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Abstract. Two approaches to determining the Earth’s 
external potential field by using GPS technique are 
proposed. The first one is that the relation between the 
geopotential difference and the light signal’s frequency 
shift, between two separated points, is applied. The 
second one is that the spherical harmonic expansion 
series and a new technique dealing with the “downward 
continuation” problem are applied. Given the boundary 
value provided by GPS “geopotential frequency shift” on 
the Earth’s surface, the Earth’s external field could be 
determined based on the “fictitious compress recovery” 
method. Given the boundary value derived by on-board 
GPS technique on the satellite surface, the Earth’s 
external field could be determined by using a new 
technique for solving the  “downward continuation” 
problem, which is also based on the “fictitious compress 
recovery” method. The main idea of the “fictitious 
compress recovery” is that an iterative procedure of 
“compress ” and “recovery” between the given boundary 
(the Earth’s surface or the satellite surface) and the 
surface of Bjerhammar sphere is executed and a fictitious 
field is created, which coincides with the real field in the 
domain outside the Earth. Simulation tests support the 
new approach. 

Key words: GPS observation, fictitious compress 
recovery, geopotential frequency shift, potential field 
determination 

 

1 Introduction 

The GPS technique plays an important role in geoscience 
and has very broad applications in various fields, 
especially in determining the coordinates of the interested 

points. One possible application of the GPS technique, 
which might not be taken good attention in geodesy, is 
that the geopotential difference between two (even far 
away) separated points on the Earth’s surface might be 
directly determined by using GPS signals (Shen et al, 
1993; Brumberg and Groten, 2002). Conventionally, the 
potential difference between two points are determined 
by gravimetry and levelling, the drawback of which is 
that it is almost impossible to connect two points which 
are located on two continents, because it is well known 
that the potential surface of the mean sea level is not an 
equi-potential surface. Hence, if GPS “geopotential 
frequency shift” approach could be applied in practice in 
the future, a unified world datum might be established. 
Meanwhile, once the geopotential on the Earth’s surface 
is given, the Earth’s external geopotential field could be 
strictly determined by using the “fictitious compress 
recovery” method (Shen, 2004), which can be also 
applied for determining the Earth’s external geopotential 
field (and consequently solving the “downward 
continuation” problem), if the gravitational potential on 
the satellite surface (which is defined by the flying 
satellite) is given, for which the GPS technique provides 
a good opportunity.  

Satellite on-board GPS receiver provides the position 
( )ix t  of the satellite (e.g., CHAMP or GRACE satellite), 

and consequently its velocity ( )iv t  by using differential 
approach. Suppose an accelerometer is equipped with the 
flying satellite, one could determine the Earth’s 
gravitational potential along the satellite orbit based on 
the energy conservation law, e.g., using the well known 
energy integral approach (e.g., Gerlach et al, 2003; Visser 
et al, 2003). Then, one can determine the potential field 
based on the truncated spherical harmonic expansion (in 
this case there are finite harmonic coefficients to be 
determined) and by using, e.g., the least squares 
adjustment (e.g., Rummel et al, 1993), which is referred 
to as the conventional approach for convenience. 
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However, the problem is that so determined field might 
not be valid in the domain between the Earth’s surface 
and the surface of Brilloun sphere, the smallest sphere 
that encloses the whole Earth, because it could not be 
guaranteed that the spherical harmonic expansion series is 
convergent in that domain (e.g., Moritz, 1978; Sjöberg, 
1980; Rummel et al, 1993). To solve this problem, two 
approaches could be applied. If the provided (discrete) 
potential values are uniformly distributed on the satellite 
surface, one could determine the fictitious field that 
coincides with the real field in the whole domain outside 
the Earth based on the “fictitious compress recovery” 
method, naturally solving the “downward continuation” 
problem, which is greatly interested by geodesists. 
Otherwise, using the conventional approach one first 
determines the potential field, which is valid in the 
domain outside Brillouin sphere; then, choose a simply 
closed surface (it is recommended that an ellipsoidal or 
spherical surface is chosen, Cf. Remark 2 in Sec.6) that 
encloses Brillouin sphere, and applying the “fictitious 
compress recovery” method one could determine the real 
field between the Earth’s surface and the surface of 
Brillouin sphere, also solving the “downward 
continuation” problem.  

Since the “fictitious compress recovery” method (Shen, 
2004) is essential, it will be summarized in Sec.2. In 
Sec.3, the GPS “geopotential frequency shift” approach is 
presented, and in Sec.4, the “downward continuation” 
approach is presented. In Sec.5, preliminary simulation 
results are provided, and finally, the conclusions and 
discussions end this paper.   

2 The “fictitious compress recovery” method 

Choose an inner sphere or Bjerhammar sphere K  
(Bjerhammar, 1964), which is an open set (excluding the 
boundary K∂ of the sphere K ) and entirely located 
inside the Earth, with its centre coinciding with the 
Earth’s mass centre (Shen, 2004). In the domain K , 
which denotes the domain outside the sphere K , 
including the boundary K∂ , there exists such a 
potential field * ( )V P  satisfying   

*

* *

*
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and on the boundary of the Earth, * ( )V P  has the same 
value as the Earth’s real potential field ( )V P  has. Then, 
the fictitious potential field * ( )V P  coincides exactly with 

the Earth’s real potential field ( )V P in the domain Ω  
(Shen, 2004), where Ω denotes the domain (open set) 
occupied by the Earth (excluding the Earth’s boundary), 

Ω denotes the domain outside the Earth (including the 
boundary of the Earth), and let ∂Ω  denote the boundary 
of the Earth. To realize this idea, the “compress” and 
“recovery” technique ( Shen, 2004) could be used. 

Set the observed gravitational potential value 
( ) |V P V∂Ω ∂Ω≡  (note that V∂Ω  is obtained by the observed 

geopotential W subtracting the centrifugal potential Q ) 
on the surface of K along the radial direction. Then, 
based on Poisson integral a regular harmonic solution 

*(1) ( )V P  could be determined in the domain K :  

2 2
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which can be taken as the first approximation of the 
Earth’s real potential field ( )V P  in the domain outside 
the Earth. The first-order residual field (1) ( )Pδ  is defined 
as follows (Shen, 2004): 

(1) (0) *(1) *(1)( ) ( ) ( ) ( ) ( ),   P P V P V P V P Pδ δ= − ≡ − ∈Ω   (3) 

where (0) ( ) ( )P V Pδ ≡  is the Earth’s real potential field. It 
should be noted that (1) ( )Pδ  is defined only in the 
domain Ω . With *(1) ( )V P  the boundary value 

*(1) *(1)V V∂Ω ∂Ω≡ can be calculated. Based on Eq.(3), set the 
first-order residual boundary value  

(1) *(1)V Vδ ∂Ω ∂Ω ∂Ω= −                                            (4) 

again on the surface of Bjerhammar sphere K  (note that 
the boundary value (1)δ ∂Ω is identically compressed on 

K∂ along the radial direction), a second-order regular 
harmonic solution *(2) ( )V P  can be determined in K : 

(1)2 2
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δ
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−
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* *
1 2V V+  can be taken as the second approximation of the 

Earth’s real potential field ( )V P  in the domain outside 
the Earth.   

Similarly, the second-order residual field (2) ( )Pδ  is 
defined as follows: 

(2) (1) *(2)( ) ( ) ( ),    P P V P Pδ δ= − ∈Ω                         (6) 

and set the second-order residual boundary value 
(2) (1) *(2)| | |Vδ δ∂Ω ∂Ω ∂Ω≡ −                                       (7) 

again on the surface of the sphere K  (along the radial 
direction), a third-order regular harmonic solution 

*(3) ( )V P  in K  is determined. This procedure can be 
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repeated until a series solution * ( )V P  is provided in the 
domain outside the sphere K  (Shen, 2004): 

* *( )

1
( ) ( ),   n

n
V P V P P K

∞

=

= ∈∑                                 (8) 

which is a regular harmonic function in K , and coincides 
exactly with the Earth’s real potential field ( )V P  in the 
domain Ω , the domain outside the Earth: 

* *( )

1

( ) ( ) ( ),   n

n

V P V P V P P
∞

=

= ≡ ∈Ω∑                         (9) 

Hence, once the geopotential or gravitational potential on 
the Earth’s physical surface ∂Ω  is given, the Earth’s 
external field can be exactly determined. It should be 
pointed out that the “fictitious compress recovery” 
method has wide applications in geophysics (Shen et al., 
2004).  

3 The “geopotential frequency shift” approach 

The geopotential frequency shift approach by using GPS 
signals was briefly proposed in Shen et al. (1993), and 
the technical details could be found in Shen (1998). 

Suppose a light signal with frequency f  is emitted from 
point P  by an emitter, and the signal is received at point 
Q  by a receiver. Because of the geopotential difference 
between these two points, the frequency of the received 
light signal is not f  but 'f . Using Pf  and Qf  to denote 
f  and 'f  respectively, the following equation holds 

(Pound and Snider, 1965; Shen et al., 1993): 

2 2 ( )Q P PQ Q P
f ff f f W W W

c c
∆ ≡ − = − ∆ ≡ − −           (10) 

where c is the velocity of light in vacuum, PW  and QW  
are the geopotentials at points P  and Q , respectively. 
Expression (10) is called in literature the gravity 
frequency shift equation (Pound and Snider, 1965), or 
properly called the geopotential frequency shift equation 
(due to the fact that the frequency shift is caused by the 
geopotential difference). Katila and Riski (1981) 
confirmed Eq.(10) with the accuracy level 210− . Vessot et 
al. (1980) proved that Eq.(10) is correct to the accuracy 
of 410− . Scientists believe that Eq.(10) is correct, because 
it is a result derived from the theory of general relativity. 
In fact, Eq.(10) can be also derived out based on quantum 
theory and energy conservation law (Shen, 1998). 

Suppose the geopotential at point P  is given, then, from 
Eq.(10) the geopotential at an arbitrary point Q  can be 

determined by measuring the geopotential frequency shift 
between P  and Q : 

2

Q P
c fW W

f
∆

= −                                                   (11) 

If the point P  is chosen on the geoid, it holds that  
2

0Q
c fW C

f
∆

= −                                                    (12) 

where 0C  is the geoid geopotential constant.  It should be 
noted that 0C  might not be correct because of a constant 
shift Wδ , which will give rise to QW  the same shift at an 
arbitrary point Q . This is a systematic error, and it could 
be filtered out by using the“fictitious compress recovery” 
method (the determination of 0C  or Wδ in details is 
beyond the scope of present paper and will be explored in 
a separated paper). Then, the geopotential at an arbitrary 
point Q  on the Earth’s physical surface ∂Ω  can be 
determined based on the geopotential  frequency shift 
equation. Then, the main problem is how to measure the 
frequency shift between two points. The basic principle 
of measuring the frequency shift can be stated as follows. 

Set at point P  an emitter which emits a light signal with 
frequency f  and a receiver at point Q , which receives 
the light signal emitted by the emitter at point P . 
Suppose the received signal’s frequency is 'f . Then, it 
could be compared the frequency 'f  of the received 
light signal with it-self’s standard frequency f  (this is 
not only the emitting frequency at point P  but also the 
standard innate frequency of the receiver at point Q ), 
and the frequency shift 'f f f∆ = −  can be determined. 
Consequently, according to Eq.(11) the geopotential 
difference PQW∆  between P  and Q  can be determined. 
Applying the same principle it will be found the 
geopotential difference OP P OW W W∆ = −  between the 
geoid and the point P , where 0OW C=  is the geopotential 
at point O  located on the geoid. If 0C is a known 
constant, PW  as well as QW  can be found. 

Now, suppose the light signal emitter E  is located in a 
satellite. Two GPS receivers at P  and Q  receive the 
light signals coming from E  corresponding to an 
emitting time t  (seeing Fig.1), and suppose the received 
signals’ frequencies corresponding to time t  are recorded 
by receivers at P  and Q  in some way, respectively, i.e., 

Pf  and Qf  corresponding to time t  are recorded by 
receivers at P  and Q , respectively. Note that the time at 
which the signal is received by P  is generally different 



 
 
 
 Shen et al.: The Application of GPS Technique in Determining the Gravity Field 271 

from that by Q . By comparing the received frequencies 

Pf  and Qf  it could be determined the geopotential 
difference PQ Q PW W W∆ = −  (Shen et al., 1993), which is 
just given by Eq.(10). 

 
Fig. 1 Two receivers at points P and Q receive simultaneously the 

satellite-emitted light signal with frequency f  

By this way, theoretically, the geopotential on the Earth’s 
whole surface could be determined based on the 
geopotential frequency shift approach by using GPS 
technique. Then, the “fictitious compress recovery” 
method could be applied for determining the Earth’s 
external potential field ( )V P . Note that by GPS technique 
the coordinates ix at any point on the Earth’s physical 
surface can be determined, where ix denote 

1 2 3,  ,  x x x y x z≡ ≡ ≡ . Consequently, once the 
geopotential W on the Earth’s surface is determined, the 
gravitational potential V on the Earth’s physical surface 
is determined.  

4 The “downward continuation” approach 

Suppose there are quite a few satellites flying around the 
Earth and many observation stations distributed at various 
points on the Earth’s physical surface. Generally, the 
Earth’s gravitational potential V could be expanded into 
spherical harmonic series (Heiskanen and Moritz,1967): 

1
0 0

( ) ( cos sin ) (cos )
nn

nm nm nmn
n m

aV p GM a m b m P
r

λ λ θ
∞

+
= =

= +∑∑   (13) 

where G  is the gravitational constant, M  the Earth’s 
mass, a the Earth’s semi-major axis, r  the distance 

between the coordinate origin o  and the field point 
( )iP x , nma and nmb  are constant coefficients to be 

determined based on various observations (GPS 
observations in our case),  (cos )nmP θ  are the associated 
Legendre functions, λ  and θ  are longitude and co-
latitude, respectively. The expression (13) is at least 
correct in the domain outside a satellite surface S∂ . In 
the domain near the Earth’s surface, the series (13) might 
be divergent (Moritz, 1978; Sjöberg, 1980; Rummel et al, 
1993; Shen, 1995). 

Now, suppose Eq.(13) holds in S , the domain outside 
the satellite surface S∂ . To determine the field ( )V P , the 
truncation technique should be applied (otherwise the 
infinite harmonic coefficients nma and nmb  can’t be 
determined), i.e., only the first terms until degree N  are 
left: 

1 1
0 0

( ) ( cos sin ) (cos )
nN n

nm nm nmn
n m

aV P GM a m b m P
r

λ λ θ+
= =

= +∑∑   (14) 

Hence, only the finite harmonic coefficients nma and nmb  
are left as the unknown parameters. Then, by establishing 
the relation between the potential (or the gravitation iV∂  
either the gravitational gradient i jV∂ ∂ ) and the GPS 

observations ( )ix t  (note that once ( )ix t  are determined 
as GPS observation values, ( ) /idx t dt  and 2 2( ) /id x t dt  
are also determined as GPS “observation values”), the 
finite harmonic coefficients nma and nmb could be 
determined by using the least-squares method. That 
means the potential field 1( )V P  outside the satellite 
surface S∂  is determined. However, as mentioned before, 
it can’t be guaranteed that Eq.(14) holds also in the 
domain near the Earth’s surface due to the divergence 
problem caused by Eq.(13). Hence, it occurs the 
“downward continuation” problem, which has attracted 
many geodesists’ interests and attention. The “downward 
continuation” problem was not solved satisfactorily by 
using conventional methods due to the well-known “ill-
posed” problem. Recently, this problem was solved 
satisfactorily (Shen and Ning, 2004; Shen and Wang et 
al., 2005; Cf. Remark 1) by using the “fictitious compress 
recovery” method (Shen, 2004). 

By GPS observations, suppose it has been established a 
model of the Earth’s potential field, noted as EGM1, 
which is correct in the domain S  (the domain outside the 
satellite surface S∂ ). Then, on the boundary S∂  it has 
been known the boundary value 1S SV V∂ ∂= , which can 
be assumed very accurate without loss of generality. 
Choose Bjerhammar sphere K , using the boundary value 

SV∂  (which is calculated by EGM1) and by applying the 
“fictitious compress recovery” method it could be 
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determined a regular harmonic function * ( )( )V P P K∈ , 
which coincides exactly with the real field ( )V P  in the 
domain S  under the assumption that the boundary value 

SV∂  is error-free (Shen, 2004). Furthermore, it has been 
proved that the determined fictitious field * ( )( )V P P K∈  
coincides also with the real field ( )V P  in the domain 

SΩ− , the domain between the satellite surface and the 
Earth’s physical surface (Shen and Ning, 2004; Shen and 
Wang et al., 2005; Cf. Remark 1). For convenience, the 
determined field  constrained in Ω  based on the 
“fictitious compress recovery” method is referred to as 
FEGM (or FEGM1).  

Remark 1: Suppose the boundary value SV∂  on the satellite surface S∂  

(it can be also a spherical surface KΓ∂ ) is given. It will be briefly 
proved that the real field can be determined based on the “fictitious 
compress recovery” method, referred to Shen and Ning (2004).  Set  

*( ) ( ) ( ),P V P V P Pφ = − ∈Ω                                             (15) 

where *( )V P  is a fictitious regular harmonic solution (based on  

SV∂ and the  “fictitious compress recovery” method) in the domain K  , 
the domain outside Bjerhammar sphere K .  Hence, ( )Pφ  is a regular 

harmonic function in the domain Ω , and satisfies the following 
equation: 

 *( ) ( ) ( ) 0,P V P V P P Sφ = − = ∈                                           (16) 

Based on Eq.(15), on the boundary ∂Ω  it holds:   

*( ) | ( ) | ( ) |P V P V Pφ ∂Ω ∂Ω ∂Ω= −                                                   (17) 

Applying the “fictitious compress recovery” method (Shen, 2004), it 
can be determined a regular harmonic function *( )Pφ  in the domain 

K , and it holds  

*( ) ( ),P P Pφ φ= ∈Ω                                                              (18) 

Since *( )Pφ  is regular and harmonic in K , it can be expanded into a  
(uniformly convergent) spherical harmonic series (the mathematical 
expression form looks like Eq.(13)). Using Eqs.(16) and (18) it must 
hold that *( ) 0 )P P Kφ ≡ ∈ ( .  Then, from Eqs.(15) and  (18) it holds 

that *( ) ( ) )V P V P P= ∈Ω ( . The proof is completed.  

Hence, after applying the new “downward continuation” 
approach, referred to as the “fictitious downward 
continuation” (Shen and Wang et al, 2005; Shen and Yan 
et al, 2005), the Earth’s external potential field can be 
determined based the established model EGM1 (the 
Earth’s potential field in the domain S ). If more precise 
EGM1 (in the domain S ) is established by various 
satellite observations (e.g. GPS, CHAMP, GRACE, 
GOCE, etc), a more precise field ( )V P  in Ω  could be 
determined.  

If given the gravitational potential values distributed 
uniformly on the satellite surface, a fictitious potential 

field in the domain outside Bjerhammar sphere can be 
directly determined based on the “fictitious compress 
recovery” method, and the determined fictitious field 
coincides with the real field in the whole domain outside 
the Earth.  In this way, FEGM is directly established.  

5 Preliminary simulation results 

In this section a simulation test is provided, which is 
referred to (Li, 2005; Shen and Li, 2005). Choose a   
spherical coordinate system ( , , )r θ λ  and a gravitational 
potential model, a 4-sphere anomaly model: three 
small spheres iO ( 1,2,3i = ) are located inside a large 
sphere 0O , with the parameters listed in Tab.1.  

Tab.1 Parameters of the four spheres 

Sphere O0   O1 O2 O3 

Centre  

[km, deg,deg] 

(0, 0, 0)  (4000, 0, 
0) 

 (2000, 90, 
120) 

 (3000, 
120, 
240) 

Radius [km] R0  

6371  

R1  

300  

 R2 

500  

R3  

600  

Potential at 
surface  

[m2s-2] 

V0  

1000  

V1  

-100  

V2  

400  

V3  

200  

 

Based on the above model, the real potential field 
( )V P outside the large sphere (which is assumed as the  

“Earth”) is known, expressed as  
3

0
1

( ) ,i
i

i i

RRV P V V P
r r=

= + ∈Ω∑                          (19) 

where ir ( 1,2,3i = ) is the distance from iO  to the field 
point P .   

Now, it is supposed that only the boundary value SV∂ on a 
satellite surface is known, calculated from Eq.(19), and 
the aim is to determine the real field ( )V P in the domain 
outside the  “Earth” (i.e., in the domain outside the large 
sphere), based only on the given boundary value SV∂ . The 
boundary value SV∂ on the satellite surface is supposed to 
be obtained based on a polar satellite (equipped with a 
GPS receiver and an accelerometer), using the well 
known energy integral approach (e.g., Gerlach et al, 2003; 
Visser et al, 2003). The satellite surface is supposed to be 
a rotation-ellipsoidal surface, with its geometric centre 
coinciding with the coordinate origin, the major-axis 

6371 250a = + km, and  the eccentricity 0.01e = . The 
radius of the inner sphere (i.e., Bjerhammar sphere) is 
taken as 6000 km.  The simulation calculation (especially 
the calculation of Poisson integral) is executed based on 
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grid approach, with 1 1o o× grid defined by parallel 
latitude line and longitude line on the surface of the inner 
sphere. The grids on the satellite surface are 1-1 
corresponding to the grids on the spherical surface.  
Consequently there are 64800 discrete values, which are 
uniformly distributed on the satellite surface.   

Now, with the given (discrete) boundary values SV∂ , the 
fictitious distribution on the surface of the inner sphere is 
determined based on the  “fictitious compress recovery” 
method (Cf. Sec.2), and consequently the fictitious field 

* ( )V P in the domain outside the inner sphere is 
determined. In theory, the fictitious field * ( )V P coincides 
with the real field in the domain outside the “Earth”. 
Hence, we need only to compare the calculated values 
with the real values on the surface of the “Earth”, because, 
if two regular harmonic fields (in the domain outside the 
“Earth”) coincide on the boundary of the “Earth”, they 
must coincide in the whole domain outside the “Earth”. 
The calculated results are summarized in Tab.2, where 

8n = and 15n = express the iterative procedure times, 
respectively, ∂Ω  and S∂ express the satellite surface and 
the surface of the “Earth”, respectively, and 

*V V V∆ = − expresses the residual potential value 
between the real value and the calculated (fictitious) 
value. Fig.2 shows the residuals between the real values 
and the calculated corresponding values on the “Earth’s 
surface”.  

Tab.2 Results based on the boundary values on the satellite surface 

max(| |)V∆  

 [m2s-2] 

( )mean V∆  

 [m2s-2] 

RMS  

[m2s-2] 

 

 

n  

On  

S∂  

 

On 

∂Ω  

 

On 
S∂  

 

On 

∂Ω  

 

On 
S∂  

 

On 

∂Ω  

 

8 

 

0.006 

 

0.01 

-1.7 ×  

e-4 

-1.7 ×  

e-4 

1.0 ×  

e-3 

 

0.002

 

15 

 

0.002 

 

0.008 

2.0 ×  

e-5 

9.2 ×  

e-5 

2.4 ×  

e-4 

 

0.001

 

From Tab.2, we can draw the following conclusions: 
suppose the given boundary value SV∂  is error-free, then, 
based on the boundary value SV∂  and the “fictitious 
compress recovery” method, after 15-times iterative 
procedures, one gets a fictitious (regular harmonic) field 

* ( )( )V P P K∈ , which coincides with the real field 
( )V P on the  “Earth’s surface” (seeing the black numbers 

in Tab.2) under the accuracy (RMS) level 0.1 mm (note 
that 0.001m2s-2 corresponds to the height 0.1 mm), and 
based on the extreme value principle (e.g., Kellogg, 1929) 

we can conclude that the fictitious field * ( )( )V P P K∈  
coincides with the real field ( )V P  in the whole domain 
outside the “Earth” at least under the accuracy (RMS) 
level 0.1 mm, which is confirmed by further experiments, 
seeing Tabs.3 and 4 (note that in theory, the experimental 
tests summarized in Tabs.3 and 4 are not necessary).   

               

 

 
Fig. 2  Residual potential values on the surface of  the  “Earth” (From 

Shen  and Li,  2005) 

Quite arbitrarily, 12 test field points, which are located in 
the domain between the satellite surface and the surface 
of the “Earth”, are chosen, and then, the residual values 
(i.e., the differences between the calculated fictitious 
values and the corresponding real values) on those points 
are calculated. The results are listed in Tab.3, from which 
it can be seen that the fictitious field coincides with the 
real field (at least at the chosen points) under a high 
accuracy (RMS) level, around 0.08 mm.  

Tab. 3  Results at test points in the domain between two boundaries 
( *V V V∆ = − ; unit: m2s-2 ) 

 ( , ,r θ λ ) 

[km, deg , deg] 

V∆  

 

( , ,r θ λ ) 

[km, deg , deg] 

V∆  

 

(6380, 0, 0) -0.0026 (6380, 90, 120) -8.15e-7 

(6600, 0, 0) -0.0014 (6420, 100, 250) -9.65e-8 

(6400, 15, 0) -2.62e-4 (6610, 120, 60) 5.01e-7 

(6500, 10, 60) -1.07e-4 (6500, 125, 200) -2.72e-10 

(6550,2 5, 180) -2.55e-5 (6480, 135, 60) 6.81e-7 

(6600, 20, 270) -5.18e-5 (6570, 150, 210) -9.68e-8 

( )mean V∆  -3.70e-4    

RMS 7.67e-4   

 

Further, 5 test field points, which are located in the 
domain outside the satellite surface, are chosen, and then 
the residual values on those points are calculated. The 
results are listed in Tab.4, from which it can be seen that 
the fictitious field coincides with the real field (at least at 

2 2 210 m s− −×

V∆
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the chosen points) under the accuracy (RMS) level 
around 0.03 mm.  
Tab.4  Results at test points in the domain out side the satellite surface 

( *V V V∆ = − ) 

( , ,r θ λ ) 

[km, o,o] 

(6700,  

0, 0) 

(6750, 
30, 90) 

(6800, 

60, 

120) 

(6720,  

120, 240) 

(6850, 
180, 
0) 

V∆  
[m2s-2]  

-6.8 ×  

e-4 

1.6 ×  

e-5 

-2.2 ×  

e-6 

-4.8 ×  

e-11 

-5.4 ×  

e-4 

( )mean V∆  -2.4e-4  m2s-2 

RMS 3.0e-4  m2s-2 

 

In summary, the “fictitious compress recovery” is valid 
and reliable, based on which the “downward 
continuation” problem is satisfactorily solved.   

Previous to the above mentioned simulation test, Shen 
and Wang et al (2005) completed an experimental test, 
which is summarized as follows. Two spherical surfaces 

1K∂ and 2K∂ with radii 1 6378R = km and 2 6680R = km 
were chosen (Cf. Fig.3), where 1K∂ and 2K∂ simulate the 
Earth’s surface (exactly saying the surface of Brillouin 
sphere) and the satellite surface, respectively. 

 
Fig.3 1K∂ and 2K∂ simulate the surface of the Earth or Brillouin sphere 

and the satellite surface, respectively 

With EGM96 model the potential value 
1

| KV ∂ on 1K∂  is 
known, and using Poisson integral the potential value 

2
| KV ∂ on the “satellite” surface was calculated, which was 

assumed to be the “observations”, that means the 
potential values 

2
| KV ∂ on the satellite surface were taken 

as the initial boundary values. Then, with 10 10o o× grid 
and based on the “fictitious compress recovery” method 
the fictitious field * ( )V P  was calculated, which is 

compared with the “real” value 
1

| KV ∂ on 1K∂ . The largest 

difference between the real value 
11 | KV ∂  and the 

calculated fictitious value 
1

* | KV ∂ is 0.04 m2s-2, which 
corresponds to a height variation 0.4 cm. Hence, the 
experimental test (Shen and Wang et al, 2005) supports 
the “fictitious compress recovery” method and the  
“fictitious downward continuation”. 

It is noted that the satellite surface S∂ can be also 
replaced by a spherical surface, which completely 
encloses the Earth (Cf. Remark 2). The simulation test in 
details as well as various other simulation tests will be 
provided in a separated paper.  

6 Conclusions and discussions 

If the geopotential on the Earth’s boundary ∂Ω  is 
determined, the Earth’s external potential field ( )V P  can 
be determined based on the “fictitious compress 
recovery” method. To realize this, the GPS “geopotential 
frequency shift” approach (Shen et al, 1993) is proposed. 
However, it is most likely that in the very near future it is 
very difficult to realize this approach in practice, due to 
the fact that the accuracy of the determined potential 
difference by using the GPS “geopotential frequency 
shift” approach is too low, which depends on the 
frequency stability of the signal receiver. At present, the 
frequency stability is around 15 1610 10− −−  (HMC Project, 
2005), which corresponds to the height variation about 
1m.  

If the gravitational potential ( )V P  on the satellite surface 
S∂  or the surface KΓ∂  of a sphere KΓ  (which 

completely encloses the whole Earth) is determined, e.g., 
using the energy integral approach (Cf. Gerlach et al, 
2003; Visser et al, 2003), the Earth’s external potential 
field ( )V P  can be also determined based on the 
“fictitious compress recovery” method  (Cf. Remark 2). 
This is a new approach for solving the “downward 
continuation” problem, referred to as the “fictitious 
downward continuation” (Cf. Sec.4). To realize this, it 
can be first determined the field 1( )V P  outside the 
satellite surface (or outside the sphere KΓ ) based on the 
spherical harmonic expansion (14) and by using GPS 
observations, and then the whole field outside the Earth 
could be determined, or the potential field could be 
directly determined if the determined boundary values are 
uniformly distributed on the satellite surface. Hence, in 
any case, the real field ( )V P  in Ω  can be exactly 
determined based on the boundary value SV∂  (or KV

Γ∂ ) 
and by using the “fictitious compress recovery” method.  
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At present, the determined position deviation (from the 
real position) by on-board GPS receiver is around 5 cm, 
which gives rise to the velocity deviation about 10 cm/s, 
if the time keeping error is neglected. Consequently, the 
deviation of the  “observed gravitational potential” on the 
satellite surface due to the position deviation is around 
0.01 m2/s2 (of course this is not the real case, because the 
accuracy of the accelerometer is relatively low). Hence, 
neglecting other error sources, the determined potential 
field has the deviation around 0.01 m2/s2.  

Generally, suppose the accuracy of the given value on the 
satellite surface (several hundred kilometres above the 
Earth’s surface) is Sσ∂ , then, the accuracy ( )rσ of the 
determined fictitious field (based on the “fictitious 
compress recovery” method) is on the same accuracy 
level as σ in the domain between the Earth’s surface and 
the satellite surface, expressed by the following relation 
(Shen and Tao, 2004): 

( ) (1 )S S
r hr
R R

σ σ σ∂ ∂= ≡ +                                  (19) 

where R  is the average radius of the Earth, h is the 
height of the field point above the Earth’s surface.   
Remark 2: The satellite surface S∂  can be replaced by the surface 

KΓ∂  of a sphere KΓ  that encloses the whole Earth. In this case, Eqs.(13) 

and (14) hold also in the domain K Γ , the domain outside the sphere 
KΓ  (there does not exist divergence problem any more in the domain 

K Γ ). Based on Eq.(14) and satellite observations, the field 1( )V P in the 

domain K Γ  could be determined. Then, after the  “fictitious compress 
recovery” method is applied, the real field ( )V P  in the whole domain 

Ω  outside the Earth could be determined, under the assumption that 

1( )V P  coincides with the real field ( )V P  in the domain K Γ  
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