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Di�erential GPS: the redu
ed-di�eren
e approa
hAndré LannesCentre National de la Re
her
he S
ienti�queL2S, Supéle
, 3, rue Joliot-Curie,91192 Gif-sur-Yvette 
edex (Fran
e)Abstra
t. In the traditional approa
h to di�erentialGNSS, the satellite error terms are eliminated by form-ing the so-
alled single di�eren
es (SD). One then getsrid of the re
eiver error terms by 
omputing, for ea
hre
eiver to be 
onsidered, the 
orresponding double dif-feren
es (DD): the dis
repan
ies between the single di�er-en
es (SD) and one of them taken as referen
e. To han-dle the SD's in a homogeneous manner, one may equallywell 
onsider the dis
repan
ies between the SD's and theirmean value. In this paper, these `
entralized di�erentialdata' are referred to as `redu
ed di�eren
es' (RD). In the
ase where the GNSS devi
e in
ludes only two re
eivers,this approa
h is 
ompletely equivalent to `double 
entral-ization.' More pre
isely, the information 
ontained in the`double 
entralized observations' is then a simple anti-symmetri
 trans
ription of that 
ontained in the redu
eddi�eren
es. The ambiguities are then rational numberswhi
h are related to the traditional integer ambiguitiesin a very simple manner. The properties established inthis paper shed a new light on the 
orresponding analysis.(The extension to GNSS networks with missing data willbe presented in a forth
oming paper.) The 
orrespondingappli
ations 
on
ern the identi�
ation of outliers in realtime. Cy
le slips 
ombined with mis
ellaneous SD biases
an thus be easily identi�ed.Key words. GNSS, DGPS, 
entralized undi�erentialmethods, RTK. Data assimilation, DIA.
1 Introdu
tionThe global positioning te
hniques are based on the fol-lowing observational equations. For ea
h frequen
y fν ,for ea
h re
eiver-satellite pair (r, s), and at ea
h epo
h t,the 
ode and 
arrier-phase data are respe
tively of theform (e.g., Se
t. 14 in Strang and Borre 1997)
pν,t(r, s) = ρt(r, s) + c[dtν,t(r) − dtν,t(s)] + ǫν,t(r, s) (1)

φν,t(r, s) = ρt(r, s) + c[δtν,t(r) − δtν,t(s)]

+ λν [ϕν,0(r) − ϕν,0(s)] + λνNν(r, s) + εν,t(r, s)
(2)In these equations, whi
h are expressed in length units,

ρt(r, s) is the re
eiver-satellite range: the distan
e be-tween satellite s (at the time t−τ where the signal is emit-ted) and re
eiver r (at the time t of its re
eption). Clearly,the λν 's denote the wavelengths of the 
arrier waves; therational integersNν(r, s) are the integer 
arrier-phase am-biguities. The instrumental delays and 
lo
k errors thatfor a given (ν, t) depend only on r and s are lumped to-gether in the re
eiver and satellite error terms dtν,t(r),
dtν,t(s) for the 
ode, and δtν,t(r), δtν,t(s) for the phase(c is the speed of light); ϕν,0(r) and ϕν,0(s) are the initialphases (expressed in 
y
les) in re
eiver r and satellite s,respe
tively. Here, for 
larity, the ionospheri
 and tropo-spheri
 delays are ignored. At this introdu
tory level, wethus 
onsider that the data have been 
orre
ted for thesedelays. Clearly, the 
ode and phase errors ǫν,t(i, j) and
εν,t(i, j) in
lude both noise and residual model errors.For our present purposes, we now 
on
entrate on Equa-tion (2) in the single-frequen
y mode:
φt(r, s) = ρt(r, s) + c[δtt(r) − δtt(s)]

+ λ[ϕ0(r) − ϕ0(s)] + λN(r, s) + εt(r, s)
(3)In what follows, a notation su
h as a := b means `a isequal to b by de�nition.' Let r1 now be the referen
e re-
eiver, and r2 be that of the user. Denote by s1, s2, . . . , snthe satellites involved in the GPS devi
e. A quantitysu
h as

ϑj := ϑ(r2 , sj)− ϑ(r1 , sj) (4)is then referred to as a single di�eren
e (SD) in ϑ. By us-ing this notation, Equation (3) then yields
φjt = ρjt + c[δtt(r2)− δtt(r1)]

+ λ[ϕ0(r2)− ϕ0(r1)] + λaj + εjt
(5)where

aj := N j (6)One thus gets rid of the satellite error terms. The aj 'sare the integer ambiguities of the SD phase data.



24 Journal of Global Positioning Systems1.1 Basi
 notions1.1.1 Double di�eren
esIn the traditional approa
h to di�erential GNSS, one �rstsele
ts a referen
e satellite. Here, this satellite is denotedby sk . A quantity su
h as
ϑjk := ϑj − ϑk (i 6= j) (7)is then referred to as a double di�eren
e (DD) in ϑ (seeFig. 1).By subtra
ting from Eq. (5) its expression for j = k(term by term), one then obtains the relation
φjt;k = ρjt;k + λajk + εjt;k (ajk ∈ Z) (8)One thus gets rid of the re
eiver error terms. The ajk 'sare said to be the DD integer ambiguities of the problem.

ϑjk

ϑk ϑj

-
r

0Fig. 1 Notion of double di�eren
e. Thedouble di�eren
e ϑ
j

k is the value of the sin-gle di�eren
e ϑj by taking as origin (orreferen
e) the value of the single di�er-en
e ϑk.1.1.2 Redu
ed di�eren
esIn the approa
h presented in this paper, we 
onsider ahomogeneous way of eliminating the re
eiver error terms.The idea is to 
onsider the quantities (see Fig. 2)
ϑj0 := ϑj − ϑ0 (9)where ϑ0 is the mean value of the ϑj :
ϑ0 :=

1

n

n∑

j=1

ϑj (10)
r
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ϑj
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0Fig. 2 Notion of redu
ed di�eren
e. Theredu
ed di�eren
e ϑ
j
0 is the value of thesingle di�eren
e ϑj by taking as origin (orreferen
e) the mean value ϑ0 of the singledi�eren
es (
ompare with Fig. 1).Clearly, this bary
entri
 value 
an be regarded as a vir-tual SD asso
iated with a virtual referen
e satellite s0 .A

ording to a well-known bary
entri
 property (for fur-ther details see Se
t. 3), for any k, we have

n∑

j=1

|ϑj0|
2 ≤

∑

j 6=k

|ϑjk|
2 (11)

The ϑj0 's 
an therefore be referred to as `redu
ed di�er-en
es' (RD).Subtra
ting from Eq. (5) its expression in terms of meanvalues (term by term), we then obtain the relation similarto Eq. (8)
φjt;0 = ρjt;0 + λaj0 + εjt;0 (aj0 ∈ Q) (12)Note that the RD ambiguities aj0 's are rational numbers(and not in general rational integers).1.1.3 Di�erential observationsBy 
onstru
tion, the DD's of the fun
tion
ϑd(ri , sj) :=

{
0 if i = 1 or j = k;

ϑjk otherwise. (13)are the DD's of the fun
tion ϑ(ri , sj). Su
h a fun
tion 
antherefore be referred to as a `di�erential observational'(DO) fun
tion.1.1.4 Redu
ed observationsBy 
onstru
tion, the SD's of the fun
tion
ϑr(ri , sj) :=

{
0 if i = 1;

ϑj0 otherwise. (14)are the redu
ed di�eren
es of the fun
tion ϑ(ri , sj). Su
ha fun
tion 
an therefore be referred to as a `redu
ed ob-servational' (RO) fun
tion.1.1.5 Centralized observationsIn the `
entralized observational approa
h' of Shi andHan (1992), one gets rid of the satellite error terms byforming the single 
entralized observations
ϑ(1)

c (ri , sj) = ϑ(ri , sj)−
1

2

2∑

i=1

ϑ(ri , sj)

= (−1)i
1

2
[ϑ(r2 , sj)− ϑ(r1 , sj)]

= (−1)i
ϑj

2The re
eiver error terms are then eliminated by formingthe double 
entralized observations
ϑ(2)

c (ri , sj) = ϑ(1)
c (ri , sj)−

1

n

n∑

j=1

ϑ(1)
c (ri , sj)

= (−1)i
1

2

(
ϑj −

1

n

n∑

j=1

ϑj
)

= (−1)i
ϑj0
2
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e approa
h 25One is then led to say that
ϑc(ri , sj) := (−1)i

ϑj0
2

(15)is a 
entralized observational fun
tion. In the 
ase wherethe GNSS devi
e in
ludes only two re
eivers, the informa-tion 
ontained in the 
entralized observations is thereforea simple `antisymmetri
 trans
ription' of that 
ontainedin the redu
ed di�eren
es. The title of the paper was
hosen a

ordingly.1.2 ContentsThe theoreti
al framework of this 
ontribution is pre-sented in Se
t. 2. As 
lari�ed in Se
t. 3, the DD andRD approa
hes prove to be equivalent. In parti
ular, al-though the RD ambiguities are rational numbers, the am-biguity problems to be solved are the same. Se
tion 5.2is devoted to this point. The RD approa
h should how-ever be preferred. Indeed, as shown in Se
t. 4, it re-veals interesting properties whi
h give a deeper insightinto the problem. These properties, whi
h are maskedin the DD approa
h, shed a new light on the 
entral-ized undi�erential method of Shi and Han (1992). Theyalso 
omplete the dual algebrai
 approa
h of Lannes andDurand (2003). As a result, these equivalent approa
hes
an bene�t from ea
h other. As shown in Se
t. 6, one ofthese properties plays a key role in the DIA pro
eduresof the data assimilation pro
esses presented in Se
t. 5.The SD biases, among whi
h the 
y
le slips (if any), 
anthen be identi�ed in real time. Related 
omments are tobe found in Se
t. 7. As pointed out in that se
tion, theanalysis presented in this paper 
an be regarded as anintrodu
tion to the 
ase of GNSS networks with missingdata (Lannes 2008).2 Theoreti
al frameworkIn the 
ontext de�ned in Se
t. 1, the notion of observa-tional spa
e 
an be spe
i�ed as follows.2.1 Observational spa
esIn what follows, it may be 
onvenient to 
onsider that afun
tion su
h as ϑ(r, s) takes its values on a re
tangulargrid. When the GNSS devi
e in
ludes two re
eivers and
n satellites, this grid in
ludes two lines and n 
olumns;
ϑ is then regarded as a ve
tor of the observational spa
e
E := R2n. Clearly, these values are the 
omponents of ϑin the standard basis of E. The notation Eψ spe
i�esthe nature of the ve
tors ϑ of E: ψ = p for the 
ode,
ψ = φ for the phase. The varian
e-
ovarian
e matrix ofthe 
orresponding data ve
tor is denoted by Vψ; Vψ is theoperator on E indu
ed by Vψ . One is then led to de�nethe `observational data spa
e' of type ψ as the spa
e E+

ψwith inner produ
t
〈ϑ | ϑ′〉E+

ψ
:= (ϑ · V −1

ψ ϑ′)E (16)Clearly, E+ ≡ E+

ψ is a real Hilbert spa
e.

2.1.1 Nuisan
e delay spa
eIn what follows, the spa
e E0 of fun
tions ϑ(ri , sj) of theform ϕ(sj) − ϕ(ri) is referred to as the nuisan
e delayspa
e (see Eqs. (1), (2) and Fig. 4). In the spe
ial 
aseunder 
onsideration (with two re
eivers), this subspa
eof E is of dimension n+ 1.2.1.2 Clean observational spa
esThe orthogonal 
omplement of E0 in E, denoted by Ec ,is referred to as the `
lean observational (CO) spa
e.'The orthogonal 
omplement of E0 in E+ , E+

c , is thenreferred to as the `CO data spa
e' (see Fig. 4). In thespe
ial 
ase under 
onsideration, Ec and E+

c are of di-mension 2n − (n + 1) = n − 1. As shown below, Ec isthen the spa
e of `
entralized observational fun
tions' ϑcde�ned by Eq. (15).Proof. In the Eu
lidean spa
e E, ϑc is orthogonal to anynuisan
e fun
tion of E0 . Indeed,
2∑

i=1

n∑

j=1

[ϕ(sj)− ϕ(ri)](−1)iϑj0 =

n∑

j=1

ϑj0ϕ(sj)

2∑

i=1

(−1)i

−
2∑

i=1

(−1)iϕ(ri)

n∑

j=1

ϑj0with ∑2
i=1(−1)i = 0 and ∑n

j=1 ϑ
j
0 = 0. The propertythen follows from the fa
t that the fun
tions ϑc form aspa
e of dimension n− 1.Remark 2.1.2. Let Pc be the orthogonal proje
tionof E onto Ec . Here, the 
entralized observational fun
-tion ϑc de�ned by Eq. (15) is the proje
tion of ϑ on Ec:

ϑc := Pcϑ. In other terms, the `
leaning operator' Pc thenredu
es to the `double-
entralization operator.' This doesnot hold for GNSS networks with missing data. The ter-minology was 
hosen a

ordingly. Depending on the 
on-text, C and subs
ript 
 stand for `
lean' or `
entralized.'2.2 SD spa
eDenoting by b := {ej}
n
j=1 the standard basis of Rn, letus 
onsider the ve
tor ϑ :=

∑n
j=1 ϑ

jej in whi
h the ϑj 'sare the single di�eren
es de�ned in Eq. (4). Clearly, su
ha ve
tor 
an be regarded as a SD ve
tor. In this 
ontext,we say that F := Rn is the `SD spa
e' (see Fig. 3).2.2.1 SD operatorThe SD operator is the operator from E+ into F de�nedby the relation (see Eq. (4))
Sϑ := ϑ i.e. (Sϑ)j := ϑj (17)We now denote by S† the 
orresponding `ba
kproje
tion'operator, i.e., the operator from F into E
(S†ϑ)(ri , sj) := (−1)iϑj (18)



26 Journal of Global Positioning SystemsFor any ϑ ∈ F , the fun
tion ϑ′ := S†ϑ/2 is su
h that
Sϑ′ = ϑ; S is therefore surje
tive.In what follows, Vψ is the varian
e-
ovarian
e matrix ofthe SD data ve
tor ψ := Sψ. Denoting by Vψ the oper-ator on F indu
ed by Vψ , we have
Vψ = SVψS

† (19)We now show that the adjoint of S is given by the relation
S∗ = VψS

† (20)hen
e, from Eq. (19),
SS∗ = Vψ (21)Proof. By de�nition, S∗ is the operator from F into E+su
h that for any ϑ′ ∈ E+ and any ϑ ∈ F , we have

(Sϑ′ · ϑ)F = 〈ϑ′ | S∗ϑ〉E+ . Clearly,
(Sϑ′ · ϑ)F =

n∑

j=1

[ 2∑

i=1

(−1)iϑ′(ri , sj)
]
ϑjFrom Eq. (18), we therefore have

(Sϑ′ · ϑ)F =

2∑

i=1

n∑

j=1

ϑ′(ri , sj)(S
†ϑ)(ri , sj)i.e., (Sϑ′ · ϑ)F = (ϑ′ · S†ϑ)E =
(
ϑ′ · [V −1

ψ Vψ ]S†ϑ
)
E
. Asa result,

(Sϑ′ · ϑ)F = 〈ϑ′ | VψS
†ϑ〉E+hen
e S∗ = VψS

† .2.2.2 RD spa
e and RD ambiguity latti
eLet us denote by F0 the spa
e of ve
tors ϑ ∈ F whose
omponents ϑj are identi
al. The orthogonal 
omplementof F0 into F is the spa
e (see Fig. 3)
Fr :=

{
ϑ ∈ F :

∑n
j=1 ϑ

j = 0
}As F0 is a one-dimensional spa
e, Fr is of dimension n−1.Let Q0 and Qr be the orthogonal proje
tions of F onto F0and Fr , respe
tively. Clearly, these operators are expli
-itly de�ned by the relations

(Q0ϑ)j = ϑ0 (Qrϑ)j = ϑj − ϑ0 (22)where ϑ0 is the mean value of the ϑj 's. With regard tothe RD approa
h, we are then led to set (see Eqs. (9),(10), (22) and Fig. 3)
ϑr := Qrϑ (23)Clearly, the 
omponents of ϑr in basis b are the n re-du
ed di�eren
es ϑj0 ; Fr 
an therefore be referred to asthe `RD spa
e.' Note that ϑc is related to ϑr by therelation ϑc = S†ϑr/2 (see Eqs. (15) and (18)).

As ϑr is the proje
tion of ϑ on Er , we have
n∑

j=1

|ϑj0|
2 =

n∑

j=1

|ϑj − ϑ0|2 = inf
ϑo∈R

n∑

j=1

|ϑj − ϑo|2The property expressed in Eq. (11) results from this re-lation.The proje
tion of Zn onto Fr is a latti
e of rank n− 1: the`RD ambiguity latti
e' Lr (see Fig. 3). In basis b (whi
his not a basis of Lr), the 
omponents of a point ar of Lrare rational numbers: the n rational ambiguities aj0 .Remark 2.2.2. The RO fun
tions ϑr de�ned by Eq. (14)form a subspa
e of E denoted by Er (see Fig. 4). Clearly,this `RO spa
e' is a simple insertion of Fr in E.2.2.3 DD spa
e and DD ambiguity latti
eIn the DD approa
h, k being �xed, one is led to 
onsiderthe subspa
e of F (see Fig. 3)
Fd := {ϑ ∈ F : ϑk = 0}By 
onstru
tion, Fd is isomorphi
 to Rn−1. Let Qd nowbe the oblique proje
tion of F onto Fd along F0 . Notethat Qd is expli
itly de�ned by the relation
(Qdϑ)j = ϑj − ϑk (24)We are then led to set (see Eq. (7) and Fig. 3)
ϑd := Qdϑ (25)Let bd := {ej}j 6=k be the standard basis of Fd . As the
omponents of ϑd in basis bd are the n− 1 double di�er-en
es ϑjk , Fd 
an be regarded as a `DD spa
e.'The interse
tion of Zn with Fd is a latti
e of rank n− 1:the `DD ambiguity latti
e' Ld (see Fig. 3). In basis bd ,the 
omponents of a point ad of Ld are rational integers:the n− 1 integer ambiguities ajk (j 6= k).Clearly, Ld = QdLd hen
e Ld ⊂ QdZn (sin
e Ld is asubset of Zn). Furthermore, QdZn ⊂ Ld . We thereforehave Ld = QdZn. As Lr := QrZ

n and Qr = QrQd ,it follows that Lr = QrLd (see Fig. 3).Remark 2.2.3. The DO fun
tions ϑd de�ned by Eq. (13)form a subspa
e of E denoted by Ed (see Fig. 4). Clearly,this `DO spa
e' is an insertion of Fd in E.2.3 RD and DD operatorsThe RD operator is the operator from E+ into Fr de�nedby the relation
Sr := QrS (26)Note that Sr is surje
tive. (The argument is the sameas that used for S .) As expe
ted, the null spa
e of Sr(denoted by kerSr) is the nuisan
e delay spa
e E0 . Thisproperty 
an be expli
itly established as follows.
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ed di�eren
e approa
h 27Proof. Clearly, E0 ⊂ kerSr with dimE0 = n+ 1; but
dim(kerSr) = dimE − dimFr = 2n− (n− 1) = n+ 1hen
e the property.The DD operator is the operator from E+ into Fd de�nedby the relation
Sd := QdS (27)Like Sr , Sd is surje
tive, and kerSd = E0 .3 Equivalen
e of the DD and RDapproa
hesThe spa
es Fd and Fr are isomorphi
. More pre
isely,the restri
tion of Qr to Fd , the operator from Fd into Frde�ned by the relation
Rϑd := Qrϑd (28)maps Fd onto Fr , and Ld onto Lr (see Fig. 3). Its inverseis the operator from Fr into Fd

Dϑr := Qdϑr (29)Note that the a
tion of DR 
orresponds to the su

essive
hanges of origin ϑk → ϑ0 → ϑk (see Figs. 1 and 2):
(DRϑd)j = (ϑjk − ϑ

0)− (ϑkk − ϑ
0) = ϑjkThe ve
tors erj := Rej (j 6= k) form a basis of Fr , whi
his also a basis of Lr : the basis brd := Rbd . In this ba-sis, the 
omponents of a ve
tor ϑr of Fr are the 
ompo-nents ϑjk of ϑd = Dϑr . Indeed,

ϑr = Rϑd = R
∑

j 6=k

ϑjkej =
∑

j 6=k

ϑjkRej =
∑

j 6=k

ϑjkerjIn parti
ular, in this basis (whi
h is not orthogonal), the
omponents of a point ar of Lr are the n− 1 integer am-biguities ajk of ad = Dar . We re
all that in the standardbasis of F (whi
h is not a basis of Lr), the 
omponentsof ar are the n rational ambiguities aj0 .Let T now be the orthogonal proje
tion of F onto Fdrestri
ted to Fr (see Fig. 3). For any ϑ′ in Fr and any ϑin Fd , we have (ϑ′ · ϑ)F = (ϑ′ · Rϑ)F = (Tϑ′ · ϑ)F .This shows that, T is the adjoint of R on F : R† = T .Expli
itly,
(R†ϑr)

j = ϑj0 (∀j 6= k); (R†ϑr)
k = 0 (30)As D is the inverse of R, D† is the inverse of R†:

(D†ϑd)j = ϑjk (∀j 6= k); (D†ϑd)k = −
∑

j 6=k

ϑjk (31)Let Vψd now be the varian
e-
ovarian
ematrix (expressedin basis bd) of the DD data ψd . Likewise, let Vψr be the
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TFig. 3 Geometri
al representation of the main elements in-volved in the equivalen
e of the DD and RD approa
hes.Here, ek is the ve
tor of the standard basis of R

n asso
i-ated with the referen
e satellite. Note that ϑkk = 0 and
Pn

j=1
ϑ
j
0 = 0 (see Figs. 1 and 2, respe
tively); R is the or-thogonal proje
tion of F onto Fr restri
ted to Fd; R standsfor `redu
tion.' Its inverse, D, is the oblique proje
tionof F onto Fd (along F0) restri
ted to Fr; D stands for`di�eren
e.' The adjoint of R is the orthogonal proje
tionof F onto Fd restri
ted to Fr: R†

= T . Its inverse is theadjoint of D: D†. Further details (in parti
ular those 
on-
erning latti
es Ld and Lr) are to be found in Se
ts. 2 and 3.varian
e-
ovarian
e matrix (expressed in basis b) of theRD data ψr . In what follows, Vψd is the operator on Fdindu
ed by Vψd . Likewise, Vψr is the operator on Fr in-du
ed by Vψr . Let Qr now be the matrix of Qr expressedin basis b. As Vψr = QrVψQ
T
r = QrVψQr , the opera-tor Vψr is the operator on Fr expli
itly de�ned by therelation

Vψrϑ = QrVψϑ (ϑ ∈ Fr) (32)With regard to the least-squares (LS) problems to bedealt with, Fd and Fr are then equipped with the innerprodu
ts (see the lower part of Fig. 4)
〈ϑ′

d | ϑd〉Fψ;d+
:= (ϑ′

d · ϑd+
)F ϑd+ := V −1

ψd ϑd (33)
〈ϑ′

r | ϑr〉Fψ;r+
:= (ϑ′

r · ϑr+)F ϑr+ := V −1
ψr ϑr (34)As E+ ≡ E+

ψ is referred to as the observational data spa
eof type ψ, we may say that Fd+ ≡ Fψ;d+ is a `DD dataspa
e' of type ψ. Likewise, Fr+ ≡ Fψ;r+ is the `RD dataspa
e' of type ψ.We have Vψd = DVψrD
†, hen
e

V −1
ψd = R†V −1

ψr RAs illustrated in the lower part of Fig. 4, it follows that
ϑd+ = R†ϑr+ (35)
ϑr+ = D†ϑd+ (36)



28 Journal of Global Positioning SystemsFrom Eqs. (33) and (35), 〈ϑ′
d | ϑd〉Fd+

= (ϑ′
d · R

†ϑr+)F ;hen
e 〈ϑ′
d | ϑd〉Fd+

= (Rϑ′
d · ϑr+)F . We thus have

〈ϑ′
d | ϑd〉Fd+

= 〈ϑ′
r | ϑr〉Fr+where ϑ′

r = Rϑ′
d and ϑr = Rϑd . In parti
ular,

‖ϑd‖
2
Fd+

= ‖ϑr‖
2
Fr+

(for ϑr = Rϑd) (37)The DD and RD approa
hes are therefore `
ompletelyequivalent.' This said, as shown in Se
t. 4 (see, in parti
-ular, Result 4.2.2), the RD approa
h reveals interestingproperties whi
h are 
ompletely hidden in DD mode (seeRemark 4.2.2).4 Observational equivalen
e:Duality4.1 Proje
tion onto the CO data spa
eLet ϑ be some point in the observational spa
e E. In whatfollows, ϑ+

c denotes the orthogonal proje
tion of ϑ on theCO data spa
e E+

c (see Se
t. 2.1.2 and Fig. 4):
ϑ+

c := P+

c ϑ (38)Clearly, P+

c is the 
orresponding orthogonal proje
tion.Let ϑr := Srϑ now be the RD ve
tor of ϑ. The solutionsof the equation Srϑ
′ = ϑr are de�ned up to a ve
tor of E0 ;

ϑ+

c is the solution with smallest norm in E+. The operatorthat maps ϑr to ϑ+

c is referred to as the Moore-Penrosepseudoinverse of Sr . This operator is denoted by S+
r :

ϑ+

c = S+
r ϑr (39)Likewise, for ϑd = Dϑr , we have ϑ+

c = S+
d ϑd . Clearly,

ϑ+

c 
an be regarded as the expression for ϑr (or ϑd)brought ba
k to E+ via S+
r (or S+

d ). In this 
ontext,we de�ne ϑc+ as follows (see Eqs. (34), (18) and Fig. 4):
ϑc+ := S†ϑr+ (40)The following property then 
ompletes the analysis pre-sented in Se
t. 3.Property 4.1. One has ϑ+

c = Vψϑc+ . As a 
orollary,
‖ϑ+

c ‖
2
E+ = (ϑ+

c · ϑc+)E = ‖ϑr‖
2
Fr+

.Proof. As Sr is surje
tive, its pseudoinverse is given bythe relation
S+

r = S∗
r (SrS

∗
r )−1For any ϑ in Fr , we have (sin
e Sr = QrS)

S∗
rϑ = (QrS)∗ϑ = S∗Q∗

rϑ = S∗Qrϑ = S∗ϑwhere S∗ = VψS
† (Eq. (20)). As a result (see Eqs. (21)and (32)),

SrS
∗
rϑ = QrSS

∗ϑ = QrVψϑ = Vψrϑ

It then follows that
S+

r = S∗
r V

−1
ψrhen
e

ϑ+

c = S∗
r V

−1
ψr ϑr = S∗V −1

ψr ϑr = VψS
†V −1
ψr ϑri.e., ϑ+

c = Vψϑc+ (from Eqs. (34) and (40)). As a 
orollary(see Eq. (16)),
‖ϑ+

c ‖
2
E+ = 〈ϑ+

c | ϑ
+

c 〉E+

= 〈ϑ+

c | Vψϑc+〉E+ = (ϑ+

c · ϑc+)EAs ϑc is the proje
tion of ϑ+

c on Ec (see Fig. 4), we have(see Eqs. (40) and (18))
(ϑ+

c · ϑc+)E = (ϑc · ϑc+)E

= (ϑc · S
†ϑr+)E

= (Sϑc · ϑr+)FBut, from Eq. (15), Sϑc = ϑr . As a result,
‖ϑ+

c ‖
2
E+ = (ϑr · ϑr+)F = ‖ϑr‖

2
Fr+4.2 Analysis of a typi
al situationTo illustrate our analysis, we now 
onsider the 
ase wherethe varian
e-
ovarian
e matrix of the observational dataof type ψ is of the form

Vψ = diag(η(ri , sj)σ2
ψ

) (41)Clearly, σ2
ψ is a `referen
e varian
e;' η(r, s) is a nonnega-tive weight fun
tion. The varian
e-
ovarian
e matrix ofthe SD data ψ := Sψ is then given by the relation

Vψ = diag(ηjσ2
ψ) ηj := η(r1 , sj) + η(r2 , sj) (42)As 
lari�ed in Remark 4.2.1, the following results shedsa new light on the 
entralized observational approa
h ofShi and Han (1992). The dual approa
h of Lannes andDurand (2003) is also thereby enri
hed.Result 4.2.1. Denoting by ϑjr+ and ϑjr the 
omponentsof ϑr+ and ϑr , respe
tively, we have

ϑjr+ =
1

ηjσ2
ψ

(ϑjr − δϑ) (ϑjr ≡ ϑ
j
0)where

δϑ :=

n∑

j=1

µjϑ
j
r µj :=

1
ηj∑n
j=1

1
ηjAs a 
orollary, ϑ+

c = ησ2
ψ ϑc+ = ησ2

ψ S
†ϑr+ .Proof. By de�nition, ϑr+ := V −1

ψr ϑr (Eq. (34)). Toidentify the inverse of Vψr on Fr , we solve the equation
Vψrϑ

′ = ϑr in Fr . From Eq. (32), Vψrϑ
′ is equal to Vψϑ′up to a ve
tor of F0 . It then follows from Eq. (42) thatthe 
omponents of ϑ′ are related to those of ϑr by therelation

ηjσ
2
ψϑ

′j = ϑjr − δ
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e approa
h 29where δ is some 
onstant in R. As result,
ϑ′j =

1

ηjσ2
ψ

(ϑjr − δ)As ϑ′ lies in Fr , we have∑n
j=1 ϑ

′j = 0, hen
e the identity
δ ≡ δϑ . The result and its 
orollary then follow fromProperty 4.1 and Eqs. (40, (41).It is important to note that in the spe
ial 
ase where theweights η(ri , sj) are all equal to unity, we have ηj = 2,
µj = 1/n for all j, and δϑ = 0 .Result 4.2.2. The square of the norm ϑr in Fr+ 
an beexpanded as follows:
‖ϑr‖

2
Fr+

=

n∑

j=1

1

ηjσ2
ψ

(ϑjr − δϑ)
2Proof. From Property 4.1, Eq. (41) and Result 4.2.1,we have

‖ϑr‖
2
Fr+

= (ϑ+

c · ϑc+)E

=
2∑

i=1

n∑

j=1

η(ri , sj)σ
2
ψ ϑ

2
c+(ri , sj)

=

n∑

j=1

2∑

i=1

η(ri , sj)
1

η2
jσ

2
ψ

(ϑjr − δϑ)
2

=

n∑

j=1

[η(r1 , sj) + η(r2 , sj)]
1

η2
jσ

2
ψ

(ϑjr − δϑ)
2The result then follows from the fa
t that

η(r1 , sj) + η(r2 , sj) = ηj ; see Eq. (42).Remark 4.2.1. Property 4.1 illustrated by Results 4.2.1and 4.2.2 gives a `dual insight' into the problem (seeFig. 4). For example, in the DIA method presented inSe
t. 6, ϑr is the [ψν,t]-
omponent of a residual quan-tity involved in a LS problem stated in (the Hilbert sumof) [ψν,t]-
opies of Fr+ . A

ording to Property 4.1, stat-ing the problem in that way amounts to stating it in(the Hilbert sum of) [ψν,t]-
opies of E+

c . Depending onthe 
ontext, one may thus operate in various equivalentways. Indeed, equipped with appropriate inner produ
ts,the spa
es Fr+ , Fd+ , Er+ , Ed+ and Ec+ are isomorphi
to E+

c .Let us now 
ome ba
k to the spe
ial 
ase where the weights
η(ri , sj) are all equal to unity. Result 4.2.1 then yields(see also Eqs. (15) and (18)):
ϑ+

c = ϑc =
1

2
S†ϑr (43)Clearly, the CO data spa
e E+

c then 
oin
ides with theCO spa
e Ec (see Fig. 4). A

ording to Result 4.2.2, we
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Srϑc+Fig. 4 Dual representation of the main elements of the prob-lem. Here, E0 is the nuisan
e delay spa
e (see Se
t. 2.1.1).This subspa
e of the observational spa
e E is the nullspa
e of the RD (and DD) operators Sr (and Sd); seeSe
t. 2.3; ϑc is the proje
tion of ϑ on the orthogonal 
om-plement of E0 in E, the CO spa
e Ec: ϑc = Pcϑ. In the
ase where the GNSS devi
e in
ludes only two re
eivers,

ϑc is the 
entralized observational fun
tion ϑc de�ned viaEq. (15); see Remark 2.1.2. Here, ϑr is the observationalversion of #r (see Remark 2.2.2). Likewise, ϑd is the ob-servational version of #d (see Remark. 2.2.3). The pseu-doinverse of Sr maps Fr onto the CO data spa
e E+
c ,the orthogonal 
omplement of E in the observational dataspa
e E+: ϑ+

c = S+
r #r = P+

c ϑ. A

ording to Property 4.1.1,one has ϑ+
c = Vψϑc+ where ϑc+ := S†

#r+ with #r+ := V −1
 r #r ;note that Srϑc+ = Sϑc+ = SS†

#r+ = 2#r+ . Likewise,
S+

d maps Fd onto E+
c : ϑ+

c = S+
d #d . In the important spe-
ial 
ase examined in Remark 4.2.1, ϑ+

c 
oin
ides with ϑc(see Eq. (43)); E+
c then 
oin
ides with Ec .then have (see also Eq. (37)):

‖ϑ+

c ‖
2
E+ = ‖ϑr‖

2
Fr+

= ‖ϑd‖
2
Fd+

=

n∑

j=1

1

2σ2
ψ

|ϑjr |
2 (44)The orthogonal proje
tion of E+ onto E+

c is also basi
allyinvolved in the dual algebrai
 formulation of Lannes andDurand (2003); see Fig. 4 of their paper. The key re-sult (43) 
ompletes their 
ontribution. To establish this



30 Journal of Global Positioning Systemsproperty, these authors should have des
ribed, expli
itly,in the spe
ial 
ase under 
onsideration, the a
tion of thepseudoinverse of operator Sd (the `
losure operator' C oftheir formulation).With regard to all these points, the more general resultsestablished in this se
tion enri
h both the dual algebrai
formulation of di�erential GPS and the 
entralized obser-vational approa
h.Remark 4.2.2. In the spe
ial 
ase under 
onsideration(where the weights η(ri , sj) are all equal to unity), theidentity expressed in the right-hand side of Eq. (44) 
andire
tly be derived from the traditional approa
h to dif-ferential GNSS. This 
an be shown as follows. For 
larity,
onsider the 
ase where k = 1. As is well known, the ma-trix elements of V −1
ψd are then given by the formula

κj,j′ =
1

2σ2
ψ

×
1

n

∣∣∣∣∣
n− 1 if j′ = j

−1 if j′ 6= j
j, j′ ∈ {2, . . . , n}Clearly, for any ϑ in Fd , we have

‖ϑ‖2Fd+
= (ϑ · V −1

ψd ϑ)F =

n∑

j=2

ϑjk(V
−1
ψd ϑ)jin whi
h (for j = 2, . . . , n)

(V −1
ψd ϑ)j =

1

2σ2
ψ

(
ϑjk −

1

n

n∑

j=2

ϑjk

)

=
1

2σ2
ψ

[
(ϑj − ϑk)−

1

n

n∑

j=1

(ϑj − ϑk)
]

=
1

2σ2
ψ

(
ϑj −

1

n

n∑

j=1

ϑj
)

=
1

2σ2
ψ

ϑj0As a result,
n∑

j=2

ϑjk(V
−1
ψd ϑ)j =

1

2σ2
ψ

n∑

j=2

(ϑj − ϑk)ϑj0

=
1

2σ2
ψ

n∑

j=1

(ϑj − ϑk)ϑj0

=
1

2σ2
ψ

n∑

j=1

(ϑj0 − ϑ
k
0)ϑ

j
0Sin
e ∑n

j=1 ϑ
j
0 = 0, it then follows that

‖ϑ‖2Fd+
=

n∑

j=1

1

2σ2
ψ

|ϑj0|
2 (ϑj0 ≡ ϑ

j
r)

5 Data assimilation in RD modeIn the statement of the global positioning problems, theposition variable at epo
h t, ξt , appears via the lineariza-tion of the quantities ρjt with respe
t to the position vari-able ξ2;t of re
eiver r2 : ξ2;t = ξ̃2;t + ξt . Indeed, as
ρjt = ρt(r2 , sj)− ρt(r1 , sj) (45)the linear expansion of ρjt is of the form
ρjt = ρ̃ jt + (djt · ξt)R3 (46)Here, djt is the unitary ve
tor that 
hara
terizes the di-re
tion sj → r2 of the signal re
eived at epo
h t. Let J tbe the matrix whose elements of the jth line are the three
omponents of djt . Denoting by Jt the 
orresponding op-erator, we thus have ρt = ρ̃t + Jtξt , hen
e
ρt;r = ρ̃t;r + Jt;rξt (Jt;r := QrJt) (47)In single-frequen
y mode, the state variable at epo
h t,the lo
al variable xt , is the 
olumn matrix
xt := (α, ξt)

T (48)with α ≡ ar in Fr . The global variable for the epo
hs
t1 , t2, . . . tn is then of the form
X := (α, ξ1 , ξ2 , . . . , ξn)T (49)where ξn ≡ ξtn . Clearly, the `�oat ambiguity' α does notdepend on t. Let yt be the RD data ve
tor (at epo
h t)modi�ed by the terms indu
ed by the linearization:
yt :=

(
pt;r − ρ̃t;r

φt;r − ρ̃t;r

) (50)We then have
yt = Atxt + error terms (51)where
At :=

(
0 Jt;r

λIα Jt;r

) (52)The problem is to be solved in the least-square sense atthe global level. We then introdu
e the 
olumn matrix
Y = (y1 , y2 , . . . , yn)T (53)where yn ≡ ytn . Clearly,
Y = AX + error terms (54)
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h 31where the global operator A is then of the form:
A :=




· J1;r · · · · ·

λIα J1;r · · · · ·

· · J2;r · · · ·

λIα · J2;r · · · ·

··· ··· ··· · · · ···
··· ··· ··· · · · ···

· · · · · · Jn;r

λIα · · · · · Jn;r




(55)
5.1 Re
ursive least-square �lteringThe solution x̂ ≡ (α̂, ξ̂ )T is obtained through re
ursiveleast-squares (RLS) �ltering (e.g., Björ
k 1996). The it-eration at epo
h tn is then of the form
x̂n|n = x̂n|n−1 +Knvn (56)in whi
h
vn = yn −Anx̂n|n−1 (57)where
x̂n|n := (α̂n, ξ̂n) x̂n|n−1 := (α̂n−1, 0) (58)Clearly, Kn is the RLS �lter at epo
h tn ; vn is the `pre-di
ted residue' for the same epo
h. The �oat solution α̂is thus re�ned together with its varian
e-
ovarian
e ma-trix Vbα .5.2 Ambiguity resolutionAt ea
h epo
h, one then sear
hes for the point α̌ of Lr
losest to α̂ the distan
e being that indu
ed by the quadra-ti
 form on Fr : f(ϑ) := (ϑ · V −1

bα ϑ)F . Clearly,
α̌ = argmin

α∈Lr

‖α− α̂‖V −1

bα

(59)As spe
i�ed in Agrell et al. (2002), this nearest-latti
e-point problem is solved via the LLL algorithm, an algo-rithm devised by Lenstra, Lenstra and Lovàsz in 1982.To state this problem in te
hni
al terms, we then have to
hoose a referen
e basis of Lr . The most natural 
hoi
e
orresponds to a basis su
h as brd (see Se
t. 3). The refer-en
e index k 
an then be 
hosen arbitrarily, for example,the �rst one or the last one of the 
urrent list of satel-lites. In this basis, the 
omponents of α are the 
ompo-nents of αd := Dα in basis bd (see the analysis developedin Se
t. 3). Likewise, the 
omponents of α̂ in basis brdare the 
omponents of α̂d := Dα̂ in basis bd . Further-more, the varian
e-
ovarian
e matrix of α̂ expressed in

basis brd is equal to DVbαD
∗, i.e., VDbα = Vbαd

. Solv-ing the RD ambiguity problem in Lr therefore amountsto solving the integer-ambiguity problem of the DD ap-proa
h in Ld (e.g., Teunissen 1995):
α̌d = argmin

αd∈Ld

‖αd − α̂d‖V −1

bαd

(60)Clearly α̌ = Rα̌d . The expli
it statement (in a trivialbasis) of the ambiguity problem in question is thereforethat of the DD approa
h. This does not mean, of 
ourse,that the DD approa
h is the best suited for stating allthe problems of the data assimilation pro
ess (see Se
t. 6in parti
ular).At the te
hni
al level, we therefore pro
eed as follows.We �rst set k = 1 for example. Starting from the �oatRD ambiguity ve
tor α̂ and its varian
e-
ovarian
e ma-trix Vbα , we then 
ompute the DD �oat ambiguity ve
-tor α̂d = Dα̂ and its varian
e-
ovarian
e matrix Vbαd
=

DVbαD
∗. In single-frequen
y mode, the n − 1 
ompo-nents of α̂d are therefore expli
itly given by the relations

α̂jk = α̂j − α̂k (j = 2, . . . , n) (61)Similar operations on the 
olumns and lines of Vbα pro-vide the (n − 1)2 matrix elements of Vbαd
. Solving theDD ambiguity problem (60) then provides the DD am-biguity ve
tor α̌d . In single-frequen
y mode, the 
om-ponents of the RD ambiguity ve
tor α̌ = Rα̌d are thenexpli
itly given by the relations

α̌j = α̌jk − α̌
0
k α̌0

k :=
1

n

∑

j 6=k

α̌jk (62)Clearly, we thus have passed from the RD framework tothe DD framework (and then vi
e-versa) only to solve thete
hni
al problem in question.5.3 Fixed ambiguitiesWhen in the data assimilation pro
ess, α̌ be
omes 
on-sistent with the model (up to the noise), the ambiguitiesare said to be �xed. The positions ξ̂n are then re�ned via`FLS' �ltering: LS pro
esses in whi
h the ambiguities are�xed at these values. Pro
essing the same undi�erentialdata either in RD or DD mode of 
ourse provides thesame positions.To prevent that biases on the SD data propagate unde-te
ted into the ambiguity solution and the positioningresults, parti
ular methods have been developed. TheseDIA methods `Dete
t' these model errors, `Identify' them,and `Adapt' the results 
onsequently (e.g., Teunissen 1990,Hewitson et al. 2004). We now show how the related RLSand FLS pro
edures 
an bene�t from the RD approa
h.
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iple of the RD ver-sion of these methods is based on the analysis of the `a
-tual residue'
wn := yn −Anx̂n|n = Hnvn (63)where, from Eqs. (56) and (57),
Hn := I −AnKn (64)Here, I is the identity operator. Omitting subs
ript n,and denoting by wp and wφ the 
ode and phase 
om-ponents of w (respe
tively), we have from Result 4.2.2and 4.4.1
‖w‖2 := ‖wp‖

2
Fp;r+

+ ‖wφ‖
2
Fφ;r+

(65)where (for ψ = p or φ)
‖wψ‖

2
Fψ;r+

=

n∑

jψ=1

cjψ (66)with
cjψ :=

1

ηjσ2
ψ

(wjψ − δwψ)2 δwψ :=

n∑

j=1

µjw
j
ψ (67)When ‖w‖2 is too large, above some threshold de�nedby statisti
al 
riteria (see Se
t. 6.1), we then sear
h toidentify a global SD bias of the form

β =
( ∑

jp∈Ωp

βjpejp ,
∑

jφ∈Ωφ

βjφejφ

) (68)The `outlier sets' Ωp and Ωφ are some `small subsets'of {1, . . . , n}. The 
orresponding SD model is the follow-ing (see Se
t. 1):
ρj + c[dt(r2)− dt(r1)] + ǫj =

∣∣∣∣∣
pj − βjp if j ∈ Ωp

pj otherwisefor the 
ode, and likewise for the phase (see Eq. (5)).The problem is to identify Ωp and Ωφ while getting least-squares estimates of the 
orresponding biases βjp and βjφ .The guiding idea is to the 
onsider the 
ontribution ofthese biases to w.As w = H δv = H δy (see Eqs. (63) and (57)), we must�rst see what is the 
ontribution of these biases to y. Atthis level, the 
orre
tion terms indu
ed by ejp and ejφare denoted by zjp and zjφ :
y

set

= y − zjψ

∣∣∣∣∣
zjp := (erjp , 0)

zjφ := (0, erjφ)
(69)Clearly, a notation su
h as a set

= a+ b means `a is set equalto the 
urrent value of a + b.' The 
omponents of the

basis ve
tors erj are expli
itly de�ned by the relations(see Se
t. 3)
∣∣∣∣∣
e
j′

rj = −1/n (for j′ 6= j);
e
j
rj = 1− 1/nThe variations of w indu
ed by ejp and ejφ are therefore
hara
terized by the quantities fjp and fjφ de�ned below:

w
set

=w −Hzjψ

∣∣∣∣∣
fjp := Hzjp

fjφ := Hzjφ
(70)As a result, the variation of w indu
ed by the global bias βis 
hara
terized by the ve
tor

Mβ :=
∑

jp∈Ωp

βjpfjp +
∑

jφ∈Ωφ

βjφfjφ (71)We are then led to solve, in the least-square sense, theequation Mβ `='w, in whi
h the 
olumn ve
tors of M ,the fjp 's and fjφ 's, have to be thoroughly sele
ted. As
lari�ed in Se
t. 6.1, this operation is performed via a par-ti
ular Gram-S
hmidt orthogonalization pro
ess whi
h isinterrupted as soon as the 
orre
ted data are 
onsistentwith the model. As expe
ted, Equations (65), (66) and(67) play a key role in the identi�
ation of the globaloutlier set Ω := Ωp ∪ Ωφ .6.1 ImplementationIn the pro
edure des
ribed in this se
tion (see the �owdiagram shown in Fig. 6), θ is the level of signi�
an
e orthe probabilty of false alarm of the lo
al overall model(LOM) test; θ0 is that of the outlier test.1. Entran
e LOM testCompute TLOM :=‖w‖2/m where m = 2(n− 1)−3 is theredundan
y (in the single-frequen
y 
ase) at the 
urrentepo
h. Let tLOM := Fθ(m,∞, 0) now be the upper θ prob-ability point of the 
entral F -distribution with m,∞ de-grees of freedom. If TLOM < tLOM, terminate the pro
ess(go to step 4); otherwise, set r = 1 (the re
ursive index)and Ω = Π = ∅ (the empty set); the meaning of the aux-illary set Π is de�ned in step 2.2 (as soon as it begins tobe built).2. Re
ursive identi�
ation of the outliers2.1. Current set of potential outliersFor all the jψ /∈ Ω, 
ompute the 
omponents cjψ of ‖w‖2and their maximal value:
cmax := max

jψ /∈Ω
cjψThen, given some nonnegative 
onstant κ ≤ 1, form the
urrent set of potential outliers (see Fig. 5):

Πr := {jψ /∈ Ω : cjψ ≥ κcmax}
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3p 5p 3φ 5φ

c5φ

Code PhaseFig. 5 Notion of potential outliers (in RDsingle-frequen
y mode). For the 
ompo-nents cjψ shown here, and for κ = 0.5 (with
n = 7 and Ω = ∅), four potential outliersare identi�ed: 3p , 5p , 3φ and 5φ . Here, thephase outlier 5φ is likely to be the dominantpotential outlier (see step 2.3 and Se
t. 6.2).2.2. For ea
h potential outlier jψ ∈ ΠrPerform the following su

essive operations:a) When jψ /∈ Π, 
ompute (see the 
ontext of Eqs. (69)and (70))
fjψ := H ·

∣∣∣∣∣
(erjp , 0) if ψ = p

(0, erjφ) if ψ = φThen, set
gjψ := fjψ Π

set

=

{
{jψ} if Π = ∅

Π ∪ {jψ} otherwiseBy 
onstru
tion, Π is the set of potential outliers jψfor whi
h fjψ has already been 
omputed.b) If r = 1 go to step 2.2
. Otherwise, at this level,
{g◦

q
}q<r is an orthonormal set. (This set is built,progressively, via step 2.4.) Then, for ea
h integer

q < r, 
onsider the inner produ
t de�ned as follows(see Eq. (34) and Result 4.2.1):
ςq,jψ := 〈 g◦q | gjψ〉

:=
∑

ψ′=p,φ

〈 g◦
q;ψ′ | gjψ;ψ′〉Fψ′;r+This sum in
ludes two terms. Depending on what

ψ′ refers to (p or φ), g◦
q;ψ′ denotes the 
ode or phase
omponent of g◦q , and likewise for gjψ ;ψ′ . If ςq,jψ hasnot been 
omputed yet, 
ompute it, store it in mem-ory, and perform the Gram-S
hmidt orthogonalizationoperation

gjψ
set

= gjψ − ςq,jψg
◦
qBy 
onstru
tion, ςq,jψ = 〈 g◦

q
| fjψ 〉. Clearly, at the endof all these operations, gjψ is orthogonal to g◦q for any

q < r.
) Consider the proje
tion of w on the one-dimensionlspa
e generated by gjψ , i.e., 〈hjψ | w〉hjψ where

hjψ := gjψ/‖gjψ‖. The norm of this proje
tion is equalto |〈hjψ | w〉|, the absolute value of the quantity
γjψ := 〈gjψ | w〉/̺jψ ̺jψ := ‖gjψ‖Expli
itly,
〈 gjψ | w〉 :=

∑

ψ′=p,φ

〈 gjψ ;ψ′ | wψ′〉Fψ′;r+

‖gjψ‖
2 :=

∑

ψ′=p,φ

‖gjψ;ψ′‖
2
Fψ′;r+2.3. Dominant potential outlierBy de�nition, the dominant potential outlier ̄ψ̄ is thepotential outlier for whi
h |γjψ | is maximal:

̄ψ̄ := arg max
jψ∈Πr

|γjψ |2.4. Outlier testLet χ0 be the upper θ0/2 probability point of the 
entralnormal distribution:
χ0 := Nθ0/2(0, 1)a) If |γ ̄ψ̄ | > χ0 with m > 0, the dominant potentialoutlier is then regarded as an e�e
tive outlier:

ωr := ̄ψ̄ Ω
set

=

{
{ωr} if r = 1

Ω ∪ {ωr} if r > 1

γ◦
r

:= γωr
g◦

r
:= gωr

/̺ωrSupers
ript ◦ stands for omega (and outlier). At thislevel, Ω is the 
urrent set of identi�ed outliers:
Ω = {ωq}

r

q=1By 
onstru
tion, {g◦q}rq=1 is an orthonormal basis ofthe 
urrent range of M ; ∑r

q=1 γ
◦
q
g◦

q
is the proje
tionof w on this spa
e. With regard to Eq. (71), we thenset

β◦
r := βωr

f◦
r := fωrb) When the dominant potential outlier is not identi�edas a real outlier, we 
onsider the following two situa-tions:Case 1 : |γ ̄ψ̄ | < χ0 with TLOM > 5 tLOM (for exam-ple). We then reinitialize the RLS pro
ess.Case 2 : |γ ̄ψ̄ | < χ0 with TLOM < 5 tLOM and r > 1, or

|γ ̄ψ̄ | > χ0 with m = 0. We then go to step 3.2.5. Components of g◦r in the basis of the f◦
q 'sThese 
omponents are denoted by uq,r:

g◦
r

=

r∑

q=1

uq,rf
◦
q
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omputed via the QR Gram-S
hmidt formulas(see e.g., Björ
k 1996)
uq,r =






−
1

̺ωr

∑

q≤q′<r

uq,q′ ςq′,ωr
if q < r

1

̺ωr

if q = rfor 1 ≤ q ≤ r. Clearly, the uq,r's are the entries of the
r
th 
olumn of an upper triangular matrix U .2.6. SD biasesA

ording to Eq. (71), the SD biases β◦

q are the 
ompo-nents of ∑r

q=1 γ
◦
q
g◦

q
in the basis of the f◦

q
's:

r∑

q=1

γ◦qg
◦
q =

r∑

q=1

β◦
qf

◦
qDenoting by [γ◦] the 
olumn matrix with entries γ◦q (from

q = 1 to r), and likewise for [β◦], we have
[β◦] = U [γ◦]The SD biases are therefore to be updated as follows:

β◦
q

set

=

{
β◦

q
+ uq,rγ

◦
r

if q < r

ur,rγ
◦
r

if q = r

(for 1 ≤ q ≤ r)2.7. Update w and ‖w‖2:
w

set

=w − γ◦r g
◦
r ‖w‖2

set

= ‖w‖2 − |γ◦r |
22.8. Update redundan
y m and the LOM quantities:

m
set

= m− 1

∣∣∣∣∣
tLOM

set

= Fθ(m,∞, 0)

TLOM
set

= ‖w‖2/m2.9. Inner LOM testIf TLOM > tLOM, update re
ursive index: r
set

= r+1. Then,go to step 2.3. Lo
al adaptationLet KΩ be the matrix gathering the 
olumns of K 
orre-sponding to the su

essive identi�ed outliers ω1, . . . , ωr .The adaptation formula of the lo
al state ve
tor is then(from Eqs. (56) and (57))
x̂

set

= x̂−KΩ[β◦]As [β◦] = U [γ◦], the adaptation of the varian
e-
ovarian
ematrix of x̂ is therefore given by the formula
V bx

set

= V bx + [KΩU ][KΩU ]TIndeed, as {g◦q}rq=1 is an orthonormal set, the varian
e-
ovarian
e matrix of [γ◦] is the identity.4. End

RD �lteringA
tual residue wEntran
e LOM testPotential outliersDominant potential outlierOutliertestOutlier identi�
ationUpdate SD biases and wInner LOM testAdaptation
Reinitialization

Fig. 6 Flow diagram of the DIA pro
edure in RD mode.At ea
h step of the identi�
ation pro
ess, the `residual a
-tual residue' w is analyzed on the grounds of Eq. (72) orof its generalization (see Fig. 5, Eqs. (65), (66) and (67)).This allows the potential outliers to be sele
ted. The out-liers 
an thus be identi�ed, in a re
ursive manner, via aparti
ular orthogonalization Gram-S
hmidt pro
ess. ThisQR Gram-S
hmidt pro
ess also provides the SD biases,and thereby the 
y
le slips if any (see text).In order to dete
t a model error of the same size withthe same probability ̟0 by using both LOM and outliertests, it is required that, for both tests, the same valuesfor the non-
entrality parameter ζ0 be 
hosen.To determine the testing parameters, one therefore pro-
eeds as follows. One �rst makes a 
hoi
e for θ0 and ̟0:
θ0 = 0.001 ̟0 = 0.80 (for example)The non-
entrality parameter ζ0 of both tests is 
om-puted from these values. One then obtains the 
riti
alvalue Fθ(m,∞, 0) of the LOM test, and thereby θ.6.2 ExamplesThe RD approa
h was validated in the framework of aEuropean a
tion entitled HPLE.1 Real GPS data were1The HPLE (High Pre
ision Lo
al Element) proje
t was 
o-funded by the European GNSS Supervisory Authority with fundingfrom the Sixth Framework Programme of the European Commu-nity for resear
h and te
hnologi
al development, European Union's
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essed in the dual and single-frequen
y modes.For all these data sets, the DIA pro
edure was 
ondu
tedwith ηj = 2 for all j.In the single-frequen
y mode, Equation (65) then redu
esto
‖w‖2 =

1

2σ2
p

n∑

j=1

|wjp|
2 +

1

2σ2
φ

n∑

j=1

|wjφ|
2 (72)As a general rule, at ea
h step of the re
ursive identi�-
ation pro
ess, the jp or jφ to be sele
ted, the dominantpotential outlier, then 
orresponds to the maximal valueof |wjp|/σp and |wjφ|/σφ for j = 1, . . . , n (see Fig. 5). Asillustrated in the following examples, this is also the 
asein dual-frequen
y mode.We now present related results 
on
erning a set of GPSdata provided by the Fren
h DGA for testing: 4907 epo
hsat 1Hz in dual-frequen
y mode (L1-C/A, L2-P) with manyappearan
es and disappearan
es of satellites. Over thistime series, depending on the epo
hs, their number was7, 8 or 9.The referen
e and user re
eivers were stati
. The rela-tive Cartesian 
oordinates of the user re
eiver were of theorder of −303m, 121m and 238m.The data set in question was reinitialized at the followingepo
hs: 1094, 1301, 3010 and 4689. The ambiguities werethen �xed in one or two se
onds: the position of the userre
eiver was thus retrieved, up to one 
entimeter, ex
eptfor epo
hs 1, 1094, 1301�1302, 3010�3011 and 4689-4690.Table 1 Dual-frequen
y DD ambigui-ties ǎ

j

fν ; k for j = 1, . . . , n with n =

9 and k = 1. At the epo
h under
onsideration, these ambiguities were�xed; for their RD trans
ription, seetext (and Se
t. 5.2, in parti
ular).
j; fν f1 f2

1 0 0

2 34 868 257 496

3 625 263 −196 104

4 −2 502 896 −1 419 324

5 12 155 323 9 705 967

6 −2 593 167 −1 303 294

7 5 973 773 4 346 092

8 9 056 740 7 252 801

9 −9 386 838 −7 332 507To illustrate the dual-frequen
y version of the approa
hpresented in this paper, we now 
on
entrate on the pro-
hief instrument for funding resear
h. The European GNSS Super-visory Authority is the EC agen
y in 
harge of the implementationof Galileo, Europe's future satellite navigation system.


ess at epo
h 4745. Nine satellites were then available:satellites 1, 5, 7, 8, 9, 21, 23, 26, 30 (j = 1, . . . , 9).At that epo
h, the ambiguity ve
tor (ǎf1 , ǎf2) was �xed.The DD trans
ription of its 
omponents is displayed inTable 1 for k = 1.For j = 1, . . . , n, and for ea
h frequen
y, the 
orrespond-ing RD ambiguities are then given by Eq. (62) with k = 1,
α̌

set

= ǎf1 and α̌
set

= ǎf2 . It was of 
ourse veri�ed thatthe estimated relative 
oordinates of the user re
eiverwere exa
tly the same in both approa
hes: −303.39m,
120.92m and 238.49m (the 
orre
t values up to one 
en-timeter).The DIA pro
edure implemented in that 
ase was the FLSdual-frequen
y version of that presented in Se
tion 6.1.The following two situations were then 
onsidered:A. Without any 
y
le slip (the real data)B. With the following added 
y
le slips (just to showthe e�
ien
y of the method):

• 2 
y
les in the re
eption of the f1-signal 
om-ing from satellite 5 (j = 2);
• −1 
y
le in the re
eption of the f2-signal 
om-ing from satellite 8 (j = 4);A. Dete
tion and identi�
ation without any 
y
le slipIn that 
ase, the entran
e value of TLOM (9.13) was greaterthan the 
orresponding value of tLOM (1.26). The outlierswere then identi�ed in the following order:Outlier TLOM

(f2 ; 1p) 5.40

(f1 ; 4φ) 2.63

(f1 ; 1p) 1.63

(f1 ; 8p) 1.06The value in the right-hand side 
olumn is the 
orre-sponding redu
ed value of TLOM . The last value of TLOM(1.06) is smaller than the 
orresponding value of tLOM(1.30). The biases thus found are displayed in Table 2.B. Dete
tion and identi�
ation with 
y
le slipsThe entran
e value of TLOM was then very large (335.09),mu
h greater than the 
orresponding value of tLOM (1.26).The outliers were then identi�ed in the following order:Outlier TLOM

(f1 ; 2φ) 108.81

(f2 ; 4φ) 9.42

(f2 ; 1p) 5.41

(f1 ; 4φ) 2.82

(f1 ; 1p) 1.74

(f1 ; 8p) 1.13



36 Journal of Global Positioning SystemsThe last value of TLOM (1.13) is smaller than the 
orre-sponding value of tLOM (1.34). The biases thus found aredisplayed in Table 3.All over the time series under 
onsideration, the resultswere the same with κ = 1 or κ = 0 (see step 2.1 and Fig. 5in Se
t. 6.1). It is important to note that the 
hoi
e
κ = 0, whi
h indu
es some CPU overhead (see step 2.2in Se
t. 6.1), impli
itly 
orresponds the DD implementa-tion of the DIA pro
edure by the Teunissen group at theTe
hni
al University of Delft (TUD). In Kalman mode,
κ should likely be set equal to a smaller value (say 0.5 asin Fig. 5). This point remains to be investigated.Table 2 Identi�
ation of a set of SD biases. Thebiases βfν ;jψ are expressed in meters. At theepo
h under 
onsideration, nine satellites wereavailable: n = 9 (see text).Frequen
y f1

jψ 1 2 4 8
p − 4.806 −3.304

φ 0.043Frequen
y f2

jψ 1 2 4 8
p − 8.755Table 3 Identi�
ation of a set of SD biases in
lud-ing 
y
le slips. The situation is the same as thatde�ned in Table 2, but with added 
y
le slips.The latter are 
orre
tly retrieved: βf1;2φ ≃ 2λ1 ,

βf2;4φ ≃ −λ2 . Note that the identi�
ation orderis, �rst, that indu
ed by the 
y
le slips, and then,that displayed in 
ase A (see text and Table 2).Frequen
y f1

jψ 1 2 4 8
p − 4.806 −3.304

φ 0.381 0.043Frequen
y f2

jψ 1 2 4 8
p − 8.755

φ −0.2487 Con
luding 
ommentsThe verti
es of a GNSS graph are the re
eivers and thesatellites of the GNSS devi
e (see Lannes and Durand2003). Its edges are the re
eiver-satellite pairs. The origi-nal observations are de�ned on these edges (see Se
t. 2.1).As these observations are de�ned up to ve
tors in thenuisan
e delay spa
e (see Se
t. 2.1.1 and Fig. 4), the or-thogonal 
omplement of this spa
e in the observational

data spa
e plays a key part in the data assimilation pro-
edures. In parti
ular, brought ba
k to this orthogonal
omplement, the residual quantities to be 
onsidered inthe DIA pro
edures take their values on the edges ofthe graph.To stress what is essential, the analysis presented in thispaper was restri
ted to the spe
ial 
ase where the GNSSgraph in
ludes only two re
eivers. On the two edges in-volved in the de�nition of a single di�eren
e, the double
entralized observations of Shi and Han (1992) are thenopposite. As 
lari�ed in Se
t. 1.1.5, the information 
on-tained in these observations is then a simple antisymmet-ri
 trans
ription of that 
ontained in the RD data.The DD and RD approa
hes prove to be equivalent. Morepre
isely, as spe
i�ed in Se
t. 3, the 
hoi
e of the ref-eren
e satellite indu
es that of a referen
e basis of theRD data spa
e. The 
omponents of a RD ve
tor in thisbasis are the 
orresponding DD's. Solving the problemin DD mode therefore amounts to solving it in this basis.At any stage of the data assimilation pro
edure, one maytherefore pass from the RD mode to the DD mode, andvi
e-versa. In parti
ular, solving the rational-ambiguityproblem of the RD mode amounts to solving a nearest-latti
e-point problem of DD type (see Se
t. 5.2).In RD mode, all the satellites are handled in the samemanner. As a result, the numeri
al 
odes of the RD dataassimilation pro
esses are more readable than those oftheir DD versions. For example, in RD mode, the disap-pearan
e of the referen
e satellite of the DD approa
h ishandled like that of any satellite.This said, the main interest of the RD approa
h lies inthe properties revealed by the 
orresponding `dual anal-ysis' (see Se
t. 4). These properties, whi
h are maskedin the DD approa
h (see Remark 4.2.2), shed a new lighton the CO approa
h of Shi and Han (1992). In parti
u-lar, Result 4.2.2 
an be exploited in the DIA pro
edures.From this point of view, Equation (43) is very signi�
ant.The notion of potential outlier derives from its 
orollary,the Eu
lidean quadrati
 de
omposition (44); see Fig. 5.These properties also 
omplete the 
ontribution of Lannesand Durand (2003). All these aspe
ts are analyzed and
ommented in Remark 4.2.1. As a result, all these equiv-alent approa
hes 
an bene�t from ea
h other.The DIA pro
edure des
ribed in Se
tion 6 follows themain guidelines of the DIA method of the TUD group(see, e.g., Fig. 6 in Teunissen 1990). In parti
ular, there
ursive dete
tion pro
ess is based on a Gram-S
hmidtorthogonalization pro
edure. The main new points de-rive from the notion of potential outliers. The orthogo-nalization pro
edure was implemented a

ordingly. Thee�
ien
y of the DIA method is thus improved. This par-ti
ular implementation also bene�ts from the QR Gram-S
hmidt step 2.5 of Se
t. 6.1. The QR approa
h of thePhD dissertation of Tiberius (1998) 
an thereby be ni
ely
ompleted. As spe
i�ed in step 2.6 of Se
t. 6.1, the SD bi-ases 
an thus be re
ursively re�ned. The identi�
ation of
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y
le slips, in parti
ular, is performed in this way (seeTable 3).The GNSS graph may in
lude more than two re
eivers;some re
eiver-satellite edges may also be missing. In thisgeneral situation, that of GNSS networks with missingdata, it is important to bene�t from all the redundan
yof the data. The `identi�able biases' must then be iden-ti�ed on the edges (or pairs of edges) where they ap-pear. To solve the related problems in an e�
ient man-ner, the DD and CO approa
hes have to be 
onjugatedand generalized in the `proje
ted observational frame-work' of Fig. 4. The related developments will be pre-sented in a forth
oming paper (Lannes 2008).Referen
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