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Abstract. In the traditional approach to differential
GNSS, the satellite error terms are eliminated by form-
ing the so-called single differences (SD). One then gets
rid of the receiver error terms by computing, for each
receiver to be considered, the corresponding double dif-
ferences (DD): the discrepancies between the single differ-
ences (SD) and one of them taken as reference. To han-
dle the SD’s in a homogeneous manner, one may equally
well consider the discrepancies between the SD’s and their
mean value. In this paper, these ‘centralized differential
data’ are referred to as ‘reduced differences’ (RD). In the
case where the GNSS device includes only two receivers,
this approach is completely equivalent to ‘double central-
ization.” More precisely, the information contained in the
‘double centralized observations’ is then a simple anti-
symmetric transcription of that contained in the reduced
differences. The ambiguities are then rational numbers
which are related to the traditional integer ambiguities
in a very simple manner. The properties established in
this paper shed a new light on the corresponding analysis.
(The extension to GNSS networks with missing data will
be presented in a forthcoming paper.) The corresponding
applications concern the identification of outliers in real
time. Cycle slips combined with miscellaneous SD biases
can thus be easily identified.

Key words. GNSS, DGPS, centralized undifferential
methods, RTK. Data assimilation, DIA.

1 Introduction

The global positioning techniques are based on the fol-
lowing observational equations. For each frequency f,,
for each receiver-satellite pair (r, s), and at each epoch ¢,
the code and carrier-phase data are respectively of the
form (e.g., Sect. 14 in Strang and Borre 1997)

Pui(r;8) = pi(r; ) + cldby i (r) — by, i(s)] + €v4(r, 8) (1)

Gu1(r,8) = pi(r, s) + [0ty 1 (1) — 0ty4(5)] @)
+ A [pr,0(r) = pu0(8)] + AN (r, 8) + €4,4(r, 5)

In these equations, which are expressed in length units,
pt(r,s) is the receiver-satellite range: the distance be-
tween satellite s (at the time t—7 where the signal is emit-
ted) and receiver r (at the time ¢ of its reception). Clearly,
the A\, ’s denote the wavelengths of the carrier waves; the
rational integers IV, (r, s) are the integer carrier-phase am-
biguities. The instrumental delays and clock errors that
for a given (v,t) depend only on 7 and s are lumped to-
gether in the receiver and satellite error terms dt, .(r),
dt, ¢(s) for the code, and 6t, ((r), dt,((s) for the phase
(¢ is the speed of light); ¢, 0(r) and ¢, 0(s) are the initial
phases (expressed in cycles) in receiver r and satellite s,
respectively. Here, for clarity, the ionospheric and tropo-
spheric delays are ignored. At this introductory level, we
thus consider that the data have been corrected for these
delays. Clearly, the code and phase errors €,+(i,j) and
ev.¢(7,7) include both noise and residual model errors.

For our present purposes, we now concentrate on Equa-
tion (2) in the single-frequency mode:

Oe(r,s) = pe(r, s) + c[ote(r) — 6te(s)]

+ Alpo(r) = o(s)] + AN(r, s) + £4(r, 5)

In what follows, a notation such as a := b means ‘a is
equal to b by definition.” Let r; now be the reference re-
ceiver, and ro be that of the user. Denote by s1, s2,..., s,
the satellites involved in the GPS device. A quantity
such as

9 = (rz,55) = 0(r1, 55) (4)
is then referred to as a single difference (SD) in 9. By us-
ing this notation, Equation (3) then yields

¢l = pi + cloti(r2) — Ste(r1)]

) ) (5)
+ Mo (r2) — wo(r1)] + A’ + ¢

where

o’ == NI (6)
One thus gets rid of the satellite error terms. The a’’s
are the integer ambiguities of the SD phase data.
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1.1 Basic notions

1.1.1 Double differences

In the traditional approach to differential GNSS, one first
selects a reference satellite. Here, this satellite is denoted
by sr. A quantity such as

9 =0 = 0" (i # ) (7)
is then referred to as a double difference (DD) in ¥ (see
Fig. 1).

By subtracting from Eq. (5) its expression for j = k
(term by term), one then obtains the relation
(bi;k - pi;k + )\ai + gi;k (a"ljf € Z) (8)

One thus gets rid of the receiver error terms. The ai s
are said to be the DD integer ambiguities of the problem.

Fig. 1 Notion of double difference. The
double difference 19{c is the value of the sin-
gle difference % by taking as origin (or
reference) the value of the single differ-
ence 9",

1.1.2 Reduced differences

In the approach presented in this paper, we consider a
homogeneous way of eliminating the receiver error terms.
The idea is to consider the quantities (see Fig. 2)

0 = 00 —° (9)
where 90 is the mean value of the 9¥7:
1
90 = = J
- Z ¥ (10)
j=1
%) R
— I I
90 0 9

Fig. 2 Notion of reduced difference. The
reduced difference 9 is the value of the
single difference ¥’ by taking as origin (or
reference) the mean value 9¥° of the single
differences (compare with Fig. 1).

Clearly, this barycentric value can be regarded as a vir-
tual SD associated with a virtual reference satellite sq .
According to a well-known barycentric property (for fur-
ther details see Sect. 3), for any k, we have

Do < 1P (11)
j=1

J#k

The 9 ’s can therefore be referred to as ‘reduced differ-
ences’ (RD).

Subtracting from Eq. (5) its expression in terms of mean
values (term by term), we then obtain the relation similar
to Eq. (8)

(/5{;0 = p{;O + )‘ajo + E{;0 (Gfé € Q) (12)

Note that the RD ambiguities a? ’s are rational numbers
(and not in general rational integers).

1.1.3 Differential observations

By construction, the DD’s of the function

0 ifi=1orj=k;

) 13
¥, otherwise. (13)

ﬁd(ri y S]’) = {

are the DD’s of the function ¥(r; , s;). Such a function can
therefore be referred to as a ‘differential observational’
(DO) function.

1.1.4 Reduced observations

By construction, the SD’s of the function

0 ifi=1;

¥} otherwise. (14)

ﬂr(Ti,Sj) = {
are the reduced differences of the function ¥(r; , s;). Such
a function can therefore be referred to as a ‘reduced ob-
servational’ (RO) function.

1.1.5 Centralized observations

In the ‘centralized observational approach’ of Shi and
Han (1992), one gets rid of the satellite error terms by
forming the single centralized observations

2
O (ri,s5) = 19(7“%3]‘)—%2:19(7%,3]‘)
= (1) 502 85) — 90 5)
- (%

The receiver error terms are then eliminated by forming
the double centralized observations

1 n
USICIEE 199)(7”1'78;')*Ezﬂgl)(rmsj)
j=1

RIEIERS >
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One is then led to say that
=Y
190(7“i s Sj) = (—1)1 70

is a centralized observational function. In the case where
the GNSS device includes only two receivers, the informa-
tion contained in the centralized observations is therefore
a simple ‘antisymmetric transcription’ of that contained
in the reduced differences. The title of the paper was
chosen accordingly.

(15)

1.2 Contents

The theoretical framework of this contribution is pre-
sented in Sect. 2. As clarified in Sect. 3, the DD and
RD approaches prove to be equivalent. In particular, al-
though the RD ambiguities are rational numbers, the am-
biguity problems to be solved are the same. Section 5.2
is devoted to this point. The RD approach should how-
ever be preferred. Indeed, as shown in Sect. 4, it re-
veals interesting properties which give a deeper insight
into the problem. These properties, which are masked
in the DD approach, shed a new light on the central-
ized undifferential method of Shi and Han (1992). They
also complete the dual algebraic approach of Lannes and
Durand (2003). As a result, these equivalent approaches
can benefit from each other. As shown in Sect. 6, one of
these properties plays a key role in the DIA procedures
of the data assimilation processes presented in Sect. 5.
The SD biases, among which the cycle slips (if any), can
then be identified in real time. Related comments are to
be found in Sect. 7. As pointed out in that section, the
analysis presented in this paper can be regarded as an
introduction to the case of GNSS networks with missing
data (Lannes 2008).

2 Theoretical framework

In the context defined in Sect. 1, the notion of observa-
tional space can be specified as follows.

2.1 Observational spaces

In what follows, it may be convenient to consider that a
function such as ¥(r, s) takes its values on a rectangular
grid. When the GNSS device includes two receivers and
n satellites, this grid includes two lines and n columns;
9 is then regarded as a vector of the observational space
E := R?". Clearly, these values are the components of 1
in the standard basis of E. The notation E, specifies
the nature of the vectors ¥ of E: ¢ = p for the code,
1) = ¢ for the phase. The variance-covariance matrix of
the corresponding data vector is denoted by Vy; Vi, is the
operator on E induced by Vi, . One is then led to define
the ‘observational data space’ of type ¥ as the space E$

with inner product
(W9 ) gy =0V, ) (16)

Clearly, E+ = Eg is a real Hilbert space.

2.1.1 Nuisance delay space

In what follows, the space Ey of functions ¥(r; , s;) of the
form ¢(s;) — @(r;) is referred to as the nuisance delay
space (see Egs. (1), (2) and Fig. 4). In the special case
under consideration (with two receivers), this subspace
of E is of dimension n + 1.

2.1.2 Clean observational spaces

The orthogonal complement of Ey in E, denoted by E.,
is referred to as the ‘clean observational (CO) space.’
The orthogonal complement of Ey in £, El, is then
referred to as the ‘CO data space’ (see Fig. 4). In the
special case under consideration, F, and E} are of di-
mension 2n — (n +1) = n — 1. As shown below, E. is
then the space of ‘centralized observational functions’
defined by Eq. (15).

Proof. In the Euclidean space E, 9. is orthogonal to any
nuisance function of Ey. Indeed,

with 32 (~1) = 0 and > ¥ = 0. The property
then follows from the fact that the functions 9. form a
space of dimension n —1. [

Remark 2.1.2. Let P, be the orthogonal projection
of £ onto E.. Here, the centralized observational func-
tion ¥, defined by Eq. (15) is the projection of ¥ on E.:
¥ := P.v. In other terms, the ‘cleaning operator’ P, then
reduces to the ‘double-centralization operator.” This does
not hold for GNSS networks with missing data. The ter-
minology was chosen accordingly. Depending on the con-
text, C and subscript ¢ stand for ‘clean’ or ‘centralized.’

2.2 SD space

Denoting by b := {e;}}_; the standard basis of R", let
us consider the vector ¥ := " ¥e; in which the 97 ’s
are the single differences defined in Eq. (4). Clearly, such
a vector can be regarded as a SD vector. In this context,
we say that F':= R" is the ‘SD space’ (see Fig. 3).

2.2.1 SD operator
The SD operator is the operator from E* into F' defined
by the relation (see Eq. (4))

SY:=19 ie (SY) =0

We now denote by ST the corresponding ‘backprojection’
operator, i.e., the operator from F' into F

(ST9)(r; , 85) := (1)

(17)

(18)
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For any ¥ € F, the function ¥’ := S9/2 is such that
S = 9; S is therefore surjective.

In what follows, V4 is the variance-covariance matrix of
the SD data vector v := Svy. Denoting by Vi, the oper-
ator on F' induced by Vi, we have

Vi = SV, ST (19)
We now show that the adjoint of S is given by the relation

5* =v,St (20)
hence, from Eq. (19),

SS* =V (21)

Proof. By definition, S* is the operator from F' into E*
such that for any ¥ € E* and any 9 € F, we have
(SY - %) = (0| S*9) g+ . Clearly,

n 2

(S0 9)r =[S (-1 (i 5,)]

j=1 i=1

From Eq. (18), we therefore have

2 n
(SO -9)p = 0 (ri,s;)(ST9)(rs,5))

i=1 j=1

ie., (SU - Np = ST = (19’ . [VJle]STﬂ)E. As
a result,

(S -9)p = (0 | VpST9) g+
hence S* = VwST. 0

2.2.2 RD space and RD ambiguity lattice

Let us denote by Fy the space of vectors ¥ € F whose
components ¢’ are identical. The orthogonal complement
of Fy into F' is the space (see Fig. 3)

F. = {19€F:Z?:119j:0}
As Fj is a one-dimensional space, F; is of dimension n—1.

Let Qg and @, be the orthogonal projections of F' onto Fj
and F; , respectively. Clearly, these operators are explic-
itly defined by the relations

Qo) =°

where ¥ is the mean value of the ¥/ ’s. With regard to
the RD approach, we are then led to set (see Egs. (9),
(10), (22) and Fig. 3)

(@) = —o° (22)

Oy = Q9 (23)

Clearly, the components of ¥, in basis b are the n re-
duced differences 9 ; F, can therefore be referred to as
the ‘RD space.” Note that 9. is related to ¥, by the
relation 9. = ST9,/2 (see Egs. (15) and (18)).

As 19, is the projection of ¥ on E, , we have
n n n
J12 _ J_ 9012 _ J_ 0|2
SR = 0~ = it (00—
Jj=1 j=1 j=1
The property expressed in Eq. (11) results from this re-
lation.

The projection of Z™ onto F; is a lattice of rank n — 1: the
‘RD ambiguity lattice’ L, (see Fig. 3). In basis b (which
is not a basis of L,), the components of a point a, of L,
are rational numbers: the n rational ambiguities a .

Remark 2.2.2. The RO functions ¥, defined by Eq. (14)
form a subspace of E denoted by F, (see Fig. 4). Clearly,
this ‘RO space’ is a simple insertion of F} in F.

2.2.3 DD space and DD ambiguity lattice

In the DD approach, k£ being fixed, one is led to consider
the subspace of F' (see Fig. 3)

Fy:={9cF:9" =0}

By construction, Fy is isomorphic to R®!. Let Q4 now
be the oblique projection of F' onto Fy along Fy. Note
that Qg is explicitly defined by the relation

(Qav)’ =7 — " (24)
We are then led to set (see Eq. (7) and Fig. 3)
Vg = Qa¥ (25)

Let bq := {e;} 2k be the standard basis of Fy. As the
components of ¥4 in basis by are the n — 1 double differ-
ences 1., Fyq can be regarded as a ‘DD space.’

The intersection of Z™ with Fy is a lattice of rank n — 1:
the ‘DD ambiguity lattice’ Lq (see Fig. 3). In basis bq,
the components of a point aq of Lq are rational integers:
the n — 1 integer ambiguities a), (j # k).

Clearly, Ly = QqLq4 hence Lq C QqZ" (since Lq is a
subset of Z™). Furthermore, Q4Z™ C Lq. We therefore
have Lqg = QqZ". As L, := Q.Z"™ and Q, = Q,Qq,
it follows that L, = Q,Lq (see Fig. 3).

Remark 2.2.3. The DO functions ¥4 defined by Eq. (13)
form a subspace of FE denoted by Eq (see Fig. 4). Clearly,
this ‘DO space’ is an insertion of Fy in E.

2.3 RD and DD operators

The RD operator is the operator from E* into F; defined
by the relation

S, = Q.S (26)

Note that S, is surjective. (The argument is the same
as that used for S.) As expected, the null space of S,
(denoted by ker S;) is the nuisance delay space Eq. This
property can be explicitly established as follows.
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Proof. Clearly, Fy C ker S, with dim Ey = n + 1; but
dim(ker S;) =dimFE —dimF, =2n—(n—1)=n+1
hence the property.

The DD operator is the operator from E* into Fy defined
by the relation

Sq = QqS (27)

Like S;, Sy is surjective, and ker Sq = Ej .

3 Equivalence of the DD and RD
approaches

The spaces Fy and F; are isomorphic. More precisely,
the restriction of @, to Fy, the operator from Fy into F;
defined by the relation

RY4 := Q94 (28)

maps Fy onto F , and Lq onto L, (see Fig. 3). Its inverse
is the operator from F; into Fy

DY, == QaV: (29)

Note that the action of DR corresponds to the successive

changes of origin 9% — ¥° — Y% (see Figs. 1 and 2):
(DROq)’ = (9, = 9") = (0} = 9") = 9}

The vectors e.; := Re; (j # k) form a basis of F;, which

is also a basis of L,: the basis b,q := Rbgq. In this ba-

sis, the components of a vector 9, of F; are the compo-
nents ¥, of 9q = DV, . Indeed,

O, =ROa=RY vie; =Y UiRe; =Y e
i#k ik i#k
In particular, in this basis (which is not orthogonal), the
components of a point a, of L, are the n — 1 integer am-
biguities ai of ag = Da,. We recall that in the standard
basis of F' (which is not a basis of L), the components
of a, are the n rational ambiguities aj .

Let T now be the orthogonal projection of F' onto Fy
restricted to F} (see Fig. 3). For any ¥’ in F, and any 9
in Fd, we have (19/ . 19)}7 = (19/ . Rﬁ)p = (T’l9/ . 19)}7
This shows that, T is the adjoint of R on F: Rf = T.
Explicitly,

(R'9,) =9) (Vj#k); (RM9.)F=0 (30)
As D is the inverse of R, D' is the inverse of R1:
(DT9a) =7, (Vj#k); (DIWa)F ==, (31)

J#k

Let Vipq now be the variance-covariance matrix (expressed
in basis bq) of the DD data v, . Likewise, let Vi, be the

Iy Iy
Y9 «— SD: 9L ..., 0"

¥y — DD: 91 ,..., 9%
e — Lg

e — L,

€L \T r

r
9, — RD: 9},..., 09"

Fig. 3 Geometrical representation of the main elements in-
volved in the equivalence of the DD and RD approaches.
Here, ey is the vector of the standard basis of R™ associ-
ated with the reference satellite. Note that 97 = 0 and
> L U3 =0 (see Figs. 1 and 2, respectively); R is the or-
thogonal projection of F' onto F restricted to Fy; R stands
for ‘reduction.” Its inverse, D, is the oblique projection
of F onto Fy (along Fp) restricted to Fy; D stands for
‘difference.” The adjoint of R is the orthogonal projection
of F' onto Fjy restricted to F;: R' = T. Tts inverse is the
adjoint of D: D'. Further details (in particular those con-
cerning lattices Lq and L;) are to be found in Sects. 2 and 3.

variance-covariance matrix (expressed in basis b) of the
RD data 1, . In what follows, V4 is the operator on Fy
induced by V4. Likewise, V4, is the operator on F} in-
duced by Vi, . Let Q. now be the matrix of @), expressed
in basis b. As Vi, = QrVwQ;F = Q,.VyQ,, the opera-
tor V, is the operator on F; explicitly defined by the
relation

Ml)rﬁ = Cgr‘/w"9 (19 € Fr) (32)
With regard to the least-squares (LS) problems to be
dealt with, Fy and F; are then equipped with the inner
products (see the lower part of Fig. 4)

O3 | 9 Py = (0409 )F  Day = Vyd'da  (33)

<'l9; | 191‘>F11);r+

As Et = qu is referred to as the observational data space
of type ¥, we may say that Fy, = Fy.q, is a ‘DD data
space’ of type 9. Likewise, F;, = Fy,, is the ‘RD data
space’ of type .

We have Vq = DerT, hence

= (9, Y, )F CANES %zlﬁr (34)

Vi =RV, 'R
As illustrated in the lower part of Fig. 4, it follows that
Vq, = R0, (35)

9, = D94, (36)
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From Eqs. (33) and (35), (9, | 94)r,, = (¥4 - R, )p;
hence (9} | 94)r,, = (RY; - ¥,,)r. We thus have

<1921 | 19d>Fd+ = <19; | 191">Fr+

where 9, = R9/; and ¥, = RYq . In particular,

19al%,, = 19:]1%,  (for 9, = Rd) (37)

The DD and RD approaches are therefore ‘completely
equivalent.” This said, as shown in Sect. 4 (see, in partic-
ular, Result 4.2.2), the RD approach reveals interesting
properties which are completely hidden in DD mode (see
Remark 4.2.2).

4 Observational equivalence:
Duality

4.1 Projection onto the CO data space

Let 9 be some point in the observational space F. In what
follows, ¥ denotes the orthogonal projection of ¥ on the
CO data space E} (see Sect. 2.1.2 and Fig. 4):

e (38)

Clearly, P is the corresponding orthogonal projection.
Let 19, := 5S¢ now be the RD vector of 1. The solutions
of the equation S, = ¥, are defined up to a vector of Ey ;
¥t is the solution with smallest norm in E*. The operator
that maps ¥, to 97 is referred to as the Moore-Penrose

pseudoinverse of S, . This operator is denoted by S;:
95 = S, (39)

Likewise, for 94 = D4, , we have ¥f = S;%?d. Clearly,
9% can be regarded as the expression for ¥, (or ¥q)
brought back to E* via S;” (or S7). In this context,
we define V., as follows (see Eqgs. (34), (18) and Fig. 4):

ey = ST, (40)
The following property then completes the analysis pre-

sented in Sect. 3.

Property 4.1. One has 9/ = V9., . As a corollary,
10815+ = 0 Ve, )e = |19

2
Fey *

Proof. As S; is surjective, its pseudoinverse is given by
the relation
S5 =SH8:.50)7!

For any 9 in F; , we have (since S, = Q..5)
S¥9 = (Q,9)*9 = S*Q;9 = S*Q,9 = S*0

where S* = %ST (Eq. (20)). As a result (see Eqgs. (21)
and (32)),

S,.559 = Q,55%9 = Q, V1 = Vi,

It then follows that

S = SiV,!
hence
_ axys—1 _ axys—1 _ ty—1
ﬁijrV;pr I =S5 V’Z[;r 19r7%5 V’Z[;r I,

ie., vf = Vyde, (from Eqgs. (34) and (40)). As a corollary
(see Eq. (16)),

192 115+ (0 [ 98) g+
= (W Vyde)pr = (00 -9c,)E
As ¥, is the projection of ¥} on E. (see Fig. 4), we have
(see Egs. (40) and (18))
W9 )e = (Ve Vei)E
= (V- SM:)e
= (Sﬁc '19r+)F

But, from Eq. (15), SY. = 9, . As a result,
10515 = @O -9 )r = 19:ll7, O

4.2 Analysis of a typical situation

To illustrate our analysis, we now consider the case where
the variance-covariance matrix of the observational data
of type v is of the form

Vy = diag(n(r; , sj)aj) (41)

Clearly, aj is a ‘reference variance;’ n(r, s) is a nonnega-
tive weight function. The variance-covariance matrix of
the SD data v := S is then given by the relation

Vy =diag(njo])  mji=n(r,s;) +n(r2,s;)  (42)
As clarified in Remark 4.2.1, the following results sheds
a new light on the centralized observational approach of

Shi and Han (1992). The dual approach of Lannes and
Durand (2003) is also thereby enriched.

Result 4.2.1. Denoting by ﬂﬁ and ¥J the components
of Y., and 9, , respectively, we have

. 1 , , .
W, = T 9 = )
=gt =)
where
n 1
8y =y ;] B = 727? T
j=1 J=1 n;

As a corollary, 9 = noj dey = 1oy ST, .

Proof. By definition, 9., := V;l;lﬁr (Eq. (34)). To
identify the inverse of Vj, on F;, we solve the equation
V¥ =9, in Fy. From Eq. (32), V9" is equal to Vp1
up to a vector of Fy. It then follows from Eq. (42) that
the components of 9 are related to those of 19, by the

relation _ '
njog0’ =0 -6



Lannes: Differential GPS — The reduced difference approach 29

where § is some constant in R. As result,

9 = !
77]'01/%

(07 - 9)

As o' lies in F} , we have > j—1 97 = 0, hence the identity
0 = 6y. The result and its corollary then follow from
Property 4.1 and Egs. (40, (41). O

It is important to note that in the special case where the
weights 7(r; ,s;) are all equal to unity, we have n; = 2,
w; =1/n for all j, and 69y =0.

Result 4.2.2. The square of the norm ¥, in F;, can be
expanded as follows:
"1
2 _
Fey ™ Z ]
=

[[9:] (0] — 69)”

2
=1 759

Proof. From Property 4.1, Eq. (41) and Result 4.2.1,
we have

||'l9r| %r+ = (19; '190+)E
2 n
= Z Z 77(7"i ’ Sj)o—'t/% 190+(ri ) Sj)
i=1 j=1
n 2 1 ]
= ZZU(Tmsy‘) —— (] - 89)?
j=11i=1 5%
n 1 '
= > In(ri,s5) +n(r2, 85)] =5 (9 — 69)°
j=1 5%

The result then follows from the fact that
n(r1,s5) +n(re,s;) =n;; see Eq. (42). O

Remark 4.2.1. Property 4.1 illustrated by Results 4.2.1
and 4.2.2 gives a ‘dual insight’ into the problem (see
Fig. 4). For example, in the DIA method presented in
Sect. 6, U, is the [1,(]-component of a residual quan-
tity involved in a LS problem stated in (the Hilbert sum
of) [¢y.¢]-copies of Fy, . According to Property 4.1, stat-
ing the problem in that way amounts to stating it in
(the Hilbert sum of) [t ]-copies of E} . Depending on
the context, one may thus operate in various equivalent
ways. Indeed, equipped with appropriate inner products,
the spaces Fy,, Fa,, Ey., Fq, and E., are isomorphic
to B} .

Let us now come back to the special case where the weights

n(ri,s;) are all equal to unity. Result 4.2.1 then yields

(see also Egs. (15) and (18)):
L

I8 =9, = 55 Y, (43)

Clearly, the CO data space E} then coincides with the

CO space E. (see Fig. 4). According to Result 4.2.2, we

E.
0 Dor Ve ©
srl lsd
FO 9 Fd
D
F

Uq
Uq, S, -
0 I, 9, r

Fig. 4 Dual representation of the main elements of the prob-
lem. Here, Ey is the nuisance delay space (see Sect. 2.1.1).
This subspace of the observational space E is the null
space of the RD (and DD) operators S; (and Sq); see
Sect. 2.3; ¥ is the projection of ¥ on the orthogonal com-
plement of Ey in E, the CO space E.: ¥J. = FP.¥. In the
case where the GNSS device includes only two receivers,
Y. is the centralized observational function Y. defined via
Eq. (15); see Remark 2.1.2. Here, ¥, is the observational
version of ¥, (see Remark 2.2.2). Likewise, ¥4 is the ob-
servational version of ¥q (see Remark. 2.2.3). The pseu-
doinverse of S, maps F, onto the CO data space EJ,
the orthogonal complement of E in the observational data
space Et: 9¢ = 89, = P9, According to Property 4.1.1,
one has 9 = Vj9cy where Ucy := ST,y with 9., := V"9,
note that S;¥c. = SVep = SST19H = 29,;. Likewise,
ST maps Fy onto Ef: ¥f = ST9,. In the important spe-
cial case examined in Remark 4.2.1, 9} coincides with 9.
(see Eq. (43)); EZ then coincides with E. .

then have (see also Eq. (37)):

2
[0+ = [19]

2 2
Fry — 94 ||Fd+ (44)

n
=3 il
%y

Jj=1

The orthogonal projection of E+ onto EZ is also basically
involved in the dual algebraic formulation of Lannes and
Durand (2003); see Fig. 4 of their paper. The key re-
sult (43) completes their contribution. To establish this
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property, these authors should have described, explicitly,
in the special case under consideration, the action of the
pseudoinverse of operator Sq (the ‘closure operator’ C of
their formulation).

With regard to all these points, the more general results
established in this section enrich both the dual algebraic
formulation of differential GPS and the centralized obser-
vational approach.

Remark 4.2.2. In the special case under consideration
(where the weights n(r; ,s;) are all equal to unity), the
identity expressed in the right-hand side of Eq. (44) can
directly be derived from the traditional approach to dif-
ferential GNSS. This can be shown as follows. For clarity,
consider the case where k = 1. As is well known, the ma-
trix elements of VJdl are then given by the formula

1| n—1 ifj/=j
X — P . jaj/€{27'--7n}
nl -1 ifj'#j

Clearly, for any ¢ in Fy, we have

1

Ki o =
353 2
201/)

19N%,, =@ Vg O)r =Y 9(Vyg'9)
=2
in which (for j =2,...,n)
B 1 A
(Va0 = P(%“Z%)
=2
1 1 &
_ J o 9kYy _ J _ 9k
= g - - X -]
Jj=1
1 1o~ .
— _ J _ ]
o 205( nzﬁ>
Jj=1
= 5t
20w

As a result,

i%%ﬂﬁ=——i
j=2

j=2

(7 —9")g

[\
—
@qm

(97 —9")

<
Il
—_

Il
[\
@qm‘ =

(9 — 95)0%

<
Il
—_

Il
[\
@qm‘ =

Since 37, ¥} = 0, it then follows that
n

2 L
1917, =3 571941

j=1

(9 =)

5 Data assimilation in RD mode

In the statement of the global positioning problems, the
position variable at epoch ¢, & , appears via the lineariza-
tion of the quantities p] with respect to the position vari-
able £2.; of receiver ro: &op = Eg;t + & . Indeed, as

Pl = pi(ra,s5) = pelr1, s5) (45)
the linear expansion of p/ is of the form

pl =P + (d] - &) (46)
Here, d{ is the unitary vector that characterizes the di-

rection s; — ry of the signal received at epoch ¢. Let J;

be the matrix whose elements of the j** line are the three

components of d{ . Denoting by J; the corresponding op-
erator, we thus have p, = p, + J:§, , hence

Pty = ﬁt;r + Jtﬂ’gt (Jt;l" = QTJt) (47)

In single-frequency mode, the state variable at epoch ¢,
the local variable x;, is the column matrix

Tt = (aagt)T (48)

with @ = a, in F;. The global variable for the epochs
t1,ta,...ty is then of the form

X = (05,51,52,..» 7€n)T (49)
where &, = &, . Clearly, the ‘float ambiguity’ o does not

depend on t. Let y; be the RD data vector (at epoch t)
modified by the terms induced by the linearization:

- ( Dy — /:’t;r ) (50)
¢t;r — Pt
We then have
Yyt = Arxy + error terms (51)
where

0 Jir
Ay = " (52)
)\Ia Jt-r

)

The problem is to be solved in the least-square sense at
the global level. We then introduce the column matrix

Y:(ylay27"'7yn)T (53)
where y, = y;, . Clearly,

Y = AX + error terms (54)
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where the global operator A is then of the form:

Jl;r
My Jig
J2;r
)\Ia . J2;r
A= (55)
s
)\Ia . . e Jn'r

3

5.1 Recursive least-square filtering

The solution z = (@, 3 )T is obtained through recursive
least-squares (RLS) filtering (e.g., Bjorck 1996). The it-
eration at epoch t, is then of the form

Tyjn = Tnjn—1 + Knvn (56)
in which

Un = Yn — Annjn_1 (57)
where

Zajn = (@n,6n) a1 = (@n-1,0) (58)

Clearly, K, is the RLS filter at epoch ¢, ; v, is the ‘pre-
dicted residue’ for the same epoch. The float solution &
is thus refined together with its variance-covariance ma-
trix V.

5.2 Ambiguity resolution

At each epoch, one then searches for the point & of L,

closest to & the distance being that induced by the quadra-

tic form on Fy: f(9) := (¢ - V5 '9)F . Clearly,

& = argmin [jo — &|y,—1 (59)
aEL, «

As specified in Agrell et al. (2002), this nearest-lattice-
point problem is solved via the LLL algorithm, an algo-
rithm devised by Lenstra, Lenstra and Lovasz in 1982.
To state this problem in technical terms, we then have to
choose a reference basis of L,. The most natural choice
corresponds to a basis such as b,q (see Sect. 3). The refer-
ence index k can then be chosen arbitrarily, for example,
the first one or the last one of the current list of satel-
lites. In this basis, the components of « are the compo-
nents of ag := Da in basis by (see the analysis developed
in Sect. 3). Likewise, the components of & in basis b.q
are the components of aq := Da in basis bg. Further-
more, the variance-covariance matrix of @ expressed in

basis b;q is equal to DV3 D", ie., Vpg = Va,. Solv-
ing the RD ambiguity problem in L, therefore amounts
to solving the integer-ambiguity problem of the DD ap-
proach in Lq (e.g., Teunissen 1995):

(g = argmin ||aq — aqlly, (60)

—1
ag€Lq *d

Clearly & = Rdyg. The explicit statement (in a trivial
basis) of the ambiguity problem in question is therefore
that of the DD approach. This does not mean, of course,
that the DD approach is the best suited for stating all
the problems of the data assimilation process (see Sect. 6
in particular).

At the technical level, we therefore proceed as follows.
We first set k& = 1 for example. Starting from the float
RD ambiguity vector @ and its variance-covariance ma-
trix Vz, we then compute the DD float ambiguity vec-
tor &g = D& and its variance-covariance matrix Vi, =
DV;D*. In single-frequency mode, the n — 1 compo-
nents of aq are therefore explicitly given by the relations

~ ~k

a,=a’ -a (j=2,...,n) (61)
Similar operations on the columns and lines of V3 pro-
vide the (n — 1) matrix elements of Vi, . Solving the
DD ambiguity problem (60) then provides the DD am-
biguity vector ¢q. In single-frequency mode, the com-
ponents of the RD ambiguity vector & = Rdq are then
explicitly given by the relations

& =al —ad ay == (62)
itk

3

Clearly, we thus have passed from the RD framework to
the DD framework (and then vice-versa) only to solve the
technical problem in question.

5.3 Fixed ambiguities

When in the data assimilation process, & becomes con-
sistent with the model (up to the noise), the ambiguities
are said to be fixed. The positions En are then refined via
‘FLS’ filtering: LS processes in which the ambiguities are
fixed at these values. Processing the same undifferential
data either in RD or DD mode of course provides the
same positions.

To prevent that biases on the SD data propagate unde-
tected into the ambiguity solution and the positioning
results, particular methods have been developed. These
DIA methods ‘Detect’ these model errors, ‘Identify’ them,
and ‘Adapt’ the results consequently (e.g., Teunissen 1990,
Hewitson et al. 2004). We now show how the related RLS
and FLS procedures can benefit from the RD approach.
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6 DIA methods in RD mode

In RLS mode (for example), the principle of the RD ver-
sion of these methods is based on the analysis of the ‘ac-
tual residue’

Wn = Yn — Anfnln = Hyv, (63)
where, from Eqs. (56) and (57),
Hy =1 — AK, (64)

Here, I is the identity operator. Omitting subscript n,
and denoting by w, and wg the code and phase com-
ponents of w (respectively), we have from Result 4.2.2
and 4.4.1

2 2
ol = flw,l%, . + lwgll%, (65)

where (for ¢ = p or ¢)

2
lwyllz,,, = D (66)
Jyp=1
with
1 - ~ ;
Cjy = — (W), — S, )’ Ow,, = Zujwi (67)
5% j=1

When |wl||? is too large, above some threshold defined
by statistical criteria (see Sect. 6.1), we then search to
identify a global SD bias of the form

ﬂ:< > Bie, s Y. %%) (68)
jpEQp jd)EQd)

The ‘outlier sets’ €2, and {3 are some ‘small subsets’
of {1,...,n}. The corresponding SD model is the follow-
ing (see Sect. 1):

P =5, ifje,

o+ cldt(rg) — dt(r)] + € = i .
P otherwise

for the code, and likewise for the phase (see Eq. (5)).
The problem is to identify €2, and Q4 while getting least-
squares estimates of the corresponding biases 3;, and ;,, .
The guiding idea is to the consider the contribution of
these biases to w.

As w = Hdév = H by (see Egs. (63) and (57)), we must
first see what is the contribution of these biases to y. At
this level, the correction terms induced by e;, and ej,
are denoted by z;, and zj,:

o zi = (e ,0
yEy - - Jp - (exj, ,0) (69)
Zj¢ = (0, erj¢)

Clearly, a notation such as a = a +b means ‘a is set equal
to the current value of a + 6. The components of the

basis vectors e;; are explicitly defined by the relations
(see Sect. 3)

el;=—1/n (for j # j);
e, =1-1/n

The variations of w induced by e;, and e;, are therefore
characterized by the quantities f;, and f;, defined below:

set fj I:HZj
w=w — Hz;, ’ ?
fj¢ = HZj¢

As aresult, the variation of w induced by the global bias 3
is characterized by the vector

MB = > Biti+ Y. Biti, (71)

jpEQp j¢EQ¢

(70)

We are then led to solve, in the least-square sense, the
equation M (‘="w, in which the column vectors of M,
the f; ’s and f;,’s, have to be thoroughly selected. As
clarified in Sect. 6.1, this operation is performed via a par-
ticular Gram-Schmidt orthogonalization process which is
interrupted as soon as the corrected data are consistent
with the model. As expected, Equations (65), (66) and
(67) play a key role in the identification of the global
outlier set € := €, U Q.

6.1 Implementation

In the procedure described in this section (see the flow
diagram shown in Fig. 6), 0 is the level of significance or
the probabilty of false alarm of the local overall model
(LOM) test; 6y is that of the outlier test.

1. Entrance LOM test

Compute Tiom := ||w||?/m where m = 2(n — 1)—3 is the
redundancy (in the single-frequency case) at the current
epoch. Let t;,om := Fp(m, 00, 0) now be the upper 6 prob-
ability point of the central F-distribution with m, oo de-
grees of freedom. If Ty oM < trLowMm, terminate the process
(go to step 4); otherwise, set t = 1 (the recursive index)
and Q = II = § (the empty set); the meaning of the aux-
illary set II is defined in step 2.2 (as soon as it begins to
be built).

2. Recursive identification of the outliers

2.1. Current set of potential outliers

For all the jy, ¢ Q, compute the components ¢;,, of [w]|?
and their maximal value:

Cmax ‘= MAaxX Cj,
Jy &S

Then, given some nonnegative constant x < 1, form the
current set of potential outliers (see Fig. 5):

I := {jy & Q:¢j, > Kemax})
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C5¢

3p p 3¢ D¢
Code Phase

Fig. 5 Notion of potential outliers (in RD
single-frequency mode). For the compo-
nents cj,, shown here, and for x = 0.5 (with
n = 7 and Q = (), four potential outliers
are identified: 3,, 5,, 35 and 55 . Here, the
phase outlier 54 is likely to be the dominant
potential outlier (see step 2.3 and Sect. 6.2).

2.2. For each potential outlier jy € Il

Perform the following successive operations:

a) When j,; ¢ II, compute (see the context of Egs. (69)
and (70))

(€, ,0) ifyp=p
fjw =H- ! . o
(0, erj¢) if =10
Then, set
o {ju} if II=0
iy = fjw I = . .
MU {j,} otherwise

By construction, II is the set of potential outliers jy
for which f;, has already been computed.

b) If t = 1 go to step 2.2¢. Otherwise, at this level,
{99}a<c is an orthonormal set. (This set is built,
progressively, via step 2.4.) Then, for each integer
g < t, consider the inner product defined as follows
(see Eq. (34) and Result 4.2.1):

(9q 1 95,)

Z <93;w' |gjw;1b’>Fw’;r+
'=p,¢

Sq,5v

This sum includes two terms. Depending on what
Y’ refers to (p or @), 9gg., denotes the code or phase
component of gg, and likewise for 9, - If ¢4 5, has
not been computed yet, compute it, store it in mem-
ory, and perform the Gram-Schmidt orthogonalization
operation

,oset . 4°
iy = 9y — Sa,3y9q

By construction, ¢4 ;, = (gg | fj,)- Clearly, at the end
of all these operations, g;,, is orthogonal to gg for any
qg<rt.

¢) Consider the projection of w on the one-dimensionl

space generated by g;,, i.e., (hj, | w)h;, where

hj, = gj, /195, |- The norm of this projection is equal
to [(hj, | w)|, the absolute value of the quantity

Yip = <gj1/1 w>/9jw Qjy = ”gjz/;
Explicitly,
(g5, [w) = Z <gjw;w’ | ww/>F‘¢”;r+
'=p,¢
2 L 2
195, = Z ||gjw;w’||Fw/;r+
'=p,¢

2.8. Dominant potential outlier

By definition, the dominant potential outlier j7; is the
potential outlier for which |v;, | is maximal:

Jp = arg max|y;,|
Jy €11

2.4. Outlier test

Let x,, be the upper /2 probability point of the central
normal distribution:

Xo i= NQO/Q(O, 1)

a) If |y;,] > x, with m > 0, the dominant potential
outlier is then regarded as an effective outlier:

We = 77 0= o
PR | Quiwd

fr=1
ifr>1

o

Yo = Yo Gr = Gu./ 0w,

Superscript o stands for omega (and outlier). At this
level, Q is the current set of identified outliers:

Q= {Wq};=1

By construction, {gg g=1 is an orthonormal basis of
the current range of M; Z;Zl Yq9q is the projection
of w on this space. With regard to Eq. (71), we then
set

Be = B, I = fo

b) When the dominant potential outlier is not identified
as a real outlier, we consider the following two situa-
tions:

Case 1: |fyj¢| < Xo with TLom > 5tpom (for exam-
ple). We then reinitialize the RLS process.

Case 2: |’y]—¢| < X, With TLom < 5tpom and v > 1, or
17751 > X, with m = 0. We then go to step 3.

2.5. Components of g; in the basis of the f]’s

These components are denoted by u,.:

t

[e] [e]

gt - E :uqytfq
q=1
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They are computed via the QR Gram-Schmidt formulas
(see e.g., Bjorck 1996)

1 .
- Z Ug,q Sqw, <t
Que g<qcr
Uq,e = )
—_— ifg=1t
Ouw,

for 1 < q < v. Clearly, the ug,.’s are the entries of the
t*" column of an upper triangular matrix U.

2.6. SD biases

According to Eq. (71), the SD biases 3] are the compo-
nents of Z;zl Yq9q in the basis of the fg’s:

v v
D95 = DS
q=1 q=1

Denoting by [7°] the column matrix with entries v (from
q =1 to t), and likewise for [3°], we have

The SD biases are therefore to be updated as follows:

o set { ﬁg + qu’)/;) lf q < v

. = ) (for 1 <g<r)
ifq=rt

Ue Ve
2.7. Update w and |Jw||?:
|2

wEw—7g; lwll* = flewl® = |v¢

2.8. Update redundancy m and the LOM quantities:

set tLom = Fy(m, 00, 0)
m=m-—1

Trom = [lw[|?/m
2.9. Inner LOM test

If TLom > tLowm, update recursive index: t=t+1. Then,
go to step 2.

3. Local adaptation

Let K be the matrix gathering the columns of K corre-
sponding to the successive identified outliers wy, ..., wy.
The adaptation formula of the local state vector is then
(from Eqs. (56) and (57))

TE7T - Kqo[f)

As [3°] = U[y°], the adaptation of the variance-covariance
matrix of T is therefore given by the formula

Vi £ Vi + [KQU][KqU]*

Indeed, as {gfI g=1 18 an orthonormal set, the variance-
covariance matrix of [y°] is the identity.

4. End

B RD filtering

B Actual residue w

Entrance LOM test

Potential outliers

T 1 Dominant potential outlier

Outlier —_—

test Reinitialization

|

5 Outlier identification
|
1 I B Update SD biases and w
|
l L T @ Inner LOM test

|

Adaptation

Fig. 6 Flow diagram of the DIA procedure in RD mode.
At each step of the identification process, the ‘residual ac-
tual residue’ w is analyzed on the grounds of Eq. (72) or
of its generalization (see Fig. 5, Egs. (65), (66) and (67)).
This allows the potential outliers to be selected. The out-
liers can thus be identified, in a recursive manner, via a
particular orthogonalization Gram-Schmidt process. This
QR Gram-Schmidt process also provides the SD biases,
and thereby the cycle slips if any (see text).

In order to detect a model error of the same size with
the same probability wy by using both LOM and outlier
tests, it is required that, for both tests, the same values
for the non-centrality parameter {y be chosen.

To determine the testing parameters, one therefore pro-
ceeds as follows. One first makes a choice for 8y and wg:

6o = 0.001 wo = 0.80 (for example)
The non-centrality parameter (y of both tests is com-
puted from these values. One then obtains the critical

value Fp(m,00,0) of the LOM test, and thereby 6.

6.2 Examples

The RD approach was validated in the framework of a
European action entitled HPLE.! Real GPS data were

'The HPLE (High Precision Local Element) project was co-
funded by the European GNSS Supervisory Authority with funding
from the Sixth Framework Programme of the European Commu-
nity for research and technological development, European Union’s
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thus processed in the dual and single-frequency modes.
For all these data sets, the DIA procedure was conducted
with n; = 2 for all j.

In the single-frequency mode, Equation (65) then reduces
to

1 &, I &,
[w||? = 252 Z lw)|? + 252 Z |w)|? (72)
P =1 ¢ j=1

As a general rule, at each step of the recursive identifi-
cation process, the j, or js to be selected, the dominant
potential outlier, then corresponds to the maximal value
of |w)|/o, and lwjl/op for j = 1,...,n (see Fig. 5). As
illustrated in the following examples, this is also the case
in dual-frequency mode.

We now present related results concerning a set of GPS
data provided by the French DGA for testing: 4907 epochs
at 1 Hz in dual-frequency mode (L1-C/A, L2-P) with many
appearances and disappearances of satellites. Over this
time series, depending on the epochs, their number was
7,8 or 9.

The reference and user receivers were static. The rela-
tive Cartesian coordinates of the user receiver were of the
order of —303m, 121 m and 238 m.

The data set in question was reinitialized at the following
epochs: 1094, 1301, 3010 and 4689. The ambiguities were
then fixed in one or two seconds: the position of the user
receiver was thus retrieved, up to one centimeter, except
for epochs 1, 1094, 1301-1302, 3010-3011 and 4689-4690.

Table 1 Dual-frequency DD ambigui-
ties djf,,;k forj=1,...,n withn =
9 and k=1. At the epoch under
consideration, these ambiguities were
fixed; for their RD transcription, see
text (and Sect. 5.2, in particular).

Ji fv S I2
1 0 0
2 34868 257496
3 625263 —196 104
4 —2502896 | —1419324
5 12155323 9705967
6 —2593167 | —1303294
7 5973773 4346 092
8 9056 740 7252801
9 —9386838 | —7332507

To illustrate the dual-frequency version of the approach
presented in this paper, we now concentrate on the pro-

chief instrument for funding research. The European GNSS Super-
visory Authority is the EC agency in charge of the implementation
of Galileo, Europe’s future satellite navigation system.

cess at epoch 4745. Nine satellites were then available:
satellites 1, 5, 7, 8, 9, 21, 23, 26, 30 ( = 1,...,9).

At that epoch, the ambiguity vector (ay, ,ay,) was fixed.
The DD transcription of its components is displayed in
Table 1 for k = 1.

For j =1,...,n, and for each frequency, the correspond-
ing RD ambiguities are then given by Eq. (62) with k = 1,
& = ap and @ = ag, . It was of course verified that
the estimated relative coordinates of the user receiver
were exactly the same in both approaches: —303.39m,
120.92m and 238.49 m (the correct values up to one cen-
timeter).

The DIA procedure implemented in that case was the FLS
dual-frequency version of that presented in Section 6.1.
The following two situations were then considered:

A. Without any cycle slip (the real data)

B. With the following added cycle slips (just to show
the efficiency of the method):

e 2 cycles in the reception of the fi-signal com-
ing from satellite 5 (j = 2);

e —1 cycle in the reception of the fs-signal com-
ing from satellite 8 (j = 4);

A. Detection and identification without any cycle slip

In that case, the entrance value of T1,onm (9.13) was greater
than the corresponding value of tonm (1.26). The outliers
were then identified in the following order:

Outlier | TLowm
(f2;1p) 5.40
(f1;44) 2.63
(f1;1p) 1.63
(f1;8p) 1.06

The value in the right-hand side column is the corre-
sponding reduced value of Ty,on . The last value of T1,oMm
(1.06) is smaller than the corresponding value of t,om
(1.30). The biases thus found are displayed in Table 2.

B. Detection and identification with cycle slips

The entrance value of T1,0n was then very large (335.09),
much greater than the corresponding value of ¢1,0m (1.26).
The outliers were then identified in the following order:

Outlier Ti,0Mm
(f1:24) | 108.81
(faidg) | 942
(f2:1,) | 541
(f1:4¢) 2.82
(1) | 174
(fi:8,) | 113
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The last value of T om (1.13) is smaller than the corre-
sponding value of t,om (1.34). The biases thus found are
displayed in Table 3.

All over the time series under consideration, the results
were the same with kK = 1 or k = 0 (see step 2.1 and Fig. 5
in Sect. 6.1). It is important to note that the choice
t = 0, which induces some CPU overhead (see step 2.2
in Sect. 6.1), implicitly corresponds the DD implementa-
tion of the DIA procedure by the Teunissen group at the
Technical University of Delft (TUD). In Kalman mode,
# should likely be set equal to a smaller value (say 0.5 as
in Fig. 5). This point remains to be investigated.

Table 2 Identification of a set of SD biases. The
biases f3y,;;, are expressed in meters. At the
epoch under consideration, nine satellites were
available: n =9 (see text).

Frequency fi

ol 1 [ 2 [ 4 [ 8 |
D — 4.806 —-3.304
0] 0.043

Frequency f2
il t [ 2] 4 [ 8 |
(o [ -sm5] | | |

Table 3 Identification of a set of SD biases includ-
ing cycle slips. The situation is the same as that
defined in Table 2, but with added cycle slips.
The latter are correctly retrieved: Bp, 2, ~ 2A1,
Bfaas =~ —A2. Note that the identification order
is, first, that induced by the cycle slips, and then,
that displayed in case A (see text and Table 2).

Frequency fi

el v [ 2 [ 4 [ 8 |
P —4.806 —3.304
10} 0.381 0.043
Frequency f2
e v [ 2 [ 4 [ 8
P — 8.755
10} —0.248

7 Concluding comments

The vertices of a GNSS graph are the receivers and the
satellites of the GNSS device (see Lannes and Durand
2003). Its edges are the receiver-satellite pairs. The origi-
nal observations are defined on these edges (see Sect. 2.1).
As these observations are defined up to vectors in the
nuisance delay space (see Sect. 2.1.1 and Fig. 4), the or-
thogonal complement of this space in the observational

data space plays a key part in the data assimilation pro-
cedures. In particular, brought back to this orthogonal
complement, the residual quantities to be considered in
the DIA procedures take their values on the edges of
the graph.

To stress what is essential, the analysis presented in this
paper was restricted to the special case where the GNSS
graph includes only two receivers. On the two edges in-
volved in the definition of a single difference, the double
centralized observations of Shi and Han (1992) are then
opposite. As clarified in Sect. 1.1.5, the information con-
tained in these observations is then a simple antisymmet-
ric transcription of that contained in the RD data.

The DD and RD approaches prove to be equivalent. More
precisely, as specified in Sect. 3, the choice of the ref-
erence satellite induces that of a reference basis of the
RD data space. The components of a RD vector in this
basis are the corresponding DD’s. Solving the problem
in DD mode therefore amounts to solving it in this basis.
At any stage of the data assimilation procedure, one may
therefore pass from the RD mode to the DD mode, and
vice-versa. In particular, solving the rational-ambiguity
problem of the RD mode amounts to solving a nearest-
lattice-point problem of DD type (see Sect. 5.2).

In RD mode, all the satellites are handled in the same
manner. As a result, the numerical codes of the RD data
assimilation processes are more readable than those of
their DD versions. For example, in RD mode, the disap-
pearance of the reference satellite of the DD approach is
handled like that of any satellite.

This said, the main interest of the RD approach lies in
the properties revealed by the corresponding ‘dual anal-
ysis’ (see Sect. 4). These properties, which are masked
in the DD approach (see Remark 4.2.2), shed a new light
on the CO approach of Shi and Han (1992). In particu-
lar, Result 4.2.2 can be exploited in the DIA procedures.
From this point of view, Equation (43) is very significant.
The notion of potential outlier derives from its corollary,
the Euclidean quadratic decomposition (44); see Fig. 5.
These properties also complete the contribution of Lannes
and Durand (2003). All these aspects are analyzed and
commented in Remark 4.2.1. As a result, all these equiv-
alent approaches can benefit from each other.

The DIA procedure described in Section 6 follows the
main guidelines of the DIA method of the TUD group
(see, e.g., Fig. 6 in Teunissen 1990). In particular, the
recursive detection process is based on a Gram-Schmidt
orthogonalization procedure. The main new points de-
rive from the notion of potential outliers. The orthogo-
nalization procedure was implemented accordingly. The
efficiency of the DIA method is thus improved. This par-
ticular implementation also benefits from the QR Gram-
Schmidt step 2.5 of Sect. 6.1. The QR approach of the
PhD dissertation of Tiberius (1998) can thereby be nicely
completed. As specified in step 2.6 of Sect. 6.1, the SD bi-
ases can thus be recursively refined. The identification of
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cycle slips, in particular, is performed in this way (see
Table 3).

The GNSS graph may include more than two receivers;
some receiver-satellite edges may also be missing. In this
general situation, that of GNSS networks with missing
data, it is important to benefit from all the redundancy
of the data. The ‘identifiable biases’ must then be iden-
tified on the edges (or pairs of edges) where they ap-
pear. To solve the related problems in an efficient man-
ner, the DD and CO approaches have to be conjugated
and generalized in the ‘projected observational frame-
work’ of Fig. 4. The related developments will be pre-
sented in a forthcoming paper (Lannes 2008).
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