the 
analogue signal processing, differentiators are often 
obtained by inverting the transfer functions of analogue 
integrators. 

The general procedures to derive the Al-Alaoui family 
are as follows 

• design an integrator that has the same range and 
accuracy as the desired differentiator; 

• invert the obtained transfer function of the 
integrator; 

• reflect the poles that lie outside the unit circle to 
inside, in order to stabilise the resultant transfer 
function; and 

• compensate the magnitude using the reciprocals 
of the poles that lie outside the circle. 

6.1. Al-Alaoui’s First-Order Differentiator 

A first-order IIR differentiator was developed by Al-
Alaoui (1993) with an effective range 0.78 of the Nyquist 
frequency based on a non-minimum phase digital 
integrator. The integrator is a synthesis of the rectangular 
integrator and the trapezoidal integrator. By assigning 
weighting factors of ¾ and ¼ to the transfer functions of 
the integrators respectively, the ideal integrator, which 
has the following transfer function, is approximated 
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Reflecting the zero z=-7 with its reciprocal -1/7, and 
compensating the magnitude by multiplying r=7, results 
in a minimum phase digital integrator with the transfer 
function  
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Inverting the above transfer function yields the Al-
Alaoui’s stabilized IIR differentiator of the first order 
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The characteristics of this differentiator is shown in Fig. 7. 
This differentiator is able to approximate the ideal 
differentiator up to 0.78 of the full band, and has an 
outstanding “linear phase” response. Al-Alaoui reported 
that within the effective frequency range, it has a less 
than 2.0% magnitude error. Since it is of first-order, the 
delay of the filter is just half of the sample thus it meets 
every requirement to be used in real-time. 
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Fig. 7: Characteristics of the first order IIR differentiator 

 

6.2. First-order IIR Differentiator Family 

Al-Alaoui contributes the above differentiator as an 
individual. However, a family of such first order 
differentiators can be derived following his methodology. 
That is, while Al-Alaoui designates the weighting factors 
of ¾ and ¼ empirically, we may get the optimal weights 
experimentally. To achieve this, a variable α is 
introduced to adjust the weighting factor in the way of 
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where 0<α<1 serves as a tuner to adjust the integrator so 
that it better closes to the ideal. α =¾ can be used as a 
good reference to refine the integrator in the desired 
range of frequencies. Obviously it has a zero outside the 
unit circle. Applying Al-Alaoui’s procedure to reflect the 
zero with its reciprocal and to compensate the magnitude, 
a variable integrator is obtained as 
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Inverting the transfer function gives a new set of 
differentiators with transfer functions as 
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Since 1-α<1+α, the pole is well located inside the unit 
circle and the resultant differentiators are, therefore, 
stable. Setting α=¾ gives the transfer function proposed 
by Al-Alaoui, and slightly changing α around ¾ results in 
differentiators which outperform in target bandwidth. The 
noise amplification of this kind of differentiator can be 
evaluated using Eq. (10), which is only slightly noisier 
than the simplest two-point differentiator.  

7. Conclusions 

The general theory on digital filter design has been 
introduced. The aim of this research is to find appropriate 
differentiators that can be used to derive Doppler 
shifts/Doppler rates from GPS observables in real-time, 
dynamic applications. 

It is concluded that the differentiators obtained from both 
curve fitting and Kalman filtering require intensive 
computation and are lowpass. Thus they are not suitable 
for real-time dynamic applications. Type III FIR 
differentiators have the inherent nature in frequency 
response of approaching zero at Nyquist frequency. To 
extend the performance of type III FIR filters in the 
higher frequency bands, one has to increase the filter taps. 
This causes difficulties in managing the data since there 
are cycle-slips and loss-of-lock signals. It also results in a 
longer group delay that is detrimental for real-time 
applications where instant response is desired.  

Type IV FIR differentiators using Fourier series have 
been found to have outstanding frequency response, 
however, they are noisy and biased. It is found that only 
the Kavanagh’s differentiators of type IV deliver good 
first derivatives. However, they approximate the ideal 
differentiator only at low frequencies (lower than 0.2 of 
Nyquist frequency). Type III FIR filters can be used to 
derive Doppler/Doppler rate “observables” in post 
processing mode. Higher order central difference 
approximations using Taylor series might outperform 
windowed Fourier series since there is no truncation and 
the associated Gibbs phenomenon.  

It is demonstrated that IIR filters are more favourable for 
real-time application. Since the outputs of the filter are 
recursively used, they have much lower orders than the 
FIR filters. The first-order IIR differentiator from Al-
Alaoui is ideal in terms of the frequency response, phase 
linearity and half sample group delay. The proposed class 
of first-order IIR differentiators allows us to choose an 
optimum in the desired frequency range. 



 
 
 
104 Journal of Global Positioning Systems 

It is suggested that Kavanagh’s differentiators can be 
used in static or in constant velocity modes. The proposed 
first-order IIR differentiators can be adaptively used 
when systems experience high dynamics.  
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