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Abstract. Reliable determination of integer ambiguities 
is a critical issue in high-precision global positioning 
system (GPS) applications such as kinematic positioning, 
fast control surveying and attitude determination. This 
paper discusses the integer ambiguity resolution 
procedures in attitude determination using single 
frequency carrier phase measurements. An optimised 
ambiguity search algorithm is proposed. This method can 
not only improve the computation efficiency and reduce 
the time for resolving ambiguities, but also improve the 
reliability of the ambiguity solution. The ambiguity 
search space is determined using float solutions and their 
variance and covariance matrices estimated by applying 
Kalman filter algorithm. The integer Gaussian 
transformation is then used to reduce the size of the 
search space and Cholesky factorisation algorithm is used 
to improve the efficiency of the integer ambiguity 
searching process. Finally, an ambiguity validation 
method by using the known baseline length and the 
relationship between the primary and secondary 
ambiguity groups is presented. The algorithms have been 
implemented within two low-cost Allstar GPS OEM 
boards. A number of field experiments have been 
conducted and the results show that a valid integer 
ambiguity solution in cold start mode can be identified 
within 3 minutes. 
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1 Introduction 

GPS can usually provide two types of direct 
measurements. One is the pseudorange and the other is 
the carrier phase. The carrier phase measurements can be 
used for various high precision applications including 
kinematic positioning, static survey and attitude 
determination due to their low noise level. However the 
carrier phase measurements are ambiguous by an 
unknown integer number of cycles. This is well-known 
integer ambiguity resolution problem which requires a 
time-consuming initialisation process for both attitude 
determination and high-precision kinematic positioning. 

There are several methods for resolving the integer 
ambiguities. In general they can be divided into two 
categories: search-based ambiguity resolution (Quinn, 
1993; Sutton, 2002) and motion-based ambiguity 
resolution (Crassidis et al. 1999). Motion-based methods 
need to collect data for a period of time during which 
obvious changes of the visible GPS constellation or an 
apparent Rotation of the platform have occurred. The 
search-based methods use only single epoch 
measurements to identify the most likely ambiguity 
combination although sometimes it may be not the 
correct ambiguity due to the level of noise. 

This paper mainly focuses on discussing the search-based 
method. There are three steps in this integer ambiguity 
resolution algorithm. First, a search space is determined 
in the ambiguity space (Juang, 2003; Xu, 2002) or 
solution space (Sutton, 1997; Sutton, 2002). The most 
likely integer ambiguity is, then, identified from the 
search space using some deterministic techniques such as 
least squares. Finally, the resolved ambiguities are 
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     Fig.1 Interferometry principle 
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validated and confirmed. This step is considered as a vital 
additional step for the GPS-based attitude system. 

This paper will first outline the principle of attitude 
determination by using GPS carrier phase measurements. 
Then a fast and reliable algorithm for integer ambiguity 
resolution by using the known baseline length and the 
relationship between the primary and secondary 
ambiguity groups will be presented in detail. A number of 
experiments have been conducted to test the performance 
of the method. Finally, some useful results and 
conclusions are given. 

2 GPS-based attitude determination using two 
antennae 

The basic idea of attitude determination using GPS 
carrier phase measurements is similar with the principle 
used in interferometry. It is assumed that for a short 
baseline the unit vectors from both receivers to a given 
satellite are the same. This is based on the fact that the 
baseline length is negligibly small compared to the 
distance between GPS satellites and the user 
(approximately 22, 000km). This is shown in Fig. 1. 

 
 

 

 

 

 

 

 
The difference between the true ranges from satellite “p” 
(p-th satellite) to antennae A and B can be expressed as:   
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where, nR is the baseline vector determined by A and B, 

pe  is a unit directional vector from antenna A or B to 

satellite “p”, p
Aρ and p

Bρ  are the distances between the 
antennae A and B and satellite “p” respectively.  

The double-differenced observation equation can be 
expressed as: 
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where, pq
ABDD  is the phase double-differenced 

measurement, λ  is the wavelength of the GPS signal 

(~20cm), ( )pq
ABN0  is the integer double-differenced 

carrier phase ambiguity, and pq
ABv∆  is the measurement 

noise.  

If there are M Satellites in view, all the measurements can 
be written in the following matrix form: 

VNHRDD n ++= λ                                        (3) 
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Where, nR  is a baseline vector in the local level system 
(North-East-Down coordinate system in this paper), H  is 
the vector matrix of line of sight from antennae to GPS 
satellites in  the local level system, V is the carrier phase 
difference-doubled measurement noise vector. 
 
In equation (3), if the ambiguities have been fixed to 
integers, there will be only 3 unknowns (three 
components of the baseline vector nR  ( nx , ny , nz )). 
Therefore, if there are 4 satellites in view, there will be 3 
independent double-differenced observations, the 
baseline vector ( nR ) can be estimated by using a 
weighted least-squares method as follows: 

( ) ( )NDDWHWHHR TT
n λ−=

−1ˆ                      (4) 

where, 1)][cov( −= VW . 

If the relative position of two antennae can be determined 
with a sub-centimetre accuracy using the carrier phase 
observables, two of the three attitude parameters, usually 
heading and pitch angles of the platform can be estimated. 

Suppose that the baseline is mounted along longitudinal 
direction, then the baseline vector in body frame is: 

[ ]Tb bR 00= , where b is the length of the baseline. 
The estimated baseline vector in the local level system is: 

[ ]Tnnnn zyxR =  

Then the heading and pitch angles can be calculated using: 

)/(tan 1
nn xy−=ψ                                         (5) 

)/(tan 221
nnn yxz +−= −θ                             (6) 

3 Carrier phase integer ambiguity resolution 
algorithm 

It can be seen from Section 2 that the fast resolution of 
integer ambiguities is crucial to GPS-based attitude 
determination algorithm. Only when the integer 
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ambiguities are resolved, the attitude angles can be 
calculated. In this section an ambiguity resolution 
algorithm for single frequency GPS receiver is proposed. 
In this algorithm, before the integer ambiguities can be 
determined, the ambiguities are treated as real values and 
estimated along with baseline vector. The real-value 
solution is often called the float solution. In this paper 
Kalman filter method is used to estimate the float 
solution of ambiguities, and the ambiguity search space is 
determined by using the float solution and its variance-
covariance. 

3.1 Float ambiguity estimation 

The dynamic model of GPS-based attitude determination 
system can be described by the following equation: 
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where, [ ]mNNNzyxzyxX 21=  is 
the state vector, τ  is a time constant relative  to dynamic 
condition of the platform, U is the measurement noise 
vector, x , y , z  are the components of baseline vector 
( nR ), x , y , z are the variance of components of the 

baseline vector nR , 33×I is a 3×3 unit matrix. 

By re-writing equation (3), the measurement model can 
be expressed as: 

VXHZ += '                                                     (8)  

Where, DDZ = , [ ]mmIHH ××=′ λ330 . 

GPS-based attitude determination equations can be 
written in a discrete form according to equations (7) and 
(8) as follows:  

11/11/ −−−− Γ+= kkkkkkk UXX φ kU ~ ),0( kQN   (9)  

kkkk VXHZ += '                      kV ~ ),0( kRN    (10) 

where N  is a normal distribution operator, the two 
variables in the bracket are mean value vector and 
variance-covariance matrix, 1/ −kkφ  is the state transition 
matrix, 1/ −Γ kk  is the system disturbance matrix, kH is the 
observation matrix, kX is the state vector at epoch k , 

kZ is the observation vector at epoch k . 

Kalman filtering estimation can be expressed as: 
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Where 1/
ˆ

−kkX is the predicted state vector, kkX /
ˆ is the 

estimation of filtering, kK is the system gain matrix, 

1/ −kkP is the variance matrix for 1/
ˆ

−kkX , kkP /  is the 

variance matrix for kkX /
ˆ . 

In theory, if a precise float solution can be obtained and 
rounded to the nearest integers, this should in most cases 
lead to the correct integer ambiguity set. Unfortunately, 
the float estimate obtained by this method is not precise 
enough, especially for a short observation period 
(Mohamed et al, 1998). Therefore, the correct ambiguity 
set usually need to be identified by a dedicate search 
method. 

3.2 Determination of the search space 

In order to further reduce the number of possible 
ambiguity candidates, all GPS satellites in view are 
divided into two groups: primary and secondary groups. 
The primary group which contains 5 satellites is used to 
determine the search space. The secondary group which 
includes remaining satellites is used to validate the 
correctness of the identified ambiguity set.  So the integer 
ambiguity N , the float solution of integer ambiguity N̂  
and its variance-covariance NP  estimated by using 
Kalman filter technique can be re-written respectively as: 
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where 1N  and 2N  are the integer ambiguities of the 

primary group and secondary group respectively, 1N̂  and 

2N̂  are the float solutions of the ambiguities of the 
primary group and secondary group respectively, and 11P  
and 22P  are ambiguity variance matrices of the primary 
group and secondary group respectively. 

The integer ambiguities can be obtained by minimising 
the following cost function: 

mT ZNNNPNNJ ∈−−= −
111

1
1111 )ˆ()ˆ(         (16) 

Due to the integer constraints on the ambiguities and the 
fact that the ambiguity variance matrix is non-diagonal, 
the solution of Eq. (16) must be obtained by means of 
statistical criteria and a search method. The search space 
is described by the following inequality: 
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This ellipsoidal region is centred at 1N̂ , its shape and 
orientation is governed by P11, and its size can be 
controlled through the selection of positive constant 

2χ . The size is assumed to be set such that the sought 
integer ambiguities are indeed in the search space. The 
solution is then obtained by searching through the entire 
search space. The efficiency of the search is poor, 
however, when the search space is highly elongated and 
the principal axes do not coincide with the grid axes. In 
order to reduce the correlation between ambiguities and 
make searching process more efficiently, the integer 
Gaussian transformation (Mohamed et al., 1998) is 
applied. The Gaussian transformation procedure of P11 is 
as follows: 

[1] Factorise the matrix P11 using upper triangular 

factorisation: T
U UDUP 11111 = , where U1 is an 

upper triangular matrix, and 1UD is a diagonal 
matrix; 

[2] Invert U1 and round all elements of 1
1
−U to their 

nearest integers, get 1UZ ; 
[3] Transform the matrix P11, and get: 

T
UUZU ZPZP 11111 = ; 

[4] Factorise the matrix 1ZUP using lower triangular 

factorisation: T
LZU LDLP 1111 = , where 1L  is a 

lower triangular matrix, and 1LD  is a diagonal 
matrix; 

[5] Invert 1L and round all elements of 1
1
−L  to their 

nearest integers, get 1LZ ; 

[6] Transform the matrix 1ZUP , and get: 
T

LZULZL ZPZP 1111 = . 

Repeat above steps until 1LZ becomes an identity, and 
then the integer Gaussian transformation matrix is 
calculated by: 

∏
=

=
1

ki
UiLiZZZ                                       (18) 

where k is the total iteration steps. The transformed 
ambiguity vector is: 

      1
ˆˆ NZZN =                                               (19) 

 and the transformed variance of N̂  is:   

 T
ZN ZZPP 11=                                          (20) 

By substituting the equations (19) and (20) into inequality 
(17), the transformed search space can be formulated as 

( ) ( ) 21 ˆˆ χ<−− −
NNZN

T
NN ZZPZZ  (21) 

and the cost function becomes: 

m
NNNZN

T
NN ZZZZPZZJ ∈−−= − )ˆ()ˆ( 1       (22) 

Because the Gaussian transformation can decorrelate the 
ambiguities as much as possible, the float estimates 
become more precise and its variance becomes more 
diagonal-like. The transformed search space becomes 
more spherical. 

Note that inequality (21) is a quadratic constraint, it is 
difficult to perform the searching process directly. 
Therefore the confidence interval of every ambiguity is 
used to replace the constraint of inequality (21). 

[ ])ˆ()ˆ( iiiiiii QkzroundQkzroundz +−∈       (23) 

where iiQ  is the i-th row and i-th column element of 

ZNP , iz  is i-th element of NZ , iẑ  is i-th element of 

NẐ , k  is the confidence coefficient. By using the 
Gaussian transformation, the number in the search space 
defined by inequality (23) can be reduced dramatically. 

The integer ambiguity search space is determined by 
equation (23) and all of the integer combinations in the 
search space are candidate ambiguity combinations. 

3.3 Ambiguity searching process 

The aim of ambiguity searching is to find the ambiguity 
combination which can minimise the cost function J  in 
the search space. It is usually a time-consuming process. 
In order to improve the efficiency of the searching 
process, Cholesky factorisation is applied in this paper. 
By using Cholesky factorisation, 1−

ZNP can be expressed 
as: 

T
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Substituting equation (24) into (22), we have: 
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                          ( )  ˆ 44444 Czzf −=  
                  ( ) ( )  ˆˆ 333343443 CzzCzzf −+−=  

( ) ( ) ( ) 2222323342442 Cˆˆˆ zzCzzCzzf −+−+−=    (26) 
       ( ) ( ) ( ) ( ) 11112122313341441 Cˆ Cˆˆˆ zzzzCzzCzzf −+−+−+−=  

Therefore, J in equation (25) can be calculated by the 
following iterative procedure:  

2)()1( kfkJkJ +=+   0)0( =J   JJ =)4(   k =1,2,3,4  (27) 

Because 02 ≥if  in equation (26), )(kJ  keeps increasing 
along with the increase of index number k . Therefore a 
fast cutting-off search method is used to reduce the 
calculation load. This method can be described as: 

[1] Give an ambiguity combination from the ambiguity 
search space;  

[2] Calculate equation (27) step by step; 
[3] If in the k-th step, )(kJ  is larger than the threshold, 

this ambiguity combination can be rejected and the 
iteration calculation will stop and jump to step (1). 

[4] If )4(J is smaller than the threshold, then replacing 
the threshold using )4(J . 

Because the calculation load of kf  decreases along with 
the increase of k , this method can reduce the calculation 
load of J  dramatically. 

Once the ambiguity combination Ẑ  that minimises J  in 
equation (25) is found, the initial ambiguity combination 
can be estimated using the inverse Gaussian 
transformation: 

          NZZN ˆˆ 1
1

−=                                            (28) 

3.4 Ambiguity validation 

The ambiguity combination which produces the 
minimum sum of the squared residuals does not 
necessarily indicate that correct ambiguities are 
identified. There are a number of factors contributing to 
this, such as poor system geometry and high 
measurement noise. Thus, ambiguity validation and 
evaluation procedure has to be applied to further validate 
and confirm its correctness. Although integer ambiguities 
should be determined as early as possible, the reliability 
of the ambiguity resolution is of paramount importance 
for GPS-based attitude determination system.  

Traditionally, ambiguity validation test procedures have 
been based on the so-called F-ratio test (Erickson, 1992). 
When the ratio of the second minimum and the minimum 
of J  in equation (25) is larger than a threshold, the best 
ambiguity combination which produces the minimum of 
J  is considered as the correct ambiguity set. But in 
practical application, sometimes the difference between 

the second minimum and the minimum of J  may not be 
larger enough because of the high noise, therefore it will 
need a long time to confirm the correct ambiguity 
although the best ambiguity combination already has 
been the correct ambiguity set. 

In this paper a new validation method by using baseline 
length and the relationship between primary and 
secondary ambiguity groups is proposed to validate the 

estimated ambiguity combination 1N̂ . By using this 
method, the correct ambiguity can be quickly and reliably 
identified. This method includes two steps which can be 
described as follows: 

[1] Baseline length test: Substituting the estimated 
ambiguities into equation (3) and calculating the 
baseline length. For the correct ambiguity 
combination, the estimated and the given known 
baseline length should be consistent with a certain 
tolerance. 

  δ<− trueestimate LL                                        (29) 

The numerical value of the baseline length tolerance 
δ  in equation (29) depends on the carrier phase 
measurements noise, multipath and geometry 
distribution of satellites in view. In this paper, δ  is 
empirically chosen as 0.02m. 

[2] Primary and secondary ambiguity groups test: 
calculating a coarse baseline vector using the 
estimated primary ambiguity combination; 
calculating all the float ambiguities by means of 
substituting the coarse baseline vector into equation 
(3); calculating the secondary integer ambiguities by 
means of rounding the float ambiguities to the 
nearest integer values. For the correct ambiguity 
combination, the difference of integer and float 
ambiguities in the secondary should be less than a 
threshold value “ β ”, which can be empirically set to 
0.02m (about tenth of L1 wavelength). 

Only when the estimated ambiguity combination passes 
the above tests, the correct ambiguity combination is 
considered identified. 

4 Experimental results 

A low-cost GPS-based attitude determination system is 
developed. The hardware of the system mainly includes: 
PC/104 computer, two Allstar GPS OEM boards, two 
antennae, battery and other auxiliary accessories. The 
GPS OEM board can output raw measurements including 
L1 carrier phase, pseudorange and navigation information 
at a rate of 1HZ. The algorithms proposed in this paper 
are implemented in its software which is designed using 
C++ language. All the available satellites with elevation 
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angle more than 10 degrees are used in the data 
processing. Considering that usually the ephemeris data 
can be received whin 30 seconds in cold start mode, the 
Kalman filtering procedure begins from 30-th second in 
the software. The integer ambiguity search procedure 
begins from 80-th second. After this epoch, the ambiguity 
combination which minimizes cost function (16) can be 
found at every epoch, but only when it passes the 
validation test, correct ambiguity combination is 
considered reliably identified. Once the ambiguities are 
fixed, the attitude parameters can be estimated by using 
the equations (5) and (6).  

To evaluate the performance of the system, a number of 
experiments have been conducted. There always more  

than 7 satellites being tracked during these experiments. 
The results of ambiguity resolution time test are shown in 
Tab. 1. It is indicated from Tab. 1 that ambiguity can be 
fixed whin 3 minutes in a cold start mode. 

The attitude solution for a 3m baseline is shown on Fig. 
2, 3 and 4, and the attitude solution for a 6m baseline is 
shown on Fig. 5, 6 and 7. The average and standard 
deviation of the attitude solution are listed in Tab. 2.  
From Tab. 2, it can be concluded that the accuracy of the 
GPS-based attitude determination system becomes higher 
with the increase of the baseline length. 

  

 

Tab. 1 List of ambiguity resolution time with different baseline lengths 

NO. GPS date 
(d/m/y) 

GPS time 
(seconds) 

Number of 
Satellites 

Ambiguity Resolution 
Time (seconds) 

Length of 
baseline (meters) 

1 19/04/2002 529971 7 89 2.40 
2 19/04/2002 530348 7 137 2.40 
3 22/04/2002 203356 8 103 3.00 
4 22/04/2002 203706 8 138 3.00 
5 22/04/2002 204106 8 95 3.00 
6 28/04/2002 128804 7 103 6.00 
7 28/04/2002 129104 7 109 6.00 
8 28/04/2002 129404 7 97 6.00 
9 28/04/2002 129704 7 119 6.00 

 
 
 

 

 

 

 

 

 
Fig. 2 Heading angle (3m baseline)                                                                 Fig. 3 Pitch angle (3m baseline)  

 

 

 

 

 

 

 

  
Fig. 4 Baseline length (3m baseline)                                                                   Fig. 5 Heading angle(6m baseline) 



 
 
 
 Kutterer: Joint Treatment of Random Variability and Imprecision ??  

 
 

 

 

 

 

 

 
Fig. 6 Pitch angle (6m baseline)                                                           Fig. 7 Baseline length (6m baseline) 

 
Tab. 2 Average and standard deviation of attitude solutions with different baseline lengths 

3m 6m  

Average
Standard 

deviation 
Average 

Standard 

deviation 

Baseline (meters) 2.9989 0.0025 5.9935 0.0027 

Heading angle (degrees) 10.2114 0.045 6.3519 0.0168 

Pitch angle (degrees) -1.7684 0.0833 -0.6550 0.0314 

 

 

5 Conclusions 

This paper presents an algorithm for fixing the integer 
ambiguity in attitude determination. The method can not 
only improve the computation efficiency and reduce the 
time for ambiguity resolution, but also improve the 
reliability of the ambiguity solution. 

A number of experiments are carried out to evaluate the 
effectiveness of the proposed algorithm, the results show 
that correct ambiguities in cold start mode can be 
identified within 3 minutes and there is no evident 
relationship between the ambiguity resolution time and 
the length of baseline. The results also show that heading 
angle of the GPS-based attitude determination system can 
achieve an accuracy of 0.045deg (RMS) for a 3m 
baseline and a higher accuracy for longer baselines. 
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