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Abstract.  The integration of GPS, PL and INS sensors 
can be implemented at three different levels. Compared 
with loose and tight integration, ultra-tight integration 
offers numerous advantages including increased 
robustness under high dynamics, and improved anti-
jamming performance. In current ultra-tight integration 
scenarios, a centralised Kalman filter is commonly 
employed to fuse either In-phase (I) and Quadrature (Q) 
data from the tracking loop or the pseudorange 
measurement and Position, Velocity, Attitude (P, V, A) 
measurements from the Inertial Navigation System (INS). 
Though relatively simple, this centralised filter structure 
has some disadvantages. Firstly, to reduce the 
computational load, the filter only makes coarse estimates 
of Inertial Measurement Unit (IMU) random errors, 
which significantly degrades the system performance. 
Secondly, for more accurate estimates, the filter becomes 
much more complicated, resulting in a large increase in 
the computation time. All of these hinder the performance 
of ultra-tight integration considerably. This paper 
proposes a federated filter structure for the ultra-tight 
integration of GPS, PL and INS sensors. The new filter 
structure distributes the computing tasks to different 
Kalman filters, leading to reduced filter complexities and 
improved system performance. IMU random errors are 
estimated separately by the pre-filter at a high data rate, 
whilst the main filter has a simplified structure, i.e. no 
estimation of the IMU random errors, and operates at a 
relatively slow rate. This paper will discuss the dynamic 
modelling method based on the Walsh function transform 
for implementing the pre-filter and the simplification of 
the main filter. Simulation tests were performed to 
compare the performance of the federated filter with that 
of the usual centralised Kalman filter in the estimation of 
the IMU random errors. The results show that with the 
simplification of the Kalman filter structure, the federated 
filter design can achieve the almost equally precise 
estimates as the centralised Kalman filter does but with 
less computational burden. Hence the federated design is 
more suitable for implementing the ultra-tight integration 
for real-time applications. Finally, the simulated high 

dynamic flight test results of ultra-tight integration based 
on the federated Kalman filter are presented. 
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Introduction 

The Global Positioning System (GPS), Inertial 
Navigation System (INS) and Pseudolite (PL) 
technologies all play very important roles in navigation 
systems. As an independent navigation system, GPS 
provides a variety of useful navigation data, e.g. 
pseudorange, pseudorange-rate, etc. Though the precision 
is independent of time, the performance will become 
unreliable when the equipment experiences high 
dynamics, or when the receiver is exposed to jamming or 
interference from communication equipment, etc. In 
comparison to GPS, though INS is autonomous and 
provides good short-term accuracy, but its usage as a 
stand-alone navigation system is limited due to the time-
dependent growth of the inertial sensor biases (Titterton 
& Weston, 1997). PLs are ground-based transmitters that 
can transmit GPS-like signals. They have some 
advantages in that their positions can be determined 
precisely, and the Signal-to-Noise Ratios (SNR) are 
relatively high. The integration of GPS, INS and PL is 
increasingly important, because their combined 
performance, in principle, overcomes the shortcomings of 
the individual sensor systems.  

Initially, the GPS and INS were integrated in “loose” 
mode, where the navigation solutions from the individual 
systems are combined together by an optimal integrating 
filter. In this system-level integration, GPS and INS 
systems were treated independently. Though easy to 
implement, the navigation solution can be improved. As a 
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result, the integration evolved into the so-called tightly-
coupled mode, where the raw measurements from GPS, 
e.g. pseudorange, pseudorange-rate, are combined with 
INS measurements or positions (Sennott, 1997). The 
system performance is remarkablely improved.   

In severe environments, such as under high dynamics, 
and/or intentional or unintentional RF interference, the 
performance of the loose and tightly-integrated system 
will be degraded because the GPS solutions become 
increasingly unreliable. For a more robust navigation 
solution, the integration level moves into both the 
individual systems, especially into the GPS receiver 
itself. That is, the ultra-tight integration navigation filter 
combines either the I and Q measurements from the GPS 
tracking loop or the pseudorange measurements with the 
INS navigation parameters to produce the optimal 
Doppler estimate. This removes the dynamic stress of the 
code and phase tracking loops, thus keeping them in 
stable tracking mode during high dynamics (Alban, 2003; 
Beser, 2002; Poh, 2002). This tracking loop level 
integration is more complicated than the other two as it 
requires good knowledge of GPS receiver’s tracking loop 
architecture. Differing from the conventional GPS 
receiver used in the other two configurations, in which 
the tracking loop is closed and the local reference signal 
is the only feedback of the loop filter, the ultra-tightly 
integrated system’s feedback signal is derived from both 
the loop filter and the integrated navigation filter. This 
improves the accuracy of GPS measurements by 
maintaining a narrow tracking loop bandwidth without 
degrading its dynamic tracking capability.  

In an ultra-tightly integrated system, usually the updating 
frequency of the GPS tracking loop is 1kHz. However, 
due to large-sized matrix computations and hardware 
limitations, the integrated Kalman filter output rate is 
between 1-10Hz. Accurate estimates need a complicated 
filter structure, which typically means more computing 
time. For real-time applications, not only the precision of 
estimates, but also the computing time should be taken 
into account. Hence there must be a compromise in the 
system design. 

This paper proposes a federated Kalman filter structure to 
implement the ultra-tight integration. The computation by 
the integrated filter is distributed into different parts, so 
that the main filter integrates the GPS measurements and 
INS data while the other filter, i.e. pre-filtering filter, is 
specifically designed to compensate for the IMU errors. 
These two Kalman filters work in parallel, so that the 
computing time is kept to a minimum. When using a 
Kalman filter to estimate and compensate for the IMU 
errors, a pivotal technique is to determine the dynamic 
model of the IMU sensors, which is used to derive the 
state transition matrix for implementing the Kalman 
filter. This paper will discuss the dynamic modelling of 
an IMU employing a novel modelling method based on 

the Walsh function and its transform. The precision of the 
dynamic model of the IMU directly influences the 
accuracy of the INS data, and eventually the quality of 
the aiding Doppler. In this paper, a dynamic modelling 
method will be discussed and simulation experiments will 
be carried out to demonstrate the proposed dynamic 
modelling method. Several test scenarios have been used 
to investigate the ultra-tight receiver based on the 
federated Kalman filter structure, compared to a stand-
alone receiver. The results show that the ultra-tight 
integration produces a more robust and accurate solution 
under high dynamics and low SNR environments. 

2 Kalman Filter Structure for The Ultra-Tight 
Integration 

The purpose of the ultra-tight integration is to keep the 
GPS receiver stable for high dynamic applications, with 
the integration of inertial measurements. As the dynamics 
are removed from the tracking loop, the loop bandwidth 
will be reduced to the minimum, depending on the 
accuracy of the aiding measurements derived from the 
inertial sensors and the stability of the receiver clock. As 
a result, in this case, even in high dynamics and low SNR 
applications the tracking loop could remain in a narrow 
PLL, which means precise measurements and therefore 
an accurate and robust position solution. 

In general, in either the ultra-tight integration or the 
stand-alone GPS receiver operation, the loop filter 
measures the errors between the incoming and reference 
signals and feeds them into the Numeric Control 
Oscillator (NCO) to align the phase of the local reference 
signal so that it’s frequency and phase are identical to 
those of the incoming signal. Usually this process will 
take 1 millisecond, i.e. one C/A code period. The update 
rate of the loop is 1kHz. In the ultra-tight integration, the 
aiding Doppler from the integrated filter should be 
provided at the same rate. 

The integrated filter which outputs the aiding Doppler is 
implemented by Kalman filter techniques. Because there 
are intensive computations the computing time of the 
Kalman filter is longer than 1 millisecond; resulting in a 
data update rate of 1-10Hz. To synchronise the tracking 
loop and the aiding Doppler, the output rate of the 
Kalman filter must be increased by simplifying its 
structure (but which would otherwise result in a 
degradation of the quality of the aiding Doppler and other 
estimates). One method to solve this problem is to 
interpolate the lower aiding Doppler rate to the required 
rate, i.e. 1kHz, with a multi-rate signal processing 
algorithm (Babu and Wang, 2004). For improved 
estimates, the Kalman filter should be carefully designed. 
However, the long computation time for accurate results 
will reduce the output rate and result in degradation of the 
performance of the interpolation.    
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To solve this paradox there must be a compromise 
between the computing time and the estimating accuracy 
of the Kalman filter. The federated Kalman filter 
structure is investigated to implement the ultra-tight 
integration, whereby the computation of the integrated 
filter is divided into different filters. Figure 1 depicts the 
system structure of ultra-tight integration based on a 
federated Kalman filter. The main filter integrates the 
GPS measurements and the INS data, while the other one, 
i.e. the pre-filtering Kalman filter, will operate in parallel 
with the main filter to estimate and compensate for the 
IMU errors. This structure succeeds in distributing the 
computational burden into different filters, all operating 
at the same time. 

The Kalman filter is used to generate optimal estimates of 
a dynamic system. The key to implementing the pre-
filtering Kalman filter is to determine its state transition 
matrix, which could be directly deduced from the 
dynamic model of the estimated system. For describing 
the characteristics of the dynamic system, we can use the 
dynamic model or the state transition matrix.  

 
Fig. 1 Configuration of the federated Kalman filter for the ultra 

tight integration  

To implement the pre-filtering Kalman filter requires a 
knowledge of the IMU dynamic model. Usually there are 
time-domain and frequency-domain based methods to 
establish this dynamic model. However these two 
methods are inefficient because they are computationally 
intensive, complex and it is easy to introduce errors in the 
multi-modelling steps (Li, 2004). In this paper the IMU 
dynamic model is derived by a new dynamic modelling 
method based on the Walsh function and its transform. 
The advantages of this modelling method are that the 
integration can be replaced by matrix multiplication, and 
the parameters of the dynamic model can be directly 
derived from the matrix operation. Thus the errors can be 
reduced to obtain a more accurate model of the dynamic 
system.  

3 Implementation of The Federated Kalman 
Filter 

3.1 Implementation of The Pre-filtering Kalman 
Filter  

The effective way to eliminate the errors of the IMU is 
the complementary Kalman filter technique. Based on the 
Kalman filter theory, precise estimates can only be 
derived from the accurate dynamic model. 

Usually the characteristic of the dynamic system is 
described by means of a transfer function, which is the 
representation of the differential equation in the s-
domain. The IMU dynamic model can be represented by 
1st or 2nd order transfer functions (Li and Sun, 2004). The 
outputs of the IMU should be estimated in real-time, 
which usually has a high output rate. In this case, the 1st 
order IMU models are used to simplify the structure of 
the pre-filtering Kalman filter and, as a result, this 
increases the output rate. The transfer function of IMU 
can be given as: 
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where K is the system gain and T is the time constant of 
system. These two parameters have an impact on the 
system dynamic performance. The determination of the 
IMU dynamic model becomes a problem of parameter 
identification in equation (1). Using the Walsh function 
dynamic modelling method, firstly the calibrated data are 
collected from the IMU. Secondly, 

mW , p and Tω are 
generated. Then the Walsh transform of input/output data 
are carried out. And finally the coefficients K and T are 
extracted by matrix operations.   

Once K and T have been determined and the noise w has 
been introduced, the transfer function equation (1) can be 
transformed into a state-space description: 
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where T is the time constant, and w is the system noise. 
Discretising the continuous state-space equation (2) 
(Zheng, 2000): 
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where Ts is the sampling period, T is the time constant of 
system, G is the system state transition matrix, H is the 
system noise transition matrix, the process and 
measurement model of the Kalman filter can be derived 
using the dynamic model of the IMU: 
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where T
acc3acc2acc1gyro2gyro2gyro1IMUΦ ],,,,,[ ϕϕϕϕϕϕ= , is the 

state vector of the Kalman filter. 
Here acc3acc2acc1gyro2gyro2gyro1 ϕϕϕϕϕϕ ,,,,, are the 
estimated outputs of the IMU, and w(k), v(k) are zero-
mean white noise. 

T
accaccaccgyrogyrogyroIMU yyyyyyY ],,,,,[ 321321=  

and 321321 ,,,,, accaccaccgyrogyrogyro yyyyyy  are the original 
outputs of the IMU used as the measurements for the pre-
filtering Kalman filter. 

When the original outputs of the IMU are used as the 
measurements of the pre-filtering Kalman filter, the 
estimated outputs are the optimal estimation of the raw 
outputs of the IMU, i.e. a pre-filtering Kalman filter can 
produce the optimal estimates of the IMU outputs. Hence, 
these calibrated IMU outputs derived from the pre-
filtering Kalman filter can be used in the inertial 
navigation algorithm to generate the navigation solutions 
for position, velocity and attitude. 

3.2 The Simplified Structure of the Main Kalman 
Filter  

The main advantage of the federated Kalman filter is that 
it can distribute the computational tasks of a centralised 
Kalman filter into two parallell Kalman filters, i.e. the 
pre-filtering and the main Kalman filter. The structure of 
main Kalman filter can be simplified at the same time 
without degrading the quality of the estimates. The IMU 
errors, i.e. the gyro and accelerometer random drifts, are 
estimated and compensated for in the pre-filter.  

There are several different options for implementing the 
ultra-tight integration Kalman filter. In one of them, the 
GPS-measured pseudorange is used as the measurement 
for the Kalman filter. Based on the optimal estimates of 
receiver velocity, the aiding Doppler can be obtained to 
feed back the tracking loop (Alban, 2003). In this paper, 
this structure is adopted to implement the ultra-tight 
integration. Usually the state vector in this type of ultra-
tight Kalman filter structure comprises 16 variables: 
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where hδδλδϕ ,, are the position errors, i.e. latitude, 
longitude and height errors. 

zne vvv δδδ ,, are the velocity 
errors, i.e. east, north and up velocity errors in the local 
level coordinate system, respectively. γβα ,, are the 
attitude errors, i.e. pitch, roll and heading angle errors in 
the body coordinate system. b

ibz
b

iby
b

ibx fff δδδ ,, are the 3 

accelerometer random drifts, b
ibz

b
iby

b
ibx δωδωδω ,, are the 3 

gyro random drifts, and btδ is the GPS receiver clock bias. 

The measurement used in the Kalman filter is the 
difference between the INS-derived pseudorange and the 
GPS-measured pseudorange; therefore it is a function of 
receiver position errors and GPS receiver clock bias 
errors: 

Vtheee b ++++= δδδλδϕδρ 321        (6) 

where 321 ,, eee are the elements of the unit vector between 
satellite and receiver. V is the measurement noise. δρ is 
the pseudorange difference, which is derived from 

GPSINS ρρ − , here 
INSρ is the INS-derived pseudorange 

measurement which contains the receiver position errors, 
and 

GPSρ is the GPS-measured pseudorange which 
contains the receiver clock bias errors. 

Once we obtain the optimal estimates of receiver 
velocity, the aiding Doppler can be calculated: 
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where 
txf is the GPS L1 frequency, Vvel is the relative 

velocity between satellite and receiver, ar is the line-of-
sight unit vector between satellite and receiver, and c is 
the speed of light. For a detailed discussion of how to 
derive the aiding Doppler from the estimated velocity 
readers are referred to Babu and Wang (2004) and Kaplan 
(1996). 

In the federated Kalman filter structure, as the pre-
filtering Kalman filter compensates for the IMU errors, 
there is no need for the main Kalman filter to estimate the 
IMU random errors, therefore the number of state 
variables can be reduced to 10 (removing the 6 IMU drift 
state variables), and the structure of the Kalman filter (i.e. 
the state transition matrix) can be simplified. If the 
number of state variables is 16 or 10, the number of 
elements in the state transition matrix will be 162=256 or 
102=100 respectively. Hence because the value of every 
element should be calculated by the software, reducing 
the number of state variables can significantly reduce the 
computational burden of the Kalman filter. Furthermore, 
reducing the state variables can simplify the structure of 
the Kalman filter by neglecting the correlations between 
the IMU errors and the other variables. Because the 
attitude and velocity errors are correlated with the IMU 
random drift errors, for example, the attitude pitch angle 
and the east velocity error equations are given as: 
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where hRR e += , 
eR and h is the earth radius and height 

respectively, and 
ieω is the angle rate of earth rotation. 

zx ff , are the accelerometer measurements in the body 
coordinate system. 

In the federated Kalman filter structure, the pre-filtering 
Kalman filter estimates and compensates for the IMU 
random drifts, thus the main Kalman filter doesn’t need 
to estimate them. As described above, the correlations of 
the IMU random drift errors with the other state variables 
can be neglected. The attitude and velocity error equation 
could be simplified: 
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Hence the state transition matrix can be simplified. Here 
we still use the pseudorange differences as the 
measurements for the Kalman filter. Hence the 
measurement model is the same as that in the centralised 
Kalman filter, which is described by equation (6). 

4 Experimental Results 

4.1 IMU Dynamic Modelling Results 

Given the 2nd order dynamic system: 
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the Walsh function modelling results are shown in Table 
1. Using these modelling results the dynamic models are 
constructed, as shown in Figure 2. The dashed lines 
represent the outputs of these models and the solid lines 
represent the outputs of the model in equation (10) which 
were applied to the same unit step input signal. 
Table 1. Modeling results of method using different numbers of Walsh 

function 

Model 
Parameters 1a  2a  1b  2b  

 0.53 1 0 1 
8 Walsh 
function 0.92627 1.9058 -1.1183 1.9138 

32 Walsh 
function 0.54293 1.0162 -0.16551 1.0163 

128 Walsh 
function 0.53035 1.0009 -

0.0054747 1.001 

256 Walsh 
function 0.53018 1.0002 -0.020797 1.0002 

The results show that the accuracy of the estimated model 
parameters depends on the number of Walsh functions 
used for the modelling. For the simulation test, 128 
Walsh functions produce good modelling results. 

4.2 Pre-filtering Kalman Filter Testing Results 

First, the flight trajectory with known dynamics, with 
characteristics shown in Table 2, was generated. 

 
Fig. 2 Modeling results of different number of Walsh function  

A comparison between IMU outputs with/without using 
the pre-filtering Kalman filter was made in order to study 
how the pre-filtering improves the IMU outputs. In the 
simulation test, the dynamics of the trajectory are known, 
i.e. the position, attitude and velocity, and the original 
IMU outputs could be deduced from this information. 
After adding noise to the original IMU outputs, the 
simulated raw IMU outputs corresponding to the flight 
trajectory could be obtained. Simulation time lasts for 60 
sec. The output rate of the IMU is 100Hz. Figure 3 
depicts the IMU outputs that have large errors from the 
known trajectory. 

Table 2. Parameters of flight trajectory  

Initial position  
(latitude, longitude, 

high) (degree) 
45° 45° 0 

Initial velocity  
(east, north, up) (m/s) 1 1 0 

Initial acceleration 
(m/s2) 

0 0 0 

Initial attitude 
(roll, pitch, heading) 

(degree) 
0 0 45° 

Simulation time(s) 60 
Simulation time step (s) 0.01 

Flight status Constant acceleration = 0.5g 
 
After optimally estimating the IMU outputs by the pre-
filtering Kalman filter, most of the IMU random drift 
errors were removed, and the filtered IMU outputs are 
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shown in Figure 4, indicating an improvement in IMU 
outputs. 

4.3 Main Kalman Filter Testing Results 

To test the performance of the federated Kalman filter, 
the comparison of the estimates from these two 
configurations, i.e. the federated and centralised Kalman 
filter, is carried out. 

 

 
Fig. 3 Original outputs of IMU  

In the centralised Kalman filter structure, the IMU 
random drifts errors are estimated together with other 
state variables. The optimal navigation solutions of 
position, attitude and velocity, represented as the latitude, 
longitude, earth-level velocity and roll, pitch, heading 
(compensated by the estimated errors derived from the 
Kalman filter) are shown in Figure 5. 

In the federated Kalman filter, as the IMU random drift 
errors are already estimated during the pre-filtering, the 
main Kalman filter doesn’t need to estimate the IMU 
errors again. To compare with the results of the 
centralised Kalman filter, the compensated position, 
attitude and velocity are given in Figure 6. From Figure 6 
it can be observed that the federated Kalman filter 
delivers the same precision of estimates as the centralised 
Kalman filter approach, however the computing time is 

greatly reduced because of the simplified state transition 
matrix. Hence, the update rate of the estimates can be 
increased, which is helpful when implementing the 
Kalman filter for real-time applications. 

4.4 Ultra-Tight GPS/INS Receiver Experimental 
Results 

As shown in the previous section, the federated Kalman 
filter structure velocity estimates with the same accuracy 
as the centralised Kalman filter.  

 

 
Fig. 4 Filtered outputs of IMU  
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Fig. 5 Navigation solutions based on the centralised Kalman filter 

structure  

 
Therefore the accuracies of the aiding Doppler for both 
configurations is of the same level, which means that the 
ultra-tight GPS/INS receiver based on the federated 
Kalman receiver has the same quality of output as the 
centralised Kalman filter, but benefits from faster 
compution.  

Figure 7 illustrates the performance of the ultra-tightly 
integrated GPS/INS receiver and the stand-alone GPS 
receiver. The tracking loop bandwidth is set at 12Hz. 
Normally, by comparing the power of the carrier tracking 
loop with the tracking threshold it can be determined if 
the tracking loop is in FLL or PLL mode, which 
illustrates the stability and accuracy of the tracking loop. 
As mentioned above, the FLL means lower 
measurements accuracy. For better tracking effect, the 
tracking mode should quickly switch from FLL to PLL. 
From Figure 7 it can be shown that when the dynamics of 
the simulated trajectory is high, the stand-alone GPS 
receiver tracking loop had large tracking errors and 
remained in the FLL mode. Once the dynamics become 
larger or the bandwidth is reduced, it will lose lock. 
However, the ultra-tightly integrated receiver could 
remain in the PLL tracking mode with the same 
dynamics, therefore it can be concluded that the ultra-
tight integrated receiver is more robust for the high 
dynamic applications. 

Usually the variety of the code loop power represents the 
stability of the code tracking loop. If it is large enough to 

exceed the threshold, the code tracking loop will lose 
lock. Because the carrier tracking loop relies on the 
stability of the code tracking loop, it will also lose lock at 
the same time. Figure 8 shows that the variety of code 
loop power of the ultra-tight receiver is smaller than that 
of a stand-alone receiver, meaning it has more stable 
tracking capability. 

The Q measurements represent the tracking loop errors. 
Figure 9 demonstrates that the ultra-tight receiver has 
smaller tracking errors than the stand-alone receiver 
under the same dynamic conditions, i.e. more accurate 
measurements could be obtained from the tracking loop. 

 

 

 
Fig. 6 Navigation solutions based on the federated Kalman filter 

structure  
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Fig. 7 Comparison of tracking loop status between the ultra tight 

integration and stand-alone receiver 

5 Concluding Remarks 

 

In this paper a federated Kalman filter structure for the 
ultra-tight integration of GPS/INS/PL has been 
investigated, in which the IMU random errors are 
estimated and compensated for by a pre-filtering Kalman 
filter. In this way the computational burden can be 
separated into different parts and processed in parallel. 
The pivotal technique to implement this structure, the 
dynamic modelling method of the IMU based on the 
Walsh function and its transform, is investigated and the 
simulation experiments have demonstrated its accuracy 
and feasibility. The Kalman filter was implemented on 
the IMU dynamic model. Test results have shown that the 
IMU errors can be effectively removed by pre-filtering so 
that the accuracy of the aiding Doppler derived from the 
integrated Kalman filter is the same as that of the 
centralised Kalman filter, but requires less computation 
time. This federated Kalman filter structure is therefore 
especially attractive, especially for real-time applications. 

 
Fig. 8 Code tracking loop status  

 
Fig. 9 Tracking loop Q measurements  
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