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Abstract. This paper proposes an adaptive two-stage 
extended Kalman filter (ATEKF) for estimation of 
unknown fault bias in an INS-GPS loosely coupled 
system. The Kalman filtering technique requires 
complete specifications of both dynamical and statistical 
model parameters of the system. However, in a number of 
practical situations, these models may contain 
parameters, which may deviate from their nominal values 
by unknown random bias. This unknown random bias 
may seriously degrade the performance of the filter or 
cause a divergence of the filter. The two-stage extended 
Kalman filter (TEKF), which considers this problem in 
nonlinear system, has received considerable attention for 
a long time. The TEKF suggested until now assumes that 
the information of a random bias is known. But the 
information of a random bias is unknown or partially 
known in general. To solve this problem, this paper 
firstly proposes a new adaptive fading extended Kalman 
filter (AFEKF) that can be used for nonlinear system with 
incomplete information. Secondly, it proposes the 
ATEKF that can estimate unknown random bias by using 
the AFEKF. The proposed ATEKF is more effective than 
the TEKF for the estimation of the unknown random bias. 
The ATEKF is applied to the INS-GPS loosely coupled 
system with unknown fault bias. 

Keywords. adaptive two-stage extended Kalman filter; 
covariance rescaling; unknown fault bias 

 

1 Introduction 

The well-known Kalman filtering has been widely used 
in many industrial areas. This Kalman filtering technique 
requires complete specifications of both dynamical and 
statistical model parameters of the system. However, in a 
number of practical situations, these models contain 
parameters, which may deviate from their nominal values 
by unknown constant or unknown random bias. These 
unknown biases may seriously degrade the performance 
of the filter or even generate the divergence of the filter. 
To solve this problem, a new procedure for estimating the 
dynamic states of a linear stochastic system in the 
presence of unknown constant bias vector was suggested 
by Friedland (Friedland, 1969). This filter is called the 
two-stage Kalman filter (TKF). Many researchers have 
contributed to this problem. Recently, the TKF to 
consider not only a constant bias but also a random bias 
has been suggested through several papers (Ignagni, 
1990; Alouani, 1993; Keller, 1997; Hsieh, 1999; Ignagni, 
2000).  

Several researchers performed the extension of the TKF 
to nonlinear system (Shreve, 1974; Mendel, 1976; 
Caglayan, 1983). Unknown random bias of nonlinear 
system may also generate the large problem in the TEKF 
because the TEKF may be diverged if the initial estimates 
are not sufficiently good. So the TEKF for nonlinear 
system with a random bias has to assume that the 
dynamic equation and the noise covariance of unknown 
random bias are known although these are unknown in 
general. To solve these problems, an adaptive filter can 
be used. This paper proposes an adaptive two-stage 
extended Kalman filter (ATEKF) by using an adaptive 
fading extended Kalman filter (AFEKF). As a result, 
unknown random bias can be estimated by the ATEKF. 
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To verify the performance of the ATEKF, the proposed 
ATEKF is applied to the INS-GPS loosely coupled 
navigation system with unknown fault bias. In general, 
the INS-GPS loosely coupled system uses the EKF, 
which cannot effectively track time-varying parameters 
(Ljung, 1979). So when the navigation system has 
unknown fault bias, the EKF cannot estimate unknown 
fault bias and cannot eliminate this. This paper shows that 
the ATEKF can estimate and eliminate unknown fault 
bias in the INS-GPS loosely coupled system with 
unknown fault bias. 

2 Problem Formulation 

Consider the following nonlinear discrete-time stochastic 
system represented by 

( )1 , x
k k k k kx f x b w+ = +  (1a) 

 b
k k k kb A b w= +  (1b) 

( ) ,k k k k kz h x b v= +  (1c) 

where, kx  is the 1n×  state vector, kz  is the 1m×  
measurement vector and kb  is the 1p×  bias vector of 
unknown magnitude. All matrices have the appropriate 
dimensions. The noise sequence x

kw , b
kw  and kv  are zero 

mean uncorrelated Gaussian random sequences with 

0 0
0 0
0 0

Tx x x
k k k
b b b
k k k kj

k k k

w w Q
E w w Q

v v R
δ

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

 (1d) 

where 0, 0,  0x b
k k kQ Q R> > >  and kjδ  is the Kronecker 

delta. The initial states 0x  and 0b  are assumed to be 
uncorrelated with the white noise processes x

kw , b
kw  and 

kv . Assume that 0x  and 0b   are Gaussian random 
variables with   

[ ] *
0 0E x x= , ( ) ( )* *

0 0 0 0 0 0
T xE x x x x P⎡ ⎤− − = >⎣ ⎦ , 

[ ] *
0 0E b b= , ( ) ( )* *

0 0 0 0 0 0
T bE b b b b P⎡ ⎤− − = >⎣ ⎦ and 

( ) ( )* *
0 0 0 0 0

T xbE x x b b P⎡ ⎤− − =⎣ ⎦  

The function ( ),k k kf x b  and ( ),k k kh x b  can be expanded 
by Taylor series expansion as 

( ) ( ) ( )( )
( ) ( )( ) ( )( )
( ) ( )( ) ( )( )

( ) ( )( )
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 (3) 

where ( )kx ⋅)  and ( )kb ⋅  are the state estimate and the bias 
estimate respectively, fϕ  and hϕ  mean the higher order 
terms and  
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. 

The problem is to design an adaptive two-stage extended 
Kalman filter (ATEKF) to give a solution for nonlinear 
stochastic system with a random bias on the assumption 
that the stochastic information of a random bias is 
unknown or partially known. 

3 Two-stage Extended Kalman Filter in the Presence 
of a Random Bias 

In this section, we extend the optimal TKF to nonlinear 
stochastic system models in order to obtain a suboptimal 
TEKF. Until now, the several researchers have proposed 
the TEKF (Mendel, 1976; Caglayan, 1983). But the 
proposed TEKF was based on the suboptimal TKF. 
Recently, several researchers have proposed the optimal 
TKF for linear stochastic system with unknown random 
bias (Keller, 1997; Hsieh, 1999; Ignagni, 2000). Thus we 
newly propose the TEKF based on the optimal TKF as 
Lemma 3.1. 

Lemma 3.1: A discrete-time two-stage extended Kalman 
filter is given by the following coupled difference 
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equations when the information of nonlinear stochastic 
system (1) is perfectly known. 

( ) ( ) ( ) ( )( ) ( )1 1,k k k k k kx x U x b b− −− = − + + + −) )  (4a) 

( ) ( ) ( ) ( )( ) ( ),k k k k k kx x V x b b+ = + + − − +) )  (4b) 

( ) ( ) ( ) ( )( ) ( )
( ) ( )( )

1 1

1 1

,

              ,

x x b
k k k k k k

T
k k k

P P U x b P

U x b

− −

− −

− = − + + + −

+ +

)

)  (5a) 

( ) ( ) ( ) ( )( ) ( )
( ) ( )( )

,

              ,

x x b
k k k k k k

T
k k k

P P V x b P

V x b

+ = + + − − +

− −

)

)  (5b) 

where kA  and b
kQ  are known. The two-stage extended 

Kalman filter can be decomposed into two filters such as 
the modified bias free filter and the bias filter. The 
modified bias free filter, which is designed on the 
assumption that the biases are identically zero, gives the 
state estimate ( )kx ⋅ . On the other hand, the bias filter 

gives the bias estimate ( )kb ⋅ . Finally the corrected state 

estimate ( )kx ⋅)  of the TEKF is obtained from the 
estimates of two filters and the coupling equation kU  and 

kV . The modified bias free filter is 

( ) ( ) ( )( ) ( )1 1 1 1 1,k k k k k k kx F x b x C u− − − − −− = + + + + +)  (6a) 

( ) ( ) ( )( ) ( )
( ) ( )( )

1 1 1 1

1 1 1 1
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              ,

x x
k k k k k
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− − − −
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)
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k k k k k k k k
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−

− − = − − −
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) ) (6c) 

( ) ( ) ( )( ) ( ) ( )( )
( )

, ,

              

x x
k k k k k k k

x
k

P I K x b H x b

P

⎡ ⎤+ = − − − − −⎣ ⎦
−

) )

 (6d) 

( ) ( )( ) ( ),x
k k k k k k kz H x b x Eη = − − − − −)  (6e) 

( ) ( ) x x
k k k kx x K η+ = − +  (6f) 

and the bias filter is 

( ) ( )1 1k k kb A b− −− = +  (7a) 

( ) ( )1 1 1 1
b b T b
k k k k kP A P A Q− − − −− = + +  (7b) 

( ) ( )( ) ( )
( ) ( )( ) ( ) ( ) ( )( )
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⎢ ⎥
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)

) )  (7c) 

( ) ( ) ( )( ) ( ),b b b
k k k k k kP I K x b N P⎡ ⎤+ = − − − −⎣ ⎦

)  (7d) 

( )1
b x
k k k kN bη η −= − −  (7e) 

( ) ( )1
b b

k k k kb b K η−+ = − +  (7f) 

with the coupling equations  

( ) ( )( ) ( ) ( )( )
( ) ( )( )

1 1, ,

        ,

k k k k k k k
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N H x b U x b

D x b

− −= − − + +
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)  (8a) 

( ) ( )( ) ( ) 1

1 1 1, b b
k k k k k kU x b U I Q P

−

− − −
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( ) ( )( ) ( ) ( )( )
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1 1 1 1 1 1 1
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−
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( ) ( )( ) ( ) ( )( )
( ) ( )( )

1 1, ,
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k k k k k k

x
k k k k

V x b U x b

K x b N

− −− − = + +
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) )

)  (8d) 

( ) ( )( )( ) ( )1 1 ,k k k k k k ku U U x b A b+ += − + + +)  (8e) 

1 1
x x b
k k k k kQ Q U Q U+ += +  (8f) 

Here, the initial conditions: 

( ) * *
0 0 0 0x x V b+ = −  , ( ) *

0 0b b+ =  (9a) 

( )0 0 0 0 0
x x b TP P V P V+ = −  , ( )0 0

b bP P+ =  (9b) 

where ( ) 1

0 0 0
xb bV P P

−
= . 

The equations of the TEKF are similar to the equations of 
the optimal TKF. But although the structure of this TEKF 
is possible for nonlinear stochastic system, the coupling 
between the modified bias free filter and the bias filter in 
the nonlinear case exists and all linearizations about the 
state and bias estimate have to be evaluated. Thus a 
designer has to give attention to the linearization point 
when the TEKF is used.  

In general, the EKF may give biased estimates and be 
diverged if the initial estimates are not sufficiently good. 
So the incomplete information of nonlinear system may 
generate the large problem in the EKF. The TEKF has 
also the same problem. Thus the TEKF of Lemma 3.1 
assumes that kA  and b

kQ  are known.  

However, in most case, these are unknown. If this 
information is incomplete, the performance of the TEKF 
may be degraded or the TEKF may be diverged. To solve 
this problem, the TEKF has to be adapted to environment 
of incomplete random bias information. Thus an adaptive 
two-stage extended Kalman filter is needed  
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4 Adaptive Two-stage Extended Kalman Filter in the 
Presence of a Random Bias 

4.1 Adaptive Fading Extended Kalman Filter using 
Innovation Covariance 

Consider the following nonlinear discrete-time stochastic 
system represented by 

( )1 1,k k k k kx f x w+ = + ∆ +   (10a) 

( ) 2,k k k k kz h x v= + ∆ +  (10b) 

where kx  is the 1n×  state vector and kz  is the 1m×  
measurement vector. Moreover kw  and kv  denote 
sequences of uncorrelated Gaussian random vectors with 
zero means. Each covariance matrix is 

 ,   ,  0T T T
k j k kj k j k kj k jE w w Q E v v R E w vδ δ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = =⎣ ⎦ ⎣ ⎦ ⎣ ⎦ (11) 

where kjδ  is the Kronecker delta. The variable 1,k∆  
means the uncertainty term in the dynamic equation that 
is generated by incomplete process noise covariance, 
unknown input bias or incomplete model coefficients. On 
the other hand, the variable 2,k∆  means the uncertainty 
term in the measurement equation that is generated by 
incomplete measurement noise covariance or unknown 
measurement bias. Also 1,k∆  and 2,k∆  are independent of 

kw , kv  and kx  respectively. If the system information is 
perfectly known, 1,k∆  and 2,k∆  are all zero.  

The function ( )k kf x  and ( )k kh x  can be expanded by 
Taylor series expansion as 

( ) ( )( ) ( )( ) ( )( ),k k k k k k k f k kf x f x F x x x xϕ= + + − + + +) ) ) (12) 

( ) ( )( ) ( )( ) ( )( ),k k k k k k k h k kh x h x H x x x xϕ= − + − − + −) ) ) (13) 

where 
( )k

k
k

x x

fF
x = +

∂
=
∂ )

, 
( )k

k
k

x x

hH
x = −

∂
=
∂ )

. The variable fϕ  

and hϕ  mean the higher order terms.  

Definition 4.1: Several equations related to the 
innovation are arranged as follows. 

( )( )k k k kz h xη = − −)  (14a) 

( )T T
k k k k k k kC E H P H Rη η= = − +⎡ ⎤⎣ ⎦  (14b) 

             
1

1
1

k
T

k i i
i k M

C
M

ηη
= − +

=
− ∑  (14c) 

where kη  is the innovation of filter, kC  is the calculated 
innovation covariance and kC  is the estimated innovation 

covariance. Here M  is a window size. ( )kP −  is a 
calculated error covariance of the EKF. 

The equations of the EKF are similar to those of the 
linear Kalman filter. Thus first we derive an optimal 
property from the linear Kalman filter and secondly 
expand this result in terms of nonlinear system. One of 
the important properties of the optimal linear Kalman 
filter is that the innovation is a white sequence when the 
optimal filtering gain is used. Although the EKF is a 
suboptimal filter, this property can be used to improve the 
performance of the EKF in nonlinear system (10). The 
following equation (15) is the auto-covariance of the 
innovation in the EKF: 

[ ] ( )
1 1 1

1 1 1                 

, 1,2,3,    

T
k j k k j k j k j k j

T
k k k k k k k k

E H F I K H

F I K H F P H K C

j

η η+ + + − + − + −

+ + +

⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦
− − −⎡ ⎤⎣ ⎦

∀ =

L

L

(15) 

( ) T
k k k k kS P H K C= − −  (16) 

The white sequence has to satisfy a condition that the 
auto-covariance is zero because whiteness means 
uncorrelated in time. If the common term (16) of the 
auto-covariance (15) for all 1,2,3,j = L , is zero, then the 
innovation sequence is a white sequence. If we insert the 
error covariance and the Kalman gain of the EKF into 
equation (15), the auto-covariance of the innovation is 
identically zero since kS  is zero for all 1,2,3,j = L . 
Actually, the Kalman gain of the EKF is easily obtained 
when 0kS =  in the equation (16). In case of the linear 
Kalman filter, if the auto-covariance equation is zero, we 
can say that the filter is optimal. But, in case of the EKF, 
the real innovation sequence is not a white sequence due 
to higher order terms to be neglected and the linearization 
error. Nonetheless if the auto-covariance equation (15) of 
the innovation in the EKF is zero, then the performance 
of the EKF will be improved. When the system model is 
incomplete, the real covariance of the innovation is 
different from a theoretical one given in equation (14b). 
Hence the real auto-covariance of the innovation may not 
be identically zero although 0kS = . Under this 
background, this section newly proposes a new AFEKF.  

Definition 4.2: For a design of a new AFEKF, let’s 
define several variables. Assume that the system 
information is incomplete. From now, ( )kP − , kK  and 

kC  are defined as an error covariance, a Kalman gain and 
an innovation covariance for system with incomplete 
information. Here, kC  is calculated from the model 
equation of system with incomplete information. Thus 

kC  is also called as the calculated innovation covariance. 
On the other hand, ( )kP − , kK  and kC  are defined as an 
error covariance, an optimal Kalman gain and an 
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innovation covariance for system with complete 
information. We have to obtain these ( )kP − , kK  and kC  
by the appropriate method because the information of 
system to be considered is incomplete. Here, kC  can be 
obtained from (14c). Thus kC  is also called as the 
estimated innovation covariance. We assume 

( ) ( )k k kP Pλ− = −  where kλ  is a forgetting factor. If 

( )kP −  can be obtained by kλ , then the Kalman gain kK  

can be obtained from ( )kP − . 

Let’s think the case that the information of system is 
unknown or partially known. If ( )kP −  can be obtained 

by using the forgetting factor and kC  can be exactly 
estimated by (14c), then the Kalman gain kK  makes that 

0kS = , where 

( ) T
k k k k kS P H K C= − −  (17) 

However, in many cases, the difficulty is to get ( )kP −  

and kK . Therefore the filter is suboptimal for system 
with incomplete information in general. As a result, the 
problem is to seek how to exactly obtain ( )kP −  and kK . 

Definition 4.3: Scalar variable kα  is defined by 

( )

( )
( )

11max 1  ,  

or  max 1  ,  

k k k

k
k

k

trace C C
m

trace C
trace C

α

α

−⎧ ⎫= ⎨ ⎬
⎩ ⎭

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

 (18) 

where the AFEKF uses the relationship k k kC Cα= .  

In general, the innovation covariance shows the effect of 
the present error because the innovation is easily affected 
by the error. Let’s think for system with incomplete 
dynamic equation. The real innovation covariance of the 
present is estimated as kC . Then kC  is represented by 

( ) ( )T T
k k k k k k k k k k k kC C H P H R H P H Rα λ= = − + = − + (19) 

The increase of the innovation covariance by kα  is due to 
the increase of the error covariance by kλ  because the 
system has incomplete dynamic equation. On the other 
hand kR  remains unchanged. If the increased error 
covariance is larger than kR , we can think that kα  is 
almost equal to kλ .  

Remark 4.1: Sometimes, we only partially know the 
dynamic equation of nonlinear stochastic system. Then, 
the estimation error may be increased by the effect of 
unknown information. This means that the error increase 

is due to incomplete process noise covariance, unknown 
input bias or incomplete model coefficients. The effects 
of incomplete information in dynamic equation can be 
compensated through the increase of the magnitude of 

( )kP − . If we assume the relationship k kλ α= , then the 
error covariance is  

( ) ( )k k kP Pα− = − . 

Definition 4.4: A discrete-time adaptive fading extended 
Kalman filter is given by the following coupled 
difference equations when the information of nonlinear 
stochastic system (10) is partially known. 

( ) ( )( )1 1k k kx f x− −− = +) )  (20a) 

( ) ( )1 1 1 1
T

k k k k k kP F P F Qλ − − − −− = + +⎡ ⎤⎣ ⎦  (20b) 

( ) ( ) 1T T
k k k k k k kK P H H P H R

−
= − − +⎡ ⎤⎣ ⎦  (20c) 

( ) ( ) ( )k k k kP I K H P+ = − −  (20d) 

( ) ( ) ( )( )k k k k k kx x K z h x⎡ ⎤+ = − + − −⎣ ⎦
) ) )  (20e) 

where k kλ α= . 

4.2 Adaptive Two-stage Extended Kalman Filter using 
the AFEKF 

The ATEKF can be easily designed by the proposed 
AFEKF. This ATEKF is used when the information of 

kA  and b
kQ  are incomplete. For a compensation of the 

effects of incomplete information in the bias filter of the 
TEKF, the calculated innovation covariance and the 
estimated innovation covariance are defined by (21b) and 
(21c). 

Definition 4.5: Several equations related to the 
innovation are arranged as follows. 

( )1
b x
k k k kN bη η −= − −  (21a) 

( ) ( )( ) ( ) ( ) ( )( )
( )

, ,

           

b x T
k k k k k k k k

b T
k k k k

C H x b P H x b

R N P N

= − − − − −

+ + −

) )

 (21b) 

1

1
1

k
Tb b b

k i i
i k M

C
M

η η
= − +

=
− ∑  (21c) 

The b
kα  is equal to the forgetting factor b

kλ  where 
b b b
k k kC Cα= . By the forgetting factor calculated from 

(21b) and (21c), the state error covariance equation (7b) 
is changed into 

( ) ( )1 1 1 1
b b b T b
k k k k k kP A P A Qλ − − − −⎡ ⎤− = + +⎣ ⎦  (22) 
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The modified bias free filter of the TEKF has ku  and x
kQ . 

For convenience, the equation of (8e) and (8f) are 
rewritten as (23a) and (23b). In (23a), ku  is related to the 
incomplete kA  and b

kQ . In (23b), x
kQ  is also related to the 

incomplete b
kQ . 

( ) ( )( )( ) ( )

( )( ) ( )

( ) ( )

1 1

1

1 1 1

1

1 1

,

   

   

k k k k k k k

b b
k k k k k k

b b
k k k k k

u U U x b A b
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1 1
x x b
k k k k kQ Q U Q U+ += +  (23b) 

For a compensation of the effects of incomplete 
information in the modified bias free filter of the TEKF, 
the each innovation covariance is defined by (24b) and 
(24c). 

Definition 4.6: Several equations related to the 
innovation are arranged as follows. 

( ) ( )( ) ( ),x
k k k k k k kz H x b x Eη = − − − − −)  (24a) 

( ) ( )( ) ( ) ( ) ( )( ), ,x x T
k k k k k k k k kC H x b P H x b R= − − − − − +) )   

 (24b) 

1

1
1

k
Tx x x

k i i
i k M

C
M

η η
= − +

=
− ∑  (24c) 

The x
kα  is equal to the forgetting factor x

kλ  where 
x x x
k k kC Cα= . By the forgetting factor calculated from 

(24b) and (24c), the state error covariance equation (6b) 
is changed into 

( )
( ) ( )( ) ( )
( ) ( )( )

1 1 1 1

1 1 1 1

,

,

x
k k k kx x

k k T x
k k k k

F x b P
P

F x b Q
λ

− − − −

− − − −

⎡ ⎤+ + +
⎢ ⎥− =
⎢ ⎥+ + +⎣ ⎦

)

)  (25) 

The proposed ATEKF is applied to the INS-GPS loosely 
coupled system with unknown fault bias in next section. 

5 Application to the INS-GPS Loosely Coupled 
System with Fault Bias 

5.1 INS-GPS Loosely Coupled System 

The dynamic model of the INS-GPS loosely coupled 
system can be formed from the differential equations of 
the navigation error. The time varying stochastic system 
model is  

( ) ( ) ( ) ( ) ( ) ( )INS LC LC LCx t F t x t G t b t G t w (t)= + +&  (26) 

[ ]TN E D N E Dx L l h V V Vδ δ δ δ δ δ φ φ φ=  (27) 

[ ]TLC aX aY aZ gX gY gZw w w w w w w=  (28) 

( ) ( ) ( ) INS GPS
LC LC

INS GPS

P P
z t H x t v t

V V
⎡ ⎤ ⎡ ⎤

= + = −⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (29) 
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×
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×

×

×

×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (30) 

where the error state variable ( )x t  represents the 
position, velocity and attitude errors of vehicle, the bias 
term ( )b t  represents the inertial sensor bias errors, which 
consist of the accelerometer bias error and the gyro bias 
error, ( )~ 0,LC LCw N Q is white noise of the inertial 

sensor and ( )~ 0,LC LCv N R  is white noise of the GPS. 
(Hong, 2004; Titterton, 1997) 

Remark 5.1: The accelerometer error consists of white 
Gaussian noise and the accelerometer bias error, which is 
assumed as a random constant. The gyroscope error 
consists of white Gaussian noise and the gyroscope bias 
error, which is assumed as a random constant. 

To analyze the performance of the INS-GPS loosely 
coupled system, experiments were carried on the campus 
of the Seoul National University. The Differential GPS 
(DGPS) trajectory is used as a reference trajectory. The 
IMU (LP-81) and the GPS receiver (CMC Allstar) were 
mounted on the test vehicle. LP-81 provides raw IMU 
measurements at 100Hz, while CMC Allstar provides 
GPS data at 1Hz. The specifications for LP-81 and CMC 
Allstar are shown respectively in Table 5.1 and Table 5.2. 
The initial alignment time is 310 sec  and the total 
navigation time is 1490 sec . 

5.2 Fault Bias Estimation using the ATEKF 

To verify the performance of the ATEKF for the INS-
GPS loosely coupled system with unknown fault bias, we 
consider an accelerometer fault. We insert a fault bias 
into data obtained from experiment of section 5.1. 
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Table 5.1 The specifications of LP-81 

Sensor Accel. ( )1σ  Gyro. ( )1σ   

Bias repeatability 500 gµ  3 deg/ h  
Scale Factor 500ppm  500ppm  
Misalignment 60 arcsec  60 arcsec  
Noise 0.02 ft/sec  5 arcsec  
Correlated Noise 40 gµ  0.1 deg/ h  

Table 5.2 The specifications of CMC Allstar 

Parameter Allatar ( )1σ  

Receive frequency L1 : 1575.42 MHz  
Tracking code C/A code (SPS) 
Position accuracy 16  CEPm  
Velocity accuracy 0.2 m s  

Table 5.3 The fault of the Accelerometer 

Fault position Magnitude of fault bias Time 

Accel. X-axis 10 mg, 30 mg, 50 mg, 100 mg 800 sec 

 

As shown in Table 5.3, we insert fault biases of 10 mg, 
30 mg, 50 mg and 100 mg into X-axis of an 
accelerometer. The fault occurrence time is 800 sec. 
When the accelerometer sensor has a fault, the position 
error of the ATEKF is smaller than that of the TEKF. Fig 
5.1 shows the bias estimation results of the TEKF and the 
ATEKF for several accelerometer fault biases. The 
tracking performance of the ATEKF is better than that of 
the TEKF. The ATEKF quickly tracks unknown fault 
bias. The estimate of fault bias is used for compensation 
of the sensor fault, so the navigation error in the ATEKF 
is more decreased than the TEKF. Finally the result of the 
ATEKF for jumping fault bias is shown in Fig 5.2. 
Totally, the ATEKF can effectively track unknown fault 
bias. 
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(a) Bias estimation (TEKF) 
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(b) Bias estimation (ATEKF) 

Fig 5.1 The bias estimation results of the TEKF and the ATEKF for 
several accelerometer fault biases 
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Fig 5.2 The results of bias estimation in the ATEKF for jumping fault 

bias 

6 Conclusion 

The problem of unknown random bias frequently 
happens in a number of practical situations. The two-
stage Kalman filtering technique considers this problem. 
The information of unknown random bias is unknown in 
general. However until now, a designer assumed that this 
information is known when two-stage extended Kalman 
filter is designed. So, to solve this problem, this paper 
proposes the adaptive two-stage extended Kalman filter 
for nonlinear stochastic system with unknown random 
bias. To design the adaptive two-stage extended Kalman 
filter, the adaptive fading extended Kalman filter is firstly 
designed. This AFEKF can be used for nonlinear 
stochastic system when the system information is 
partially known. The AFEKF can be applied to nonlinear 
stochastic system with unknown random bias. But the 
AFEKF can only estimate true state, so this cannot 
eliminate unknown random bias. On the other hand, the 
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ATEKF can estimate true state and unknown random bias 
together, so this can eliminate unknown random bias.  

The proposed ATEKF can be applied to the problem 
related a fault compensation. The reliability of vehicle or 
aircraft depends on integrated navigation system like the 
INS-GPS loosely coupled system. Thus the fault 
tolerance is very important in integrated navigation 
system. The EKF is widely used for integrated navigation 
system, but the EKF cannot effectively track time varying 
parameters or unknown parameter. The TEKF has also 
this problem. This paper applies the ATEKF to the INS-
GPS loosely coupled system with unknown fault bias. 
Unknown fault biases in accelerometer can be effectively 
eliminated by the ATEKF. As a result, this paper shows 
that the performance of the ATEKF is better than that of 
the TEKF in case of unknown fault bias.  
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