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Di�erential GPS: the redued-di�erene approahAndré LannesCentre National de la Reherhe Sienti�queL2S, Supéle, 3, rue Joliot-Curie,91192 Gif-sur-Yvette edex (Frane)Abstrat. In the traditional approah to di�erentialGNSS, the satellite error terms are eliminated by form-ing the so-alled single di�erenes (SD). One then getsrid of the reeiver error terms by omputing, for eahreeiver to be onsidered, the orresponding double dif-ferenes (DD): the disrepanies between the single di�er-enes (SD) and one of them taken as referene. To han-dle the SD's in a homogeneous manner, one may equallywell onsider the disrepanies between the SD's and theirmean value. In this paper, these `entralized di�erentialdata' are referred to as `redued di�erenes' (RD). In thease where the GNSS devie inludes only two reeivers,this approah is ompletely equivalent to `double entral-ization.' More preisely, the information ontained in the`double entralized observations' is then a simple anti-symmetri transription of that ontained in the redueddi�erenes. The ambiguities are then rational numberswhih are related to the traditional integer ambiguitiesin a very simple manner. The properties established inthis paper shed a new light on the orresponding analysis.(The extension to GNSS networks with missing data willbe presented in a forthoming paper.) The orrespondingappliations onern the identi�ation of outliers in realtime. Cyle slips ombined with misellaneous SD biasesan thus be easily identi�ed.Key words. GNSS, DGPS, entralized undi�erentialmethods, RTK. Data assimilation, DIA.
1 IntrodutionThe global positioning tehniques are based on the fol-lowing observational equations. For eah frequeny fν ,for eah reeiver-satellite pair (r, s), and at eah epoh t,the ode and arrier-phase data are respetively of theform (e.g., Set. 14 in Strang and Borre 1997)
pν,t(r, s) = ρt(r, s) + c[dtν,t(r) − dtν,t(s)] + ǫν,t(r, s) (1)

φν,t(r, s) = ρt(r, s) + c[δtν,t(r) − δtν,t(s)]

+ λν [ϕν,0(r) − ϕν,0(s)] + λνNν(r, s) + εν,t(r, s)
(2)In these equations, whih are expressed in length units,

ρt(r, s) is the reeiver-satellite range: the distane be-tween satellite s (at the time t−τ where the signal is emit-ted) and reeiver r (at the time t of its reeption). Clearly,the λν 's denote the wavelengths of the arrier waves; therational integersNν(r, s) are the integer arrier-phase am-biguities. The instrumental delays and lok errors thatfor a given (ν, t) depend only on r and s are lumped to-gether in the reeiver and satellite error terms dtν,t(r),
dtν,t(s) for the ode, and δtν,t(r), δtν,t(s) for the phase(c is the speed of light); ϕν,0(r) and ϕν,0(s) are the initialphases (expressed in yles) in reeiver r and satellite s,respetively. Here, for larity, the ionospheri and tropo-spheri delays are ignored. At this introdutory level, wethus onsider that the data have been orreted for thesedelays. Clearly, the ode and phase errors ǫν,t(i, j) and
εν,t(i, j) inlude both noise and residual model errors.For our present purposes, we now onentrate on Equa-tion (2) in the single-frequeny mode:
φt(r, s) = ρt(r, s) + c[δtt(r) − δtt(s)]

+ λ[ϕ0(r) − ϕ0(s)] + λN(r, s) + εt(r, s)
(3)In what follows, a notation suh as a := b means `a isequal to b by de�nition.' Let r1 now be the referene re-eiver, and r2 be that of the user. Denote by s1, s2, . . . , snthe satellites involved in the GPS devie. A quantitysuh as

ϑj := ϑ(r2 , sj)− ϑ(r1 , sj) (4)is then referred to as a single di�erene (SD) in ϑ. By us-ing this notation, Equation (3) then yields
φjt = ρjt + c[δtt(r2)− δtt(r1)]

+ λ[ϕ0(r2)− ϕ0(r1)] + λaj + εjt
(5)where

aj := N j (6)One thus gets rid of the satellite error terms. The aj 'sare the integer ambiguities of the SD phase data.



24 Journal of Global Positioning Systems1.1 Basi notions1.1.1 Double di�erenesIn the traditional approah to di�erential GNSS, one �rstselets a referene satellite. Here, this satellite is denotedby sk . A quantity suh as
ϑjk := ϑj − ϑk (i 6= j) (7)is then referred to as a double di�erene (DD) in ϑ (seeFig. 1).By subtrating from Eq. (5) its expression for j = k(term by term), one then obtains the relation
φjt;k = ρjt;k + λajk + εjt;k (ajk ∈ Z) (8)One thus gets rid of the reeiver error terms. The ajk 'sare said to be the DD integer ambiguities of the problem.
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k is the value of the sin-gle di�erene ϑj by taking as origin (orreferene) the value of the single di�er-ene ϑk.1.1.2 Redued di�erenesIn the approah presented in this paper, we onsider ahomogeneous way of eliminating the reeiver error terms.The idea is to onsider the quantities (see Fig. 2)
ϑj0 := ϑj − ϑ0 (9)where ϑ0 is the mean value of the ϑj :
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0 is the value of thesingle di�erene ϑj by taking as origin (orreferene) the mean value ϑ0 of the singledi�erenes (ompare with Fig. 1).Clearly, this baryentri value an be regarded as a vir-tual SD assoiated with a virtual referene satellite s0 .Aording to a well-known baryentri property (for fur-ther details see Set. 3), for any k, we have
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The ϑj0 's an therefore be referred to as `redued di�er-enes' (RD).Subtrating from Eq. (5) its expression in terms of meanvalues (term by term), we then obtain the relation similarto Eq. (8)
φjt;0 = ρjt;0 + λaj0 + εjt;0 (aj0 ∈ Q) (12)Note that the RD ambiguities aj0 's are rational numbers(and not in general rational integers).1.1.3 Di�erential observationsBy onstrution, the DD's of the funtion
ϑd(ri , sj) :=

{
0 if i = 1 or j = k;

ϑjk otherwise. (13)are the DD's of the funtion ϑ(ri , sj). Suh a funtion antherefore be referred to as a `di�erential observational'(DO) funtion.1.1.4 Redued observationsBy onstrution, the SD's of the funtion
ϑr(ri , sj) :=

{
0 if i = 1;

ϑj0 otherwise. (14)are the redued di�erenes of the funtion ϑ(ri , sj). Suha funtion an therefore be referred to as a `redued ob-servational' (RO) funtion.1.1.5 Centralized observationsIn the `entralized observational approah' of Shi andHan (1992), one gets rid of the satellite error terms byforming the single entralized observations
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Lannes: Di�erential GPS � The redued di�erene approah 25One is then led to say that
ϑc(ri , sj) := (−1)i

ϑj0
2

(15)is a entralized observational funtion. In the ase wherethe GNSS devie inludes only two reeivers, the informa-tion ontained in the entralized observations is thereforea simple `antisymmetri transription' of that ontainedin the redued di�erenes. The title of the paper washosen aordingly.1.2 ContentsThe theoretial framework of this ontribution is pre-sented in Set. 2. As lari�ed in Set. 3, the DD andRD approahes prove to be equivalent. In partiular, al-though the RD ambiguities are rational numbers, the am-biguity problems to be solved are the same. Setion 5.2is devoted to this point. The RD approah should how-ever be preferred. Indeed, as shown in Set. 4, it re-veals interesting properties whih give a deeper insightinto the problem. These properties, whih are maskedin the DD approah, shed a new light on the entral-ized undi�erential method of Shi and Han (1992). Theyalso omplete the dual algebrai approah of Lannes andDurand (2003). As a result, these equivalent approahesan bene�t from eah other. As shown in Set. 6, one ofthese properties plays a key role in the DIA proeduresof the data assimilation proesses presented in Set. 5.The SD biases, among whih the yle slips (if any), anthen be identi�ed in real time. Related omments are tobe found in Set. 7. As pointed out in that setion, theanalysis presented in this paper an be regarded as anintrodution to the ase of GNSS networks with missingdata (Lannes 2008).2 Theoretial frameworkIn the ontext de�ned in Set. 1, the notion of observa-tional spae an be spei�ed as follows.2.1 Observational spaesIn what follows, it may be onvenient to onsider that afuntion suh as ϑ(r, s) takes its values on a retangulargrid. When the GNSS devie inludes two reeivers and
n satellites, this grid inludes two lines and n olumns;
ϑ is then regarded as a vetor of the observational spae
E := R2n. Clearly, these values are the omponents of ϑin the standard basis of E. The notation Eψ spei�esthe nature of the vetors ϑ of E: ψ = p for the ode,
ψ = φ for the phase. The variane-ovariane matrix ofthe orresponding data vetor is denoted by Vψ; Vψ is theoperator on E indued by Vψ . One is then led to de�nethe `observational data spae' of type ψ as the spae E+

ψwith inner produt
〈ϑ | ϑ′〉E+

ψ
:= (ϑ · V −1

ψ ϑ′)E (16)Clearly, E+ ≡ E+

ψ is a real Hilbert spae.

2.1.1 Nuisane delay spaeIn what follows, the spae E0 of funtions ϑ(ri , sj) of theform ϕ(sj) − ϕ(ri) is referred to as the nuisane delayspae (see Eqs. (1), (2) and Fig. 4). In the speial aseunder onsideration (with two reeivers), this subspaeof E is of dimension n+ 1.2.1.2 Clean observational spaesThe orthogonal omplement of E0 in E, denoted by Ec ,is referred to as the `lean observational (CO) spae.'The orthogonal omplement of E0 in E+ , E+

c , is thenreferred to as the `CO data spae' (see Fig. 4). In thespeial ase under onsideration, Ec and E+

c are of di-mension 2n − (n + 1) = n − 1. As shown below, Ec isthen the spae of `entralized observational funtions' ϑcde�ned by Eq. (15).Proof. In the Eulidean spae E, ϑc is orthogonal to anynuisane funtion of E0 . Indeed,
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ϑj0with ∑2
i=1(−1)i = 0 and ∑n

j=1 ϑ
j
0 = 0. The propertythen follows from the fat that the funtions ϑc form aspae of dimension n− 1.Remark 2.1.2. Let Pc be the orthogonal projetionof E onto Ec . Here, the entralized observational fun-tion ϑc de�ned by Eq. (15) is the projetion of ϑ on Ec:

ϑc := Pcϑ. In other terms, the `leaning operator' Pc thenredues to the `double-entralization operator.' This doesnot hold for GNSS networks with missing data. The ter-minology was hosen aordingly. Depending on the on-text, C and subsript  stand for `lean' or `entralized.'2.2 SD spaeDenoting by b := {ej}
n
j=1 the standard basis of Rn, letus onsider the vetor ϑ :=

∑n
j=1 ϑ

jej in whih the ϑj 'sare the single di�erenes de�ned in Eq. (4). Clearly, suha vetor an be regarded as a SD vetor. In this ontext,we say that F := Rn is the `SD spae' (see Fig. 3).2.2.1 SD operatorThe SD operator is the operator from E+ into F de�nedby the relation (see Eq. (4))
Sϑ := ϑ i.e. (Sϑ)j := ϑj (17)We now denote by S† the orresponding `bakprojetion'operator, i.e., the operator from F into E
(S†ϑ)(ri , sj) := (−1)iϑj (18)



26 Journal of Global Positioning SystemsFor any ϑ ∈ F , the funtion ϑ′ := S†ϑ/2 is suh that
Sϑ′ = ϑ; S is therefore surjetive.In what follows, Vψ is the variane-ovariane matrix ofthe SD data vetor ψ := Sψ. Denoting by Vψ the oper-ator on F indued by Vψ , we have
Vψ = SVψS

† (19)We now show that the adjoint of S is given by the relation
S∗ = VψS

† (20)hene, from Eq. (19),
SS∗ = Vψ (21)Proof. By de�nition, S∗ is the operator from F into E+suh that for any ϑ′ ∈ E+ and any ϑ ∈ F , we have

(Sϑ′ · ϑ)F = 〈ϑ′ | S∗ϑ〉E+ . Clearly,
(Sϑ′ · ϑ)F =

n∑

j=1

[ 2∑

i=1

(−1)iϑ′(ri , sj)
]
ϑjFrom Eq. (18), we therefore have

(Sϑ′ · ϑ)F =

2∑

i=1

n∑

j=1

ϑ′(ri , sj)(S
†ϑ)(ri , sj)i.e., (Sϑ′ · ϑ)F = (ϑ′ · S†ϑ)E =
(
ϑ′ · [V −1

ψ Vψ ]S†ϑ
)
E
. Asa result,

(Sϑ′ · ϑ)F = 〈ϑ′ | VψS
†ϑ〉E+hene S∗ = VψS

† .2.2.2 RD spae and RD ambiguity lattieLet us denote by F0 the spae of vetors ϑ ∈ F whoseomponents ϑj are idential. The orthogonal omplementof F0 into F is the spae (see Fig. 3)
Fr :=

{
ϑ ∈ F :

∑n
j=1 ϑ

j = 0
}As F0 is a one-dimensional spae, Fr is of dimension n−1.Let Q0 and Qr be the orthogonal projetions of F onto F0and Fr , respetively. Clearly, these operators are expli-itly de�ned by the relations

(Q0ϑ)j = ϑ0 (Qrϑ)j = ϑj − ϑ0 (22)where ϑ0 is the mean value of the ϑj 's. With regard tothe RD approah, we are then led to set (see Eqs. (9),(10), (22) and Fig. 3)
ϑr := Qrϑ (23)Clearly, the omponents of ϑr in basis b are the n re-dued di�erenes ϑj0 ; Fr an therefore be referred to asthe `RD spae.' Note that ϑc is related to ϑr by therelation ϑc = S†ϑr/2 (see Eqs. (15) and (18)).

As ϑr is the projetion of ϑ on Er , we have
n∑

j=1

|ϑj0|
2 =

n∑

j=1

|ϑj − ϑ0|2 = inf
ϑo∈R

n∑

j=1

|ϑj − ϑo|2The property expressed in Eq. (11) results from this re-lation.The projetion of Zn onto Fr is a lattie of rank n− 1: the`RD ambiguity lattie' Lr (see Fig. 3). In basis b (whihis not a basis of Lr), the omponents of a point ar of Lrare rational numbers: the n rational ambiguities aj0 .Remark 2.2.2. The RO funtions ϑr de�ned by Eq. (14)form a subspae of E denoted by Er (see Fig. 4). Clearly,this `RO spae' is a simple insertion of Fr in E.2.2.3 DD spae and DD ambiguity lattieIn the DD approah, k being �xed, one is led to onsiderthe subspae of F (see Fig. 3)
Fd := {ϑ ∈ F : ϑk = 0}By onstrution, Fd is isomorphi to Rn−1. Let Qd nowbe the oblique projetion of F onto Fd along F0 . Notethat Qd is expliitly de�ned by the relation
(Qdϑ)j = ϑj − ϑk (24)We are then led to set (see Eq. (7) and Fig. 3)
ϑd := Qdϑ (25)Let bd := {ej}j 6=k be the standard basis of Fd . As theomponents of ϑd in basis bd are the n− 1 double di�er-enes ϑjk , Fd an be regarded as a `DD spae.'The intersetion of Zn with Fd is a lattie of rank n− 1:the `DD ambiguity lattie' Ld (see Fig. 3). In basis bd ,the omponents of a point ad of Ld are rational integers:the n− 1 integer ambiguities ajk (j 6= k).Clearly, Ld = QdLd hene Ld ⊂ QdZn (sine Ld is asubset of Zn). Furthermore, QdZn ⊂ Ld . We thereforehave Ld = QdZn. As Lr := QrZ

n and Qr = QrQd ,it follows that Lr = QrLd (see Fig. 3).Remark 2.2.3. The DO funtions ϑd de�ned by Eq. (13)form a subspae of E denoted by Ed (see Fig. 4). Clearly,this `DO spae' is an insertion of Fd in E.2.3 RD and DD operatorsThe RD operator is the operator from E+ into Fr de�nedby the relation
Sr := QrS (26)Note that Sr is surjetive. (The argument is the sameas that used for S .) As expeted, the null spae of Sr(denoted by kerSr) is the nuisane delay spae E0 . Thisproperty an be expliitly established as follows.



Lannes: Di�erential GPS � The redued di�erene approah 27Proof. Clearly, E0 ⊂ kerSr with dimE0 = n+ 1; but
dim(kerSr) = dimE − dimFr = 2n− (n− 1) = n+ 1hene the property.The DD operator is the operator from E+ into Fd de�nedby the relation
Sd := QdS (27)Like Sr , Sd is surjetive, and kerSd = E0 .3 Equivalene of the DD and RDapproahesThe spaes Fd and Fr are isomorphi. More preisely,the restrition of Qr to Fd , the operator from Fd into Frde�ned by the relation
Rϑd := Qrϑd (28)maps Fd onto Fr , and Ld onto Lr (see Fig. 3). Its inverseis the operator from Fr into Fd

Dϑr := Qdϑr (29)Note that the ation of DR orresponds to the suessivehanges of origin ϑk → ϑ0 → ϑk (see Figs. 1 and 2):
(DRϑd)j = (ϑjk − ϑ

0)− (ϑkk − ϑ
0) = ϑjkThe vetors erj := Rej (j 6= k) form a basis of Fr , whihis also a basis of Lr : the basis brd := Rbd . In this ba-sis, the omponents of a vetor ϑr of Fr are the ompo-nents ϑjk of ϑd = Dϑr . Indeed,

ϑr = Rϑd = R
∑

j 6=k

ϑjkej =
∑

j 6=k

ϑjkRej =
∑

j 6=k

ϑjkerjIn partiular, in this basis (whih is not orthogonal), theomponents of a point ar of Lr are the n− 1 integer am-biguities ajk of ad = Dar . We reall that in the standardbasis of F (whih is not a basis of Lr), the omponentsof ar are the n rational ambiguities aj0 .Let T now be the orthogonal projetion of F onto Fdrestrited to Fr (see Fig. 3). For any ϑ′ in Fr and any ϑin Fd , we have (ϑ′ · ϑ)F = (ϑ′ · Rϑ)F = (Tϑ′ · ϑ)F .This shows that, T is the adjoint of R on F : R† = T .Expliitly,
(R†ϑr)

j = ϑj0 (∀j 6= k); (R†ϑr)
k = 0 (30)As D is the inverse of R, D† is the inverse of R†:

(D†ϑd)j = ϑjk (∀j 6= k); (D†ϑd)k = −
∑

j 6=k

ϑjk (31)Let Vψd now be the variane-ovarianematrix (expressedin basis bd) of the DD data ψd . Likewise, let Vψr be the
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j
0 = 0 (see Figs. 1 and 2, respetively); R is the or-thogonal projetion of F onto Fr restrited to Fd; R standsfor `redution.' Its inverse, D, is the oblique projetionof F onto Fd (along F0) restrited to Fr; D stands for`di�erene.' The adjoint of R is the orthogonal projetionof F onto Fd restrited to Fr: R†

= T . Its inverse is theadjoint of D: D†. Further details (in partiular those on-erning latties Ld and Lr) are to be found in Sets. 2 and 3.variane-ovariane matrix (expressed in basis b) of theRD data ψr . In what follows, Vψd is the operator on Fdindued by Vψd . Likewise, Vψr is the operator on Fr in-dued by Vψr . Let Qr now be the matrix of Qr expressedin basis b. As Vψr = QrVψQ
T
r = QrVψQr , the opera-tor Vψr is the operator on Fr expliitly de�ned by therelation

Vψrϑ = QrVψϑ (ϑ ∈ Fr) (32)With regard to the least-squares (LS) problems to bedealt with, Fd and Fr are then equipped with the innerproduts (see the lower part of Fig. 4)
〈ϑ′

d | ϑd〉Fψ;d+
:= (ϑ′

d · ϑd+
)F ϑd+ := V −1

ψd ϑd (33)
〈ϑ′

r | ϑr〉Fψ;r+
:= (ϑ′

r · ϑr+)F ϑr+ := V −1
ψr ϑr (34)As E+ ≡ E+

ψ is referred to as the observational data spaeof type ψ, we may say that Fd+ ≡ Fψ;d+ is a `DD dataspae' of type ψ. Likewise, Fr+ ≡ Fψ;r+ is the `RD dataspae' of type ψ.We have Vψd = DVψrD
†, hene

V −1
ψd = R†V −1

ψr RAs illustrated in the lower part of Fig. 4, it follows that
ϑd+ = R†ϑr+ (35)
ϑr+ = D†ϑd+ (36)



28 Journal of Global Positioning SystemsFrom Eqs. (33) and (35), 〈ϑ′
d | ϑd〉Fd+

= (ϑ′
d · R

†ϑr+)F ;hene 〈ϑ′
d | ϑd〉Fd+

= (Rϑ′
d · ϑr+)F . We thus have

〈ϑ′
d | ϑd〉Fd+

= 〈ϑ′
r | ϑr〉Fr+where ϑ′

r = Rϑ′
d and ϑr = Rϑd . In partiular,

‖ϑd‖
2
Fd+

= ‖ϑr‖
2
Fr+

(for ϑr = Rϑd) (37)The DD and RD approahes are therefore `ompletelyequivalent.' This said, as shown in Set. 4 (see, in parti-ular, Result 4.2.2), the RD approah reveals interestingproperties whih are ompletely hidden in DD mode (seeRemark 4.2.2).4 Observational equivalene:Duality4.1 Projetion onto the CO data spaeLet ϑ be some point in the observational spae E. In whatfollows, ϑ+

c denotes the orthogonal projetion of ϑ on theCO data spae E+

c (see Set. 2.1.2 and Fig. 4):
ϑ+

c := P+

c ϑ (38)Clearly, P+

c is the orresponding orthogonal projetion.Let ϑr := Srϑ now be the RD vetor of ϑ. The solutionsof the equation Srϑ
′ = ϑr are de�ned up to a vetor of E0 ;

ϑ+

c is the solution with smallest norm in E+. The operatorthat maps ϑr to ϑ+

c is referred to as the Moore-Penrosepseudoinverse of Sr . This operator is denoted by S+
r :

ϑ+

c = S+
r ϑr (39)Likewise, for ϑd = Dϑr , we have ϑ+

c = S+
d ϑd . Clearly,

ϑ+

c an be regarded as the expression for ϑr (or ϑd)brought bak to E+ via S+
r (or S+

d ). In this ontext,we de�ne ϑc+ as follows (see Eqs. (34), (18) and Fig. 4):
ϑc+ := S†ϑr+ (40)The following property then ompletes the analysis pre-sented in Set. 3.Property 4.1. One has ϑ+

c = Vψϑc+ . As a orollary,
‖ϑ+

c ‖
2
E+ = (ϑ+

c · ϑc+)E = ‖ϑr‖
2
Fr+

.Proof. As Sr is surjetive, its pseudoinverse is given bythe relation
S+

r = S∗
r (SrS

∗
r )−1For any ϑ in Fr , we have (sine Sr = QrS)

S∗
rϑ = (QrS)∗ϑ = S∗Q∗

rϑ = S∗Qrϑ = S∗ϑwhere S∗ = VψS
† (Eq. (20)). As a result (see Eqs. (21)and (32)),

SrS
∗
rϑ = QrSS

∗ϑ = QrVψϑ = Vψrϑ

It then follows that
S+

r = S∗
r V

−1
ψrhene

ϑ+

c = S∗
r V

−1
ψr ϑr = S∗V −1

ψr ϑr = VψS
†V −1
ψr ϑri.e., ϑ+

c = Vψϑc+ (from Eqs. (34) and (40)). As a orollary(see Eq. (16)),
‖ϑ+

c ‖
2
E+ = 〈ϑ+

c | ϑ
+

c 〉E+

= 〈ϑ+

c | Vψϑc+〉E+ = (ϑ+

c · ϑc+)EAs ϑc is the projetion of ϑ+

c on Ec (see Fig. 4), we have(see Eqs. (40) and (18))
(ϑ+

c · ϑc+)E = (ϑc · ϑc+)E

= (ϑc · S
†ϑr+)E

= (Sϑc · ϑr+)FBut, from Eq. (15), Sϑc = ϑr . As a result,
‖ϑ+

c ‖
2
E+ = (ϑr · ϑr+)F = ‖ϑr‖

2
Fr+4.2 Analysis of a typial situationTo illustrate our analysis, we now onsider the ase wherethe variane-ovariane matrix of the observational dataof type ψ is of the form

Vψ = diag(η(ri , sj)σ2
ψ

) (41)Clearly, σ2
ψ is a `referene variane;' η(r, s) is a nonnega-tive weight funtion. The variane-ovariane matrix ofthe SD data ψ := Sψ is then given by the relation

Vψ = diag(ηjσ2
ψ) ηj := η(r1 , sj) + η(r2 , sj) (42)As lari�ed in Remark 4.2.1, the following results shedsa new light on the entralized observational approah ofShi and Han (1992). The dual approah of Lannes andDurand (2003) is also thereby enrihed.Result 4.2.1. Denoting by ϑjr+ and ϑjr the omponentsof ϑr+ and ϑr , respetively, we have

ϑjr+ =
1

ηjσ2
ψ

(ϑjr − δϑ) (ϑjr ≡ ϑ
j
0)where

δϑ :=

n∑

j=1

µjϑ
j
r µj :=

1
ηj∑n
j=1

1
ηjAs a orollary, ϑ+

c = ησ2
ψ ϑc+ = ησ2

ψ S
†ϑr+ .Proof. By de�nition, ϑr+ := V −1

ψr ϑr (Eq. (34)). Toidentify the inverse of Vψr on Fr , we solve the equation
Vψrϑ

′ = ϑr in Fr . From Eq. (32), Vψrϑ
′ is equal to Vψϑ′up to a vetor of F0 . It then follows from Eq. (42) thatthe omponents of ϑ′ are related to those of ϑr by therelation

ηjσ
2
ψϑ

′j = ϑjr − δ
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ϑ′j =

1

ηjσ2
ψ

(ϑjr − δ)As ϑ′ lies in Fr , we have∑n
j=1 ϑ

′j = 0, hene the identity
δ ≡ δϑ . The result and its orollary then follow fromProperty 4.1 and Eqs. (40, (41).It is important to note that in the speial ase where theweights η(ri , sj) are all equal to unity, we have ηj = 2,
µj = 1/n for all j, and δϑ = 0 .Result 4.2.2. The square of the norm ϑr in Fr+ an beexpanded as follows:
‖ϑr‖

2
Fr+

=

n∑

j=1

1

ηjσ2
ψ

(ϑjr − δϑ)
2Proof. From Property 4.1, Eq. (41) and Result 4.2.1,we have

‖ϑr‖
2
Fr+

= (ϑ+

c · ϑc+)E

=
2∑

i=1

n∑

j=1

η(ri , sj)σ
2
ψ ϑ

2
c+(ri , sj)

=

n∑

j=1

2∑

i=1

η(ri , sj)
1

η2
jσ

2
ψ

(ϑjr − δϑ)
2

=

n∑

j=1

[η(r1 , sj) + η(r2 , sj)]
1

η2
jσ

2
ψ

(ϑjr − δϑ)
2The result then follows from the fat that

η(r1 , sj) + η(r2 , sj) = ηj ; see Eq. (42).Remark 4.2.1. Property 4.1 illustrated by Results 4.2.1and 4.2.2 gives a `dual insight' into the problem (seeFig. 4). For example, in the DIA method presented inSet. 6, ϑr is the [ψν,t]-omponent of a residual quan-tity involved in a LS problem stated in (the Hilbert sumof) [ψν,t]-opies of Fr+ . Aording to Property 4.1, stat-ing the problem in that way amounts to stating it in(the Hilbert sum of) [ψν,t]-opies of E+

c . Depending onthe ontext, one may thus operate in various equivalentways. Indeed, equipped with appropriate inner produts,the spaes Fr+ , Fd+ , Er+ , Ed+ and Ec+ are isomorphito E+

c .Let us now ome bak to the speial ase where the weights
η(ri , sj) are all equal to unity. Result 4.2.1 then yields(see also Eqs. (15) and (18)):
ϑ+

c = ϑc =
1

2
S†ϑr (43)Clearly, the CO data spae E+

c then oinides with theCO spae Ec (see Fig. 4). Aording to Result 4.2.2, we
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Srϑc+Fig. 4 Dual representation of the main elements of the prob-lem. Here, E0 is the nuisane delay spae (see Set. 2.1.1).This subspae of the observational spae E is the nullspae of the RD (and DD) operators Sr (and Sd); seeSet. 2.3; ϑc is the projetion of ϑ on the orthogonal om-plement of E0 in E, the CO spae Ec: ϑc = Pcϑ. In thease where the GNSS devie inludes only two reeivers,

ϑc is the entralized observational funtion ϑc de�ned viaEq. (15); see Remark 2.1.2. Here, ϑr is the observationalversion of #r (see Remark 2.2.2). Likewise, ϑd is the ob-servational version of #d (see Remark. 2.2.3). The pseu-doinverse of Sr maps Fr onto the CO data spae E+
c ,the orthogonal omplement of E in the observational dataspae E+: ϑ+

c = S+
r #r = P+

c ϑ. Aording to Property 4.1.1,one has ϑ+
c = Vψϑc+ where ϑc+ := S†

#r+ with #r+ := V −1
 r #r ;note that Srϑc+ = Sϑc+ = SS†

#r+ = 2#r+ . Likewise,
S+

d maps Fd onto E+
c : ϑ+

c = S+
d #d . In the important spe-ial ase examined in Remark 4.2.1, ϑ+

c oinides with ϑc(see Eq. (43)); E+
c then oinides with Ec .then have (see also Eq. (37)):

‖ϑ+

c ‖
2
E+ = ‖ϑr‖

2
Fr+

= ‖ϑd‖
2
Fd+

=

n∑

j=1

1

2σ2
ψ

|ϑjr |
2 (44)The orthogonal projetion of E+ onto E+

c is also basiallyinvolved in the dual algebrai formulation of Lannes andDurand (2003); see Fig. 4 of their paper. The key re-sult (43) ompletes their ontribution. To establish this



30 Journal of Global Positioning Systemsproperty, these authors should have desribed, expliitly,in the speial ase under onsideration, the ation of thepseudoinverse of operator Sd (the `losure operator' C oftheir formulation).With regard to all these points, the more general resultsestablished in this setion enrih both the dual algebraiformulation of di�erential GPS and the entralized obser-vational approah.Remark 4.2.2. In the speial ase under onsideration(where the weights η(ri , sj) are all equal to unity), theidentity expressed in the right-hand side of Eq. (44) andiretly be derived from the traditional approah to dif-ferential GNSS. This an be shown as follows. For larity,onsider the ase where k = 1. As is well known, the ma-trix elements of V −1
ψd are then given by the formula

κj,j′ =
1

2σ2
ψ

×
1

n

∣∣∣∣∣
n− 1 if j′ = j

−1 if j′ 6= j
j, j′ ∈ {2, . . . , n}Clearly, for any ϑ in Fd , we have

‖ϑ‖2Fd+
= (ϑ · V −1

ψd ϑ)F =

n∑

j=2

ϑjk(V
−1
ψd ϑ)jin whih (for j = 2, . . . , n)

(V −1
ψd ϑ)j =

1

2σ2
ψ

(
ϑjk −

1

n

n∑

j=2

ϑjk

)

=
1

2σ2
ψ

[
(ϑj − ϑk)−

1

n

n∑

j=1

(ϑj − ϑk)
]

=
1

2σ2
ψ

(
ϑj −

1

n

n∑

j=1

ϑj
)

=
1

2σ2
ψ

ϑj0As a result,
n∑

j=2

ϑjk(V
−1
ψd ϑ)j =

1

2σ2
ψ

n∑

j=2

(ϑj − ϑk)ϑj0

=
1

2σ2
ψ

n∑

j=1

(ϑj − ϑk)ϑj0

=
1

2σ2
ψ

n∑

j=1

(ϑj0 − ϑ
k
0)ϑ

j
0Sine ∑n

j=1 ϑ
j
0 = 0, it then follows that

‖ϑ‖2Fd+
=

n∑

j=1

1

2σ2
ψ

|ϑj0|
2 (ϑj0 ≡ ϑ

j
r)

5 Data assimilation in RD modeIn the statement of the global positioning problems, theposition variable at epoh t, ξt , appears via the lineariza-tion of the quantities ρjt with respet to the position vari-able ξ2;t of reeiver r2 : ξ2;t = ξ̃2;t + ξt . Indeed, as
ρjt = ρt(r2 , sj)− ρt(r1 , sj) (45)the linear expansion of ρjt is of the form
ρjt = ρ̃ jt + (djt · ξt)R3 (46)Here, djt is the unitary vetor that haraterizes the di-retion sj → r2 of the signal reeived at epoh t. Let J tbe the matrix whose elements of the jth line are the threeomponents of djt . Denoting by Jt the orresponding op-erator, we thus have ρt = ρ̃t + Jtξt , hene
ρt;r = ρ̃t;r + Jt;rξt (Jt;r := QrJt) (47)In single-frequeny mode, the state variable at epoh t,the loal variable xt , is the olumn matrix
xt := (α, ξt)

T (48)with α ≡ ar in Fr . The global variable for the epohs
t1 , t2, . . . tn is then of the form
X := (α, ξ1 , ξ2 , . . . , ξn)T (49)where ξn ≡ ξtn . Clearly, the `�oat ambiguity' α does notdepend on t. Let yt be the RD data vetor (at epoh t)modi�ed by the terms indued by the linearization:
yt :=

(
pt;r − ρ̃t;r

φt;r − ρ̃t;r

) (50)We then have
yt = Atxt + error terms (51)where
At :=

(
0 Jt;r

λIα Jt;r

) (52)The problem is to be solved in the least-square sense atthe global level. We then introdue the olumn matrix
Y = (y1 , y2 , . . . , yn)T (53)where yn ≡ ytn . Clearly,
Y = AX + error terms (54)
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A :=




· J1;r · · · · ·

λIα J1;r · · · · ·

· · J2;r · · · ·

λIα · J2;r · · · ·

··· ··· ··· · · · ···
··· ··· ··· · · · ···

· · · · · · Jn;r

λIα · · · · · Jn;r




(55)
5.1 Reursive least-square �lteringThe solution x̂ ≡ (α̂, ξ̂ )T is obtained through reursiveleast-squares (RLS) �ltering (e.g., Björk 1996). The it-eration at epoh tn is then of the form
x̂n|n = x̂n|n−1 +Knvn (56)in whih
vn = yn −Anx̂n|n−1 (57)where
x̂n|n := (α̂n, ξ̂n) x̂n|n−1 := (α̂n−1, 0) (58)Clearly, Kn is the RLS �lter at epoh tn ; vn is the `pre-dited residue' for the same epoh. The �oat solution α̂is thus re�ned together with its variane-ovariane ma-trix Vbα .5.2 Ambiguity resolutionAt eah epoh, one then searhes for the point α̌ of Lrlosest to α̂ the distane being that indued by the quadra-ti form on Fr : f(ϑ) := (ϑ · V −1

bα ϑ)F . Clearly,
α̌ = argmin

α∈Lr

‖α− α̂‖V −1

bα

(59)As spei�ed in Agrell et al. (2002), this nearest-lattie-point problem is solved via the LLL algorithm, an algo-rithm devised by Lenstra, Lenstra and Lovàsz in 1982.To state this problem in tehnial terms, we then have tohoose a referene basis of Lr . The most natural hoieorresponds to a basis suh as brd (see Set. 3). The refer-ene index k an then be hosen arbitrarily, for example,the �rst one or the last one of the urrent list of satel-lites. In this basis, the omponents of α are the ompo-nents of αd := Dα in basis bd (see the analysis developedin Set. 3). Likewise, the omponents of α̂ in basis brdare the omponents of α̂d := Dα̂ in basis bd . Further-more, the variane-ovariane matrix of α̂ expressed in

basis brd is equal to DVbαD
∗, i.e., VDbα = Vbαd

. Solv-ing the RD ambiguity problem in Lr therefore amountsto solving the integer-ambiguity problem of the DD ap-proah in Ld (e.g., Teunissen 1995):
α̌d = argmin

αd∈Ld

‖αd − α̂d‖V −1

bαd

(60)Clearly α̌ = Rα̌d . The expliit statement (in a trivialbasis) of the ambiguity problem in question is thereforethat of the DD approah. This does not mean, of ourse,that the DD approah is the best suited for stating allthe problems of the data assimilation proess (see Set. 6in partiular).At the tehnial level, we therefore proeed as follows.We �rst set k = 1 for example. Starting from the �oatRD ambiguity vetor α̂ and its variane-ovariane ma-trix Vbα , we then ompute the DD �oat ambiguity ve-tor α̂d = Dα̂ and its variane-ovariane matrix Vbαd
=

DVbαD
∗. In single-frequeny mode, the n − 1 ompo-nents of α̂d are therefore expliitly given by the relations

α̂jk = α̂j − α̂k (j = 2, . . . , n) (61)Similar operations on the olumns and lines of Vbα pro-vide the (n − 1)2 matrix elements of Vbαd
. Solving theDD ambiguity problem (60) then provides the DD am-biguity vetor α̌d . In single-frequeny mode, the om-ponents of the RD ambiguity vetor α̌ = Rα̌d are thenexpliitly given by the relations

α̌j = α̌jk − α̌
0
k α̌0

k :=
1

n

∑

j 6=k

α̌jk (62)Clearly, we thus have passed from the RD framework tothe DD framework (and then vie-versa) only to solve thetehnial problem in question.5.3 Fixed ambiguitiesWhen in the data assimilation proess, α̌ beomes on-sistent with the model (up to the noise), the ambiguitiesare said to be �xed. The positions ξ̂n are then re�ned via`FLS' �ltering: LS proesses in whih the ambiguities are�xed at these values. Proessing the same undi�erentialdata either in RD or DD mode of ourse provides thesame positions.To prevent that biases on the SD data propagate unde-teted into the ambiguity solution and the positioningresults, partiular methods have been developed. TheseDIA methods `Detet' these model errors, `Identify' them,and `Adapt' the results onsequently (e.g., Teunissen 1990,Hewitson et al. 2004). We now show how the related RLSand FLS proedures an bene�t from the RD approah.



32 Journal of Global Positioning Systems6 DIA methods in RD modeIn RLS mode (for example), the priniple of the RD ver-sion of these methods is based on the analysis of the `a-tual residue'
wn := yn −Anx̂n|n = Hnvn (63)where, from Eqs. (56) and (57),
Hn := I −AnKn (64)Here, I is the identity operator. Omitting subsript n,and denoting by wp and wφ the ode and phase om-ponents of w (respetively), we have from Result 4.2.2and 4.4.1
‖w‖2 := ‖wp‖

2
Fp;r+

+ ‖wφ‖
2
Fφ;r+

(65)where (for ψ = p or φ)
‖wψ‖

2
Fψ;r+

=

n∑

jψ=1

cjψ (66)with
cjψ :=

1

ηjσ2
ψ

(wjψ − δwψ)2 δwψ :=

n∑

j=1

µjw
j
ψ (67)When ‖w‖2 is too large, above some threshold de�nedby statistial riteria (see Set. 6.1), we then searh toidentify a global SD bias of the form

β =
( ∑

jp∈Ωp

βjpejp ,
∑

jφ∈Ωφ

βjφejφ

) (68)The `outlier sets' Ωp and Ωφ are some `small subsets'of {1, . . . , n}. The orresponding SD model is the follow-ing (see Set. 1):
ρj + c[dt(r2)− dt(r1)] + ǫj =

∣∣∣∣∣
pj − βjp if j ∈ Ωp

pj otherwisefor the ode, and likewise for the phase (see Eq. (5)).The problem is to identify Ωp and Ωφ while getting least-squares estimates of the orresponding biases βjp and βjφ .The guiding idea is to the onsider the ontribution ofthese biases to w.As w = H δv = H δy (see Eqs. (63) and (57)), we must�rst see what is the ontribution of these biases to y. Atthis level, the orretion terms indued by ejp and ejφare denoted by zjp and zjφ :
y

set

= y − zjψ

∣∣∣∣∣
zjp := (erjp , 0)

zjφ := (0, erjφ)
(69)Clearly, a notation suh as a set

= a+ b means `a is set equalto the urrent value of a + b.' The omponents of the

basis vetors erj are expliitly de�ned by the relations(see Set. 3)
∣∣∣∣∣
e
j′

rj = −1/n (for j′ 6= j);
e
j
rj = 1− 1/nThe variations of w indued by ejp and ejφ are thereforeharaterized by the quantities fjp and fjφ de�ned below:

w
set

=w −Hzjψ

∣∣∣∣∣
fjp := Hzjp

fjφ := Hzjφ
(70)As a result, the variation of w indued by the global bias βis haraterized by the vetor

Mβ :=
∑

jp∈Ωp

βjpfjp +
∑

jφ∈Ωφ

βjφfjφ (71)We are then led to solve, in the least-square sense, theequation Mβ `='w, in whih the olumn vetors of M ,the fjp 's and fjφ 's, have to be thoroughly seleted. Aslari�ed in Set. 6.1, this operation is performed via a par-tiular Gram-Shmidt orthogonalization proess whih isinterrupted as soon as the orreted data are onsistentwith the model. As expeted, Equations (65), (66) and(67) play a key role in the identi�ation of the globaloutlier set Ω := Ωp ∪ Ωφ .6.1 ImplementationIn the proedure desribed in this setion (see the �owdiagram shown in Fig. 6), θ is the level of signi�ane orthe probabilty of false alarm of the loal overall model(LOM) test; θ0 is that of the outlier test.1. Entrane LOM testCompute TLOM :=‖w‖2/m where m = 2(n− 1)−3 is theredundany (in the single-frequeny ase) at the urrentepoh. Let tLOM := Fθ(m,∞, 0) now be the upper θ prob-ability point of the entral F -distribution with m,∞ de-grees of freedom. If TLOM < tLOM, terminate the proess(go to step 4); otherwise, set r = 1 (the reursive index)and Ω = Π = ∅ (the empty set); the meaning of the aux-illary set Π is de�ned in step 2.2 (as soon as it begins tobe built).2. Reursive identi�ation of the outliers2.1. Current set of potential outliersFor all the jψ /∈ Ω, ompute the omponents cjψ of ‖w‖2and their maximal value:
cmax := max

jψ /∈Ω
cjψThen, given some nonnegative onstant κ ≤ 1, form theurrent set of potential outliers (see Fig. 5):

Πr := {jψ /∈ Ω : cjψ ≥ κcmax}
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r r r r

3p 5p 3φ 5φ

c5φ

Code PhaseFig. 5 Notion of potential outliers (in RDsingle-frequeny mode). For the ompo-nents cjψ shown here, and for κ = 0.5 (with
n = 7 and Ω = ∅), four potential outliersare identi�ed: 3p , 5p , 3φ and 5φ . Here, thephase outlier 5φ is likely to be the dominantpotential outlier (see step 2.3 and Set. 6.2).2.2. For eah potential outlier jψ ∈ ΠrPerform the following suessive operations:a) When jψ /∈ Π, ompute (see the ontext of Eqs. (69)and (70))
fjψ := H ·

∣∣∣∣∣
(erjp , 0) if ψ = p

(0, erjφ) if ψ = φThen, set
gjψ := fjψ Π

set

=

{
{jψ} if Π = ∅

Π ∪ {jψ} otherwiseBy onstrution, Π is the set of potential outliers jψfor whih fjψ has already been omputed.b) If r = 1 go to step 2.2. Otherwise, at this level,
{g◦

q
}q<r is an orthonormal set. (This set is built,progressively, via step 2.4.) Then, for eah integer

q < r, onsider the inner produt de�ned as follows(see Eq. (34) and Result 4.2.1):
ςq,jψ := 〈 g◦q | gjψ〉

:=
∑

ψ′=p,φ

〈 g◦
q;ψ′ | gjψ;ψ′〉Fψ′;r+This sum inludes two terms. Depending on what

ψ′ refers to (p or φ), g◦
q;ψ′ denotes the ode or phaseomponent of g◦q , and likewise for gjψ ;ψ′ . If ςq,jψ hasnot been omputed yet, ompute it, store it in mem-ory, and perform the Gram-Shmidt orthogonalizationoperation

gjψ
set

= gjψ − ςq,jψg
◦
qBy onstrution, ςq,jψ = 〈 g◦

q
| fjψ 〉. Clearly, at the endof all these operations, gjψ is orthogonal to g◦q for any

q < r.) Consider the projetion of w on the one-dimensionlspae generated by gjψ , i.e., 〈hjψ | w〉hjψ where

hjψ := gjψ/‖gjψ‖. The norm of this projetion is equalto |〈hjψ | w〉|, the absolute value of the quantity
γjψ := 〈gjψ | w〉/̺jψ ̺jψ := ‖gjψ‖Expliitly,
〈 gjψ | w〉 :=

∑

ψ′=p,φ

〈 gjψ ;ψ′ | wψ′〉Fψ′;r+

‖gjψ‖
2 :=

∑

ψ′=p,φ

‖gjψ;ψ′‖
2
Fψ′;r+2.3. Dominant potential outlierBy de�nition, the dominant potential outlier ̄ψ̄ is thepotential outlier for whih |γjψ | is maximal:

̄ψ̄ := arg max
jψ∈Πr

|γjψ |2.4. Outlier testLet χ0 be the upper θ0/2 probability point of the entralnormal distribution:
χ0 := Nθ0/2(0, 1)a) If |γ ̄ψ̄ | > χ0 with m > 0, the dominant potentialoutlier is then regarded as an e�etive outlier:

ωr := ̄ψ̄ Ω
set

=

{
{ωr} if r = 1

Ω ∪ {ωr} if r > 1

γ◦
r

:= γωr
g◦

r
:= gωr

/̺ωrSupersript ◦ stands for omega (and outlier). At thislevel, Ω is the urrent set of identi�ed outliers:
Ω = {ωq}

r

q=1By onstrution, {g◦q}rq=1 is an orthonormal basis ofthe urrent range of M ; ∑r

q=1 γ
◦
q
g◦

q
is the projetionof w on this spae. With regard to Eq. (71), we thenset

β◦
r := βωr

f◦
r := fωrb) When the dominant potential outlier is not identi�edas a real outlier, we onsider the following two situa-tions:Case 1 : |γ ̄ψ̄ | < χ0 with TLOM > 5 tLOM (for exam-ple). We then reinitialize the RLS proess.Case 2 : |γ ̄ψ̄ | < χ0 with TLOM < 5 tLOM and r > 1, or

|γ ̄ψ̄ | > χ0 with m = 0. We then go to step 3.2.5. Components of g◦r in the basis of the f◦
q 'sThese omponents are denoted by uq,r:

g◦
r

=

r∑

q=1

uq,rf
◦
q



34 Journal of Global Positioning SystemsThey are omputed via the QR Gram-Shmidt formulas(see e.g., Björk 1996)
uq,r =






−
1

̺ωr

∑

q≤q′<r

uq,q′ ςq′,ωr
if q < r

1

̺ωr

if q = rfor 1 ≤ q ≤ r. Clearly, the uq,r's are the entries of the
r
th olumn of an upper triangular matrix U .2.6. SD biasesAording to Eq. (71), the SD biases β◦

q are the ompo-nents of ∑r

q=1 γ
◦
q
g◦

q
in the basis of the f◦

q
's:

r∑

q=1

γ◦qg
◦
q =

r∑

q=1

β◦
qf

◦
qDenoting by [γ◦] the olumn matrix with entries γ◦q (from

q = 1 to r), and likewise for [β◦], we have
[β◦] = U [γ◦]The SD biases are therefore to be updated as follows:

β◦
q

set

=

{
β◦

q
+ uq,rγ

◦
r

if q < r

ur,rγ
◦
r

if q = r

(for 1 ≤ q ≤ r)2.7. Update w and ‖w‖2:
w

set

=w − γ◦r g
◦
r ‖w‖2

set

= ‖w‖2 − |γ◦r |
22.8. Update redundany m and the LOM quantities:

m
set

= m− 1

∣∣∣∣∣
tLOM

set

= Fθ(m,∞, 0)

TLOM
set

= ‖w‖2/m2.9. Inner LOM testIf TLOM > tLOM, update reursive index: r
set

= r+1. Then,go to step 2.3. Loal adaptationLet KΩ be the matrix gathering the olumns of K orre-sponding to the suessive identi�ed outliers ω1, . . . , ωr .The adaptation formula of the loal state vetor is then(from Eqs. (56) and (57))
x̂

set

= x̂−KΩ[β◦]As [β◦] = U [γ◦], the adaptation of the variane-ovarianematrix of x̂ is therefore given by the formula
V bx

set

= V bx + [KΩU ][KΩU ]TIndeed, as {g◦q}rq=1 is an orthonormal set, the variane-ovariane matrix of [γ◦] is the identity.4. End

RD �lteringAtual residue wEntrane LOM testPotential outliersDominant potential outlierOutliertestOutlier identi�ationUpdate SD biases and wInner LOM testAdaptation
Reinitialization

Fig. 6 Flow diagram of the DIA proedure in RD mode.At eah step of the identi�ation proess, the `residual a-tual residue' w is analyzed on the grounds of Eq. (72) orof its generalization (see Fig. 5, Eqs. (65), (66) and (67)).This allows the potential outliers to be seleted. The out-liers an thus be identi�ed, in a reursive manner, via apartiular orthogonalization Gram-Shmidt proess. ThisQR Gram-Shmidt proess also provides the SD biases,and thereby the yle slips if any (see text).In order to detet a model error of the same size withthe same probability ̟0 by using both LOM and outliertests, it is required that, for both tests, the same valuesfor the non-entrality parameter ζ0 be hosen.To determine the testing parameters, one therefore pro-eeds as follows. One �rst makes a hoie for θ0 and ̟0:
θ0 = 0.001 ̟0 = 0.80 (for example)The non-entrality parameter ζ0 of both tests is om-puted from these values. One then obtains the ritialvalue Fθ(m,∞, 0) of the LOM test, and thereby θ.6.2 ExamplesThe RD approah was validated in the framework of aEuropean ation entitled HPLE.1 Real GPS data were1The HPLE (High Preision Loal Element) projet was o-funded by the European GNSS Supervisory Authority with fundingfrom the Sixth Framework Programme of the European Commu-nity for researh and tehnologial development, European Union's



Lannes: Di�erential GPS � The redued di�erene approah 35thus proessed in the dual and single-frequeny modes.For all these data sets, the DIA proedure was ondutedwith ηj = 2 for all j.In the single-frequeny mode, Equation (65) then reduesto
‖w‖2 =

1

2σ2
p

n∑

j=1

|wjp|
2 +

1

2σ2
φ

n∑

j=1

|wjφ|
2 (72)As a general rule, at eah step of the reursive identi�-ation proess, the jp or jφ to be seleted, the dominantpotential outlier, then orresponds to the maximal valueof |wjp|/σp and |wjφ|/σφ for j = 1, . . . , n (see Fig. 5). Asillustrated in the following examples, this is also the asein dual-frequeny mode.We now present related results onerning a set of GPSdata provided by the Frenh DGA for testing: 4907 epohsat 1Hz in dual-frequeny mode (L1-C/A, L2-P) with manyappearanes and disappearanes of satellites. Over thistime series, depending on the epohs, their number was7, 8 or 9.The referene and user reeivers were stati. The rela-tive Cartesian oordinates of the user reeiver were of theorder of −303m, 121m and 238m.The data set in question was reinitialized at the followingepohs: 1094, 1301, 3010 and 4689. The ambiguities werethen �xed in one or two seonds: the position of the userreeiver was thus retrieved, up to one entimeter, exeptfor epohs 1, 1094, 1301�1302, 3010�3011 and 4689-4690.Table 1 Dual-frequeny DD ambigui-ties ǎ

j

fν ; k for j = 1, . . . , n with n =

9 and k = 1. At the epoh underonsideration, these ambiguities were�xed; for their RD transription, seetext (and Set. 5.2, in partiular).
j; fν f1 f2

1 0 0

2 34 868 257 496

3 625 263 −196 104

4 −2 502 896 −1 419 324

5 12 155 323 9 705 967

6 −2 593 167 −1 303 294

7 5 973 773 4 346 092

8 9 056 740 7 252 801

9 −9 386 838 −7 332 507To illustrate the dual-frequeny version of the approahpresented in this paper, we now onentrate on the pro-hief instrument for funding researh. The European GNSS Super-visory Authority is the EC ageny in harge of the implementationof Galileo, Europe's future satellite navigation system.

ess at epoh 4745. Nine satellites were then available:satellites 1, 5, 7, 8, 9, 21, 23, 26, 30 (j = 1, . . . , 9).At that epoh, the ambiguity vetor (ǎf1 , ǎf2) was �xed.The DD transription of its omponents is displayed inTable 1 for k = 1.For j = 1, . . . , n, and for eah frequeny, the orrespond-ing RD ambiguities are then given by Eq. (62) with k = 1,
α̌

set

= ǎf1 and α̌
set

= ǎf2 . It was of ourse veri�ed thatthe estimated relative oordinates of the user reeiverwere exatly the same in both approahes: −303.39m,
120.92m and 238.49m (the orret values up to one en-timeter).The DIA proedure implemented in that ase was the FLSdual-frequeny version of that presented in Setion 6.1.The following two situations were then onsidered:A. Without any yle slip (the real data)B. With the following added yle slips (just to showthe e�ieny of the method):

• 2 yles in the reeption of the f1-signal om-ing from satellite 5 (j = 2);
• −1 yle in the reeption of the f2-signal om-ing from satellite 8 (j = 4);A. Detetion and identi�ation without any yle slipIn that ase, the entrane value of TLOM (9.13) was greaterthan the orresponding value of tLOM (1.26). The outlierswere then identi�ed in the following order:Outlier TLOM

(f2 ; 1p) 5.40

(f1 ; 4φ) 2.63

(f1 ; 1p) 1.63

(f1 ; 8p) 1.06The value in the right-hand side olumn is the orre-sponding redued value of TLOM . The last value of TLOM(1.06) is smaller than the orresponding value of tLOM(1.30). The biases thus found are displayed in Table 2.B. Detetion and identi�ation with yle slipsThe entrane value of TLOM was then very large (335.09),muh greater than the orresponding value of tLOM (1.26).The outliers were then identi�ed in the following order:Outlier TLOM

(f1 ; 2φ) 108.81

(f2 ; 4φ) 9.42

(f2 ; 1p) 5.41

(f1 ; 4φ) 2.82

(f1 ; 1p) 1.74

(f1 ; 8p) 1.13



36 Journal of Global Positioning SystemsThe last value of TLOM (1.13) is smaller than the orre-sponding value of tLOM (1.34). The biases thus found aredisplayed in Table 3.All over the time series under onsideration, the resultswere the same with κ = 1 or κ = 0 (see step 2.1 and Fig. 5in Set. 6.1). It is important to note that the hoie
κ = 0, whih indues some CPU overhead (see step 2.2in Set. 6.1), impliitly orresponds the DD implementa-tion of the DIA proedure by the Teunissen group at theTehnial University of Delft (TUD). In Kalman mode,
κ should likely be set equal to a smaller value (say 0.5 asin Fig. 5). This point remains to be investigated.Table 2 Identi�ation of a set of SD biases. Thebiases βfν ;jψ are expressed in meters. At theepoh under onsideration, nine satellites wereavailable: n = 9 (see text).Frequeny f1

jψ 1 2 4 8
p − 4.806 −3.304

φ 0.043Frequeny f2

jψ 1 2 4 8
p − 8.755Table 3 Identi�ation of a set of SD biases inlud-ing yle slips. The situation is the same as thatde�ned in Table 2, but with added yle slips.The latter are orretly retrieved: βf1;2φ ≃ 2λ1 ,

βf2;4φ ≃ −λ2 . Note that the identi�ation orderis, �rst, that indued by the yle slips, and then,that displayed in ase A (see text and Table 2).Frequeny f1

jψ 1 2 4 8
p − 4.806 −3.304

φ 0.381 0.043Frequeny f2

jψ 1 2 4 8
p − 8.755

φ −0.2487 Conluding ommentsThe verties of a GNSS graph are the reeivers and thesatellites of the GNSS devie (see Lannes and Durand2003). Its edges are the reeiver-satellite pairs. The origi-nal observations are de�ned on these edges (see Set. 2.1).As these observations are de�ned up to vetors in thenuisane delay spae (see Set. 2.1.1 and Fig. 4), the or-thogonal omplement of this spae in the observational

data spae plays a key part in the data assimilation pro-edures. In partiular, brought bak to this orthogonalomplement, the residual quantities to be onsidered inthe DIA proedures take their values on the edges ofthe graph.To stress what is essential, the analysis presented in thispaper was restrited to the speial ase where the GNSSgraph inludes only two reeivers. On the two edges in-volved in the de�nition of a single di�erene, the doubleentralized observations of Shi and Han (1992) are thenopposite. As lari�ed in Set. 1.1.5, the information on-tained in these observations is then a simple antisymmet-ri transription of that ontained in the RD data.The DD and RD approahes prove to be equivalent. Morepreisely, as spei�ed in Set. 3, the hoie of the ref-erene satellite indues that of a referene basis of theRD data spae. The omponents of a RD vetor in thisbasis are the orresponding DD's. Solving the problemin DD mode therefore amounts to solving it in this basis.At any stage of the data assimilation proedure, one maytherefore pass from the RD mode to the DD mode, andvie-versa. In partiular, solving the rational-ambiguityproblem of the RD mode amounts to solving a nearest-lattie-point problem of DD type (see Set. 5.2).In RD mode, all the satellites are handled in the samemanner. As a result, the numerial odes of the RD dataassimilation proesses are more readable than those oftheir DD versions. For example, in RD mode, the disap-pearane of the referene satellite of the DD approah ishandled like that of any satellite.This said, the main interest of the RD approah lies inthe properties revealed by the orresponding `dual anal-ysis' (see Set. 4). These properties, whih are maskedin the DD approah (see Remark 4.2.2), shed a new lighton the CO approah of Shi and Han (1992). In partiu-lar, Result 4.2.2 an be exploited in the DIA proedures.From this point of view, Equation (43) is very signi�ant.The notion of potential outlier derives from its orollary,the Eulidean quadrati deomposition (44); see Fig. 5.These properties also omplete the ontribution of Lannesand Durand (2003). All these aspets are analyzed andommented in Remark 4.2.1. As a result, all these equiv-alent approahes an bene�t from eah other.The DIA proedure desribed in Setion 6 follows themain guidelines of the DIA method of the TUD group(see, e.g., Fig. 6 in Teunissen 1990). In partiular, thereursive detetion proess is based on a Gram-Shmidtorthogonalization proedure. The main new points de-rive from the notion of potential outliers. The orthogo-nalization proedure was implemented aordingly. Thee�ieny of the DIA method is thus improved. This par-tiular implementation also bene�ts from the QR Gram-Shmidt step 2.5 of Set. 6.1. The QR approah of thePhD dissertation of Tiberius (1998) an thereby be nielyompleted. As spei�ed in step 2.6 of Set. 6.1, the SD bi-ases an thus be reursively re�ned. The identi�ation of



Lannes: Di�erential GPS � The redued di�erene approah 37yle slips, in partiular, is performed in this way (seeTable 3).The GNSS graph may inlude more than two reeivers;some reeiver-satellite edges may also be missing. In thisgeneral situation, that of GNSS networks with missingdata, it is important to bene�t from all the redundanyof the data. The `identi�able biases' must then be iden-ti�ed on the edges (or pairs of edges) where they ap-pear. To solve the related problems in an e�ient man-ner, the DD and CO approahes have to be onjugatedand generalized in the `projeted observational frame-work' of Fig. 4. The related developments will be pre-sented in a forthoming paper (Lannes 2008).ReferenesAgrell E., Eriksson T., Vardy A. and Zeger K. (2002)Closest point searh in latties. IEEE Trans. In-form. Theory. 48: 2201�2214.Björk A. (1996) Numerial methods for least-squaresproblems. SIAM.Hewitson S., Lee H.K. and Wang J. (2004) Loalizabil-ity analysis for GPS/Galileo reeiver autonomousintegrity monitoring . The Journal of Navigation,Royal Institute of Navigation 57: 245�259.
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