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Abstract. The growing use of real time high accuracy 
Global Positioning System (GPS) techniques has resulted 
in an increase in the number of critical decisions made on 
the basis of a GPS derived position. When making these 
decisions mobile users require assurance that the GPS 
position quality meets their requirements. Providers of 
Continually Operating Reference Stations (CORS), 
whom mobile users are generally reliant upon, must also 
be able to assure users that their data meets agreed quality 
standards. Unfortunately, the realistic and reliable 
description of position and data quality is an area in 
which GPS has traditionally been weak. Research being 
undertaken as part of the Cooperative Research Centre 
for Spatial Information (CRC-SI) is attempting to address 
this problem by assessing and reporting on the quality of 
raw GPS observations in real time. This paper examines a 
number of existing approaches to assessing the quality of 
raw GPS observations and presents a conceptual 
architecture for the development of a real time quality 
control system. 
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1 Introduction 

The increasing usage of high accuracy real time GPS 
positioning in a wide range of applications has resulted in 
a proportional rise in the number of critical decisions 
made on the basis of GPS positions. These decisions may 
be critical from a safety-of-life, financial, or 
environmental perspective. In making these decisions 
GPS users must be capable of determining if the quality 
of the position meets their requirements. Furthermore, 
they must be confident that the indicators of position 
quality that their decision is based on are realistic and 
reliable in all conditions, at any time. 

 

To obtain high accuracy real time GPS positions, mobile 
users rely heavily on information from external sources, 
be it from a local GPS basestation, a regional CORS 
network, or a global correction service. Thus the quality 
of the mobile user’s position is intrinsically linked to the 
quality of the external data. Mobile users must be assured 
that the information provided to them is of sufficient 
quality to meet their requirements. It follows that 
suppliers of GPS data products, e.g. CORS providers, 
must be able to deliver quality information to the mobile 
user in real time. 

Research being undertaken as part of the positioning 
program of the CRC-SI is attempting to address many of 
the issues associated with the real time assessment of 
CORS and mobile user positioning quality. The aim of 
this research is to develop real time procedures for CORS 
networks and mobile users that will improve the 
reliability of the mobile user’s position and provide a 
realistic assessment of the position quality. To 
accomplish this an understanding of existing approaches 
to quality control and the ability of these approaches to be 
adapted to real time operation is required. This paper 
presents a review of the current methods for assessing the 
quality of CORS and mobile user data and positions, in 
conjunction with an analysis of the potential of these 
methods to operate in real time. Finally a conceptual 
architecture for the real time quality control of CORS 
networks and mobile users is proposed. 

2 Quality control for CORS networks and mobile 
users 

The positioning accuracy and quality achievable by GPS 
is dependent on the raw data quality and the processing 
algorithm chosen. The quality control of GPS 
observations falls into two parallel categories – the 
validation and description of the raw data quality, 
independent of its future application, and the quality 
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control undertaken as part of the processing algorithm 
(Brown et al., 2003). Given the wide range of processing 
algorithms available the quality control processes 
employed by these algorithms is not of particular concern 
at this stage. Suffice it to say that the quality control and 
end results of the chosen processing algorithm will be 
dependent on the provision of the high quality 
observation data and an accurate stochastic model, both 
of which are a direct outcome of quality control of raw 
observation data. 

The methods and procedures for the validation and 
description of raw data quality are generally independent 
of the processing algorithm chosen. The aspects of raw 
data quality control considered here include data 
completeness, the detection and repair of cycle slips and 
receiver clock jumps, and the description of raw data 
quality in the form of stochastic models. 

2.1 Data completeness 

The most basic form of raw data quality control consists 
of statistics that describe the amount and completeness of 
the data collected by a GPS receiver. The consequences 
of ignoring data completeness in a quality control process 
can be severe, leading to difficulty in detecting outliers 
and cycle slips, increased time to resolve ambiguities, the 
introduction of multiple ambiguities, a weaker solution 
due to limited data availability, and in the worst case an 
inability to compute a solution (Brown et al., 2003). 
Three aspects of data completeness are generally 
considered; data gaps - being epochs with incomplete or 
no observations; missing epochs - whereby observations 
are not recorded for a satellite that is visible; and the 
availability of sufficient ephemeris information for a 
satellite. Statistics on data completeness, when analysed 
over extended time periods, can be useful for determining 
problems with receiver hardware and software (Brown et 
al., 2003), site-specific problems (Brown et al., 2003, 
Jonkman and de Jong, 2000a), and abnormalities in the 
satellite constellation or ephemeris information (Jonkman 
and de Jong, 2000a). Current quality control software 
packages such as GQC (Brown et al., 2003) and TEQC 
(Estey and Meertens, 1999) operate in a post-processing 
mode and are well suited to this sort of task. 

From a real time quality control (RT-QC) perspective 
data gaps, missing epochs, satellite constellation 
problems and so forth need to be closely monitored and 
appropriate action taken to notify users of any problems 
that may impact on the quality of their position solution. 
Additionally, data gaps and missing epochs are likely to 
have a detrimental impact on the ability of any real time 
algorithms for the detection of cycle slips, or the 
generation of stochastic models, to carry out their 
assigned tasks.. 

2.2 Systematic biases in observation data 

High accuracy GPS positioning is dependent upon the 
identification and removal of the main error sources that 
impact upon the observation quality. In relation to the 
quality control of raw data, receiver clock jumps, cycle 
slips, and quasi-random (e.g. multipath, diffraction, 
ionospheric scintillation etc.) effects are the main error 
sources that can degrade observation quality. The impact 
of quasi-random errors are not considered here but are 
dealt with briefly in the section describing stochastic 
modelling. However, the influence of quasi-random 
errors does hamper cycle slip detection, mainly due to the 
fact that their influence on the phase observations is not 
limited to an integer number of cycles (Kim and Langley, 
2001). The treatment of true systematic errors in the RT-
QC context is discussed in the following sections. 

2.2.1 Receiver clock jumps 

GPS receivers align themselves with GPS time using a 
variety of techniques. Some receivers constantly 
synchronise their clock with GPS time (so called “Clock 
Steering”) whilst others allow their clock to drift and 
periodically introduce corrections of approximately 1 
millisecond to keep the clock close to GPS time (Fig. 1). 
Other receivers allow the clock to drift unchecked and 
simply keep track of the bias and bias rate of change 
(Rizos, 1999, Gurtner, 1999, Fraser, 2004). 
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Fig 1: Receiver Clock Jumps 

Of concern from a RT-QC perspective is the second 
technique (illustrated in Fig. 1), whereby clock jumps are 
introduced into the raw observations. These jumps 
produce a systematic bias in the undifferenced code and 
phase observations, as shown in the following equation:  

( ) ( ) ( ) ∆⋅−∆⋅+Φ=∆⋅Φ+Φ=∆+Φ cttt ρ   (1) 

where Φ  represents the carrier phase (or pseudorange) 
observation and Φ  its rate of change with respect to 
time; ∆  represents the clock jump; ρ is the satellite 
dependent geometric range rate; and c  is the speed of 
light in a vacuum. The clock jumps themselves are quite 
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small (less than or equal to 1 millisecond) but they have 
two distinct effects on the code and phase observables. 
The term ∆⋅c  represents a constant receiver dependent 
effect on the geometric range whilst the term ∆⋅ρ  
represents the contribution of the satellite dependent 
geometric range rate at the time of the clock jump (Kim 
and Langley, 2001). The first of these terms ( ∆⋅c ) is 
removed during subsequent single or double difference 
processing. The latter term ( ∆⋅ρ ) does not cancel during 
differencing, as it is dependent on a particular satellite-
receiver combination. 

Thus the term ∆⋅ρ  introduces a systematic bias into the 
geometric range rate. The size of the bias is dependent on 
the particular geometric range rate. Assuming a 
maximum possible rate of 900m/s, a one-millisecond 
jump could potentially introduce 0.9m of error into the 
geometric range. From a RT-QC perspective it is crucial 
that these effects are estimated and removed in real time. 
Without correcting for such an effect it may be difficult 
to detect and repair cycle slips, estimate an accurate 
stochastic model, and undertake subsequent quality 
control (e.g. during the processing algorithm). 

2.2.2 Cycle slip detection and repair 

Cycle slips are discontinuities of an integer number of 
cycles in the carrier phase observations caused by a loss 
of lock in the receiver’s carrier tracking loops. Hofmann-
Wellenhof et al. (1992) describe three potential causes for 
cycle slips. Firstly, the most likely cause of cycle slips are 
physical obstructions to the satellite signal due to natural 
or man-made features (e.g. buildings, trees, bridges etc.). 
Secondly, low signal to noise ratios (SNR) due to 
ionospheric conditions, multipath, rapid changes in 
receiver position, or low satellite elevation can produce 
cycle slips. Finally, failures in the receiver software or 
malfunctioning satellite oscillators may cause cycle slips, 
however such incidents are rare. 

To take advantage of the superior measurement precision 
of the phase observables, cycle slips must be removed 
from the phase data before further processing can occur. 
This process involves detecting the location of the cycle 
slip (in time), determining the number of L1 and/or L2 
cycles that comprise the slip, and then correcting all 
phase observations of the affected satellite subsequent to 
the time of the cycle slip (Kim and Langley, 2001, 
Hofmann-Wellenhof et al., 1992). 

The focus on Real Time Kinematic (RTK) positioning in 
recent times has moved the detection and repair of cycle 
slips, traditionally a post-processed activity, into the real-
time domain. RTK positioning is dependent on the 
resolution of the integer ambiguities, a process greatly 
aided by the presence of clean, cycle slip free data. The 

push for instantaneous ambiguity resolution has lead to 
the development of real-time algorithms for the detection 
and repair of cycle slips. 

One such algorithm is the instantaneous cycle slip 
correction technique proposed by Kim and Langley 
(2001). This algorithm utilises the triple difference (TD) 
observables of the carrier phases in conjunction with 
Doppler and code observables. TD observations are 
generally free of the majority of GPS biases, such as 
receiver and satellite clock offsets, integer ambiguities, 
atmospheric effects, multipath, and satellite orbits. Thus, 
the size of the remaining biases and noise should be less 
than a few centimetres, provided that the observation 
interval is relatively short. Cycle slips would then be 
evident in the TD observations as large spikes, several 
orders of magnitude larger than the mean bias and noise. 
These assumptions may not hold in all cases, for example 
severe ionospheric disturbances, very long baselines, or 
rapid variations in the receiver position may lead to the 
triple difference biases and noise exceeding the L1 and 
L2 wavelengths, without cycle slips being present. In 
such situations the observation interval can be reduced to 
a level such that the biases and noise exhibited by the 
TDs are once again at the centimetre level and therefore, 
useful in detecting and repairing cycle slips (Kim and 
Langley, 2001). 

Cycle slip candidates are obtained by examining the 
mean and variance of the predicted TD residuals (being 
the difference between the observed TDs and the 
computed TDs). If dual frequency carrier phase 
observations are available the number of candidates can 
be reduced through the use of TDs formed from the 
geometry free linear combination observations. 
Following identification of the cycle slip candidates a 
least squares estimation is carried out to determine the 
two candidates (best and second best) that minimise the 
least squares residuals. The statistical likelihood of these 
two candidates is assessed and if they are considered 
significantly different then the best candidate is accepted 
and the slip is repaired. In a final step a reliability test on 
the cleaned data is carried out to determine if further, 
unspecified, errors remain in the observations. 

Another example of an algorithm capable of real-time 
cycle slip detection and repair has been proposed by de 
Jong (1998) and was implemented in the Dutch 
Permanent GPS Network and during the International 
GLONASS Experiment (Jonkman and de Jong, 2000b). 
The algorithm is based on the use of a Kalman filter in 
conjunction with the recursive Detection, Identification 
and Adaptation (DIA) procedure developed by Teunissen 
(1990). The DIA procedure consists of an overall model 
test to detect any unspecified errors in the observation or 
dynamic models (Detection). If an unspecified error is 
encountered a number of alternative models, 
incorporating different bias parameters, are tested. The 
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model producing the highest test statistic is considered 
the most likely to represent the “correct” observation 
model (Identification). Finally the original observation 
model is modified to reflect the identified bias 
(Adaptation).  

The DIA algorithm was developed to be independent of 
the positioning application the data was intended for. 
Thus no external information such as receiver-satellite 
geometry, clock offsets or atmospherics should be 
required. This is accomplished through the use of the 
geometry free linear combination for both the observation 
and dynamic models (Jonkman and de Jong, 2000b). Of 
particular note is that this method is applied on a satellite-
by-satellite basis for a single receiver, thus no observation 
differencing is required. This is advantageous in the sense 
that data from other receivers is not required to detect 
cycle slips. Further studies by de Jong (1998) showed that 
the DIA geometry free approach, on a satellite-by-
satellite basis, was theoretically capable of detecting slips 
of a single cycle in magnitude, provided the observation 
interval is relatively short. 

2.3 Stochastic Modelling 

GPS data processing involves the determination of 
various unknown parameters (e.g. station coordinates, 
tropospheric estimates, integer ambiguities etc.) from a 
set of observations. Generally these observations consist 
of different types of measurements on different 
frequencies (e.g. code and phase measurements on L1 
and L2) and there are usually large numbers of them 
when compared to the unknown parameters. In the 
positioning community the accepted methodology for 
determining the parameters is least squares (LSQ) 
estimation. LSQ estimation relates the observed 
quantities to the unknown parameters through a set of 
mathematical equations known as a functional model. 
The noise or precision of the observed quantities is 
represented using a stochastic model. 

A great deal of work has been put into the development 
of functional models for GPS data processing. The 
stochastic model has received less attention from 
researchers until relatively recently. As a result simple 
stochastic models are frequently used in LSQ based GPS 
data processing algorithms (Tiberius et al., 1999). 

Stochastic models are used in three phases of GPS 
processing, quality control of the raw observations, 
ambiguity resolution, and computation of the unknown 
parameters (Kim and Langley, 2001). The statistical 
quantities used in cycle slip detection and repair 
algorithms are derived from the chosen stochastic model. 
Thus the use of incorrect or oversimplified stochastic 
models may result in faulty slip detection, thereby 
introducing biases into the ambiguity resolution and 

parameter estimation processes. Similarly, the 
performance of instantaneous, real-time ambiguity 
resolution strategies is greatly improved when using 
accurate stochastic models. Accurate stochastic models 
reduce the ambiguity search space and ensure that the 
fixed ambiguities are correct. An incorrect stochastic 
model could potentially result in faulty ambiguity 
resolution, with unsatisfactory consequences for the 
accuracy of the positioning application. Finally, the 
estimated quality of the unknown parameters (obtained 
from the LSQ estimation) are implicitly dependent on the 
a priori stochastic model. An incorrect a priori model 
may lead to overly optimistic estimates of the derived 
position quality, leading users to believe they have met 
quality requirements when, in fact they have not (Tiberius 
et al., 1999). 

A number of methods have been proposed to provide 
more realistic stochastic models for the various GPS 
observables. Four approaches will be considered here - 
the elevation dependent method (Euler and Goad, 1991), 
the SNR or C/No approach (Brunner et al., 1999, Richter 
and Euler, 2001), a rigorous least squares estimation 
approach, and a method based on time differencing (Kim 
and Langley, 2001).  

2.3.1 Elevation dependent modelling 

The dependence of observation noise on satellite 
elevation has been known for some time and can mainly 
be attributed to the receiver antenna’s gain pattern, with 
additional contributions from atmospheric attenuation and 
multipath (Kim and Langley, 2001, Tiberius et al., 1999). 
Modelling the observation noise with respect to satellite 
elevation can be carried out using functions tailored to 
individual receivers (Euler and Goad, 1991) or using 
general functions that can be applied regardless of 
receiver type (Hugentobler et al., 2004). One drawback of 
the elevation dependent approach is that it only considers 
the variance of the individual observations. Cross 
correlations between observations types (e.g. C1 and P2) 
are neglected, as are spatial and temporal correlations. 
Thus a fully populated variance covariance matrix is not 
available when using this method.  

2.3.2 C/N0 Based modelling 

GPS signal power is expressed in the form of carrier-to-
noise power density ratios (C/N0), also known as signal to 
noise ratios (SNR). The C/N0 measurements generated by 
GPS receivers are an indication of how well the receiver 
hardware is tracking the incoming GPS signals. As such 
they provide a direct indication of the quality of the phase 
observations (Richter and Euler, 2001, Kim and Langley, 
2001, Brunner et al., 1999). The C/N0 approach to 



 
 
 
 Fuller et al.:  Real Time Quality Assessment for CORS Networks 227 
 

stochastic modelling seeks to take advantage of this 
information to provide a more realistic assessment of the 
observation noise. 

C/N0 values are highly correlated with satellite elevation, 
due in the most part to the antenna gain pattern, but also 
influenced by atmospheric refraction and multipath. 
Initial work focussed on this link to produce stochastic 
models that were in effect, elevation dependent 
(Hartinger and Brunner, 1999). Further work by (Brunner 
et al., 1999) extended the simple C/N0 models to account 
for the fact that C/N0 is also influenced by signal 
diffraction. C/N0 values observed in “clean” 
environments can be treated as a “known” template for 
C/N0 values observed in other environments. Deviations 
of the observed values from the template are considered 
to be the result of diffraction and down weighting (or 
removal) of the observations occurs as a result. The 
practical difficulties of providing templates for the 
various receiver-antenna combinations has been 
discussed in Richter and Euler (2001). 

Problems with this method include the dependence on 
C/N0 values, which may not be available from all 
receivers, and the fact that cross, spatial, and temporal 
correlations are not considered. 

2.3.3 Least squares estimation 

The least squares estimation approach offers a rigorous 
solution to the problem of estimating a priori stochastic 
models. Results in Barnes et al. (1998) indicate that using 
the optimal stochastic model, estimated from the LSQ 
residuals, significantly effects positioning results, when 
compared to alternative modelling approaches (e.g. C/N0 
approach). The basis of this approach is the direct 
estimation of every element in the a priori variance 
covariance matrix from the a posteriori observation 
residuals. Due to the recursive nature of this process it 
can be incorporated into a Kalman filter or sequential 
least squares adjustment (Kim and Langley, 2001). 

One technique to carry out the estimation of the variance 
covariance elements is Minimum Norm Quadratic 
Unbiased Estimation (MINQUE) developed by Rao 
(1971) and utilised for static baseline processing by 
Wang (1998). Unfortunately, MINQUE and similar 
techniques are computationally intensive and not suited to 
real-time processing. The optimality of the least squares 
estimation approach is not guaranteed, as the estimation 
technique may make assumptions about the correlations 
that do not hold in all cases (e.g. temporal correlations 

may be ignored). Furthermore, a certain level of 
observation redundancy is required to produce reasonable 
estimates, a situation that may not exist in all positioning 
scenarios (Kim and Langley, 2001). 

2.3.4 Differencing in the time domain 

Differencing in the time domain was proposed by Kim 
and Langley (2001) to overcome the three main problems 
in the existing modelling approaches - the lack of a fully 
populated variance covariance matrix, no temporal 
correlations, and no observation redundancy in long 
baseline solutions. This method takes the view that high 
order differencing in time (differencing TDs to produce 
quadruple differences (QDs), then differencing QDs to 
produce quintuple differences (dQDs)) will remove all 
systematic biases and correlations, leaving only white 
noise. 

The assumption that systematic biases and correlations 
are removed is justified on the basis that the differencing 
process is in effect the application of consecutive 
subtractive filters. These filters remove biases (e.g. 
receiver and satellite clock offsets), damp low frequency 
effects (e.g. atmospherics, multipath), and amplify high 
frequency effects (e.g. noise, ionospheric scintillation). 
For short baselines the effects of the correlated biases are 
assumed to be ignorable, thereby implying the temporal 
correlations are also ignorable. However, temporal 
correlations may still exist, particularly in high multipath 
environments, thus high order differencing is still 
required. For long baselines the correlated biases are not 
ignorable and consequently time correlations will exist 
(Kim and Langley, 2001). Assuming the dQDs are free of 
systematic biases and correlations they represent white 
noise at the dQD level. The variance covariance matrix of 
the dQDs can then be formed from a set of arbitrary dQD 
samples. Using the mathematical relationship between the 
various differencing levels, variance covariance matrices 
for any difference (i.e. zero, single, double) can be 
derived. 

Of concern here is the generation of the dQD variance 
covariance matrix. One solution is the estimation of 
covariance functions. However, this is a computationally 
intensive process not really suited to real-time use. If a 
simpler technique is utilised one must question its 
effectiveness in correctly modelling the cross, spatial, and 
temporal correlations, particularly when extrapolating 
back from the dQDs. Furthermore, this method is  
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Fig. 2: Proposed RT-QC Architecture. 

dependent on the selection of an appropriate time interval 
for the differencing. The assumption that the dQD 
observable represents white noise requires the high 
frequency biases and correlations (which are amplified by 
the use of subtractive filters) to be insignificant. This may 
not always be the case (e.g. in unstable ionospheric 
conditions) and it may be necessary to adjust the time 
interval in response to changes in the behaviour of the 
high frequency biases. 

3 RT-QC Architecture 

The aim of the research being undertaken is the 
development of real time procedures for CORS networks 
and mobile users that will improve the reliability of the 
mobile user’s position and provide a realistic assessment 
of the position quality. Through an examination of the 
existing approaches to assessing raw data quality an 
understanding of the various aspects and limitations of 
raw data quality assessment has been developed. To 
proceed further, a conceptual architecture for a proposed 
RT-QC system has been developed and is shown in Fig 2. 

The RT-QC architecture is built around the idea that the 
assessment of raw data quality (RT-QC box) should be 
carried out independent of the processing algorithm 
(Position Solution box). However, in the initial stages of 
the project information from the position solution will be 
considered during the quality control process. The red 
boxes indicate the current approach to assessing the 
quality of CORS and mobile users position and raw data. 
As Fig. 2 shows, this research is attempting to develop 
procedures whereby quality models of the CORS network 
data can be transmitted to a mobile user, thereby 

improving the quality of the mobile user’s position and 
the estimates of position quality. 

4 Conclusions 

The number of critical decisions made on the basis of 
GPS positions has increased proportionally with the use 
of GPS within the community. When faced with a 
decision that may have severe consequences GPS users 
must be confident that their position has been determined 
to a sufficient level of quality to justify the decision and 
that the indicators of quality their decisions is based are 
realistic and reliable. The quality of a GPS position is a 
direct result of the raw data quality and the processing 
algorithm chosen. This paper has presented a review of 
some existing methods for the assessment and reporting 
of raw GPS data quality and the potential of these 
methods to be adapted for use in a real time environment. 
A conceptual architecture of a RT-QC system has been 
presented as a way forward for future research in this 
area. 
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